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Abstract

Smart phones are used to collect and share personal
data with untrustworthy third-party apps, often leading
to data misuse and privacy violations. Unfortunately,
state-of-the-art privacy mechanisms on Android provide
inadequate access control and do not address the vulner-
abilities that arise due to unmediated access to so-called
innocuous sensors on these phones. We present ipShield,
a framework that provides users with greater control over
their resources at runtime. ipShield performs monitoring
of every sensor accessed by an app and uses this infor-
mation to perform privacy risk assessment. The risks are
conveyed to the user as a list of possible inferences that
can be drawn using the shared sensor data. Based on
user-configured lists of allowed and private inferences, a
recommendation consisting of binary privacy actions on
individual sensors is generated. Finally, users are pro-
vided with options to override the recommended actions
and manually configure context-aware fine-grained pri-
vacy rules. We implemented ipShield by modifying the
AOSP on a Nexus 4 phone. Our evaluation indicates
that running ipShield incurs negligible CPU and mem-
ory overhead and only a small reduction in battery life.

1 Introduction

Smartphones have evolved from mere communica-
tion devices into sensing platforms supporting a sprawl-
ing ecosystem of apps which thrive on the continu-
ous and unobtrusive collection of personal sensory data.
This data is often used by the apps to draw inferences
about our personal, social, work and even physiological
spaces [10, 41, 16, 53, 9, 58, 49, 51] often under the
pretext of providing personalized experiences and cus-
tomized recommendations. However, not all app devel-
opers are equally trustworthy, and this coupled with user
naı̈veté leads to data misuse and privacy concerns.

To safeguard user privacy, Android requires develop-
ers to specify the permissions needed by their apps. At

install time, a user can either grant access to all the re-
quested resources or opt to not use the app at all. But
despite these provisions, cases of privacy violations by
third-party apps are rampant [33, 6, 55]. We observe
multiple problems with the current privacy mechanisms
in Android. First, only a select set of sensors such as
GPS, camera, bluetooth are considered to be privacy-
prone and have their access mediated through protected
APIs [3]. Other onboard sensors such as accelerometer,
gyroscope, light, etc. are considered to be innocuous, re-
quiring no user permission. This specific vulnerability of
unrestricted access to accelerometer and gyroscope data
has been exploited to mount keylogging attacks [43],
and for reconstruction of travel trajectories [31]. Sec-
ond, various studies [52, 28], to understand users’ per-
ception of privacy in general and their understanding of
Android permissions in particular, reveal that users are
often oblivious to the implications of granting access to
a particular type of sensor or resource on their phone at
install time. However, the perception quickly changes
to one of concern when apprised of the various sensitive
inferences that could be drawn using the shared data. Fi-
nally, users only have a binary choice of either accepting
all the requested permissions or not installing the app at
all. Once installed, users do not have any provision to
revoke or modify the access restrictions during runtime.

Prior research have tried to address some of the above
problems. TaintDroid [24] extends the Android OS by
adding taint bits to sensitive information and then track-
ing the flow of those bits through third-party apps to de-
tect malicious behavior. However, tainting sensor data
continuously for all apps has high runtime overhead, and
is often conservative as data sensitivity typically depends
on user context. Moreover, TaintDroid stops at detection
and does not provide any recommendation on countering
the privacy threat. MockDroid [18] is a modified An-
droid OS designed to allow users the ability to mock re-
sources requested by the app at runtime. Mocking is used
to simulate the absence of resources (e.g., lack of GPS
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fix, or Internet connectivity), or provide fixed data. How-
ever, MockDroid only works for resources explicitly re-
quested by an app (innocuous sensors are not handled), is
binary because a user can either mock a resource or pro-
vide full access to it and finally MockDroid falls short
on providing any guidance to the user regarding which
sensors to mock. PMP [12] is a system that runs on iOS
and allows users to control access to resources at run-
time. It uses a crowdsourced recommendation engine to
guide users towards effective privacy policies. However,
PMP does not handle sensor data.

In this paper, we present ipShield [5], a privacy-
enforcing framework on the Android OS. ipShield al-
lows users to specify their privacy preferences in terms
of semantically-meaningful inferences that can be drawn
from the shared data, auto generates privacy actions on
sensors, and supports an advanced mode for manual con-
figuration of fine-grained privacy rules for accessed sen-
sors on a per app basis at runtime. We build on prior
work in [7, 18] and make the following contributions.

• We modified the Android OS to monitor all the sen-
sors accessed by an app regardless of whether they are
specified explicitly (e.g., in the manifest file for An-
droid apps) at install time. As per our knowledge, ours
is the first system that tracks innocuous sensors.

• We took an important step towards presenting the pri-
vacy risks in a more user-understandable format. In-
stead of listing sensors, we list the inferences that
could be made using the accessed sensors. Users can
specify their privacy preferences in the form of a prior-
itized blacklist of private inferences and a prioritized
whitelist of allowed inferences.

• We implemented a recommendation engine to trans-
late the blacklist and the whitelist of inferences into
lower-level binary privacy actions (suppression, al-
low) on individual sensors.

• Finally, we provided the user with options to config-
ure context-aware fine-grained privacy actions on dif-
ferent sensors on a per app basis at runtime. These ac-
tions range in complexity from simple suppression to
setting constant values, adding noise of varying mag-
nitude, and even play-back of synthetic sensor data.

ipShield is open source and implemented by modify-
ing Android Open Source (AOSP) [2] version 4.2.2 r1.
We evaluated it using computation intensive apps requir-
ing continuous sensor data. Our results indicate that ip-
Shield has negligible CPU and memory overhead and the
reduction in battery life is ∼ 8% in the worst case.

2 Case Studies
Using two typical scenarios we illustrate below how

ipShield can help app users protect their privacy.

Classroom

My Home
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My Home

Friend’s
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Classroom
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Figure 1: Left: Saga app showing actual trace of the user.
Right: Both actual trace and spoofed trace on the map.

2.1 Transportation Mode and KeyLog-
ging: Accelerometer/Gyroscope

Activity recognition algorithms [16, 53] are used by
various fitness apps to infer the users’ Transportation
Mode (e.g., to predict one of three labels: walking, mo-
torized or still). For example, the Ambulation app in [53]
combines accelerometer and GPS data to infer the la-
bels with over 90% accuracy. However, the same data
can also be used to infer other labels sensitive to the
user. For example, accelerometer together with gyro-
scope data can be used to perform keylogging and to in-
fer keystrokes (Onscreen Taps) on the softkeyboard [43]
(and separately to also infer Location [31]) with over
80% accuracy. This leads to the leakage of sensitive in-
formation like password and PIN entered on the phone.

Using ipShield, a user would add the Transportation
Mode and the Onscreen Taps to the whitelist and the
blacklist, respectively. This will block the accelerometer
and gyroscope data from reaching the Ambulation app
preventing keylogging. However, this will also cause the
app to stop performing activity recognition. In Section 8
we will show how ipShield can be used to configure fine-
grained rules and maximize the utility of the app.

2.2 Saga: Location

Saga [10] is a life logging app which runs in the back-
ground and keeps track of the places visited by a user.
By analyzing the location trace of a user, Saga can in-
fer useful information such as average daily commute
time, time spent at work, etc. However, it can also de-
rive sensitive inferences about locations such as home,
office, hospital private to the user. Fig. 1(left) shows a
mobility trace recorded using Saga. The user starts from
home, picks up her friend and drives to school for class;
later she also visits a nearby bar and wants to keep the
visit private. In addition to this direct privacy require-
ment, there is also an indirect privacy concern. Saga
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reveals the home location of the user’s friend. The lo-
cation information can be coupled with other online re-
sources to identify the home owner, and infer that the
friend had gone to the bar too. Thus, privacy of both
the user and her friend is compromised, even though the
friend is not using Saga. We therefore want ipShield to
allow spoofing of location traces to protect visits to sen-
sitive places. A plausible spoofed trace is shown on the
map in Fig. 1(right). We illustrate how ipShield achieves
this in Section 8.

3 Inference Privacy Problem

Inferences are labels (of activity, behaviour, places
etc.) associated with data. We group labels of a sim-
ilar (semantic) type into an inference category. The
category names and the grouping are based on prior
work (see Table 3). For example, hospital, home, office
are grouped under Location category. An adversary tries
to infer/predict these labels from the shared data. The
prediction accuracy of an inference category corresponds
to correctly predicting a label in that category. We now
define the inference privacy problem.

Problem statement: Data is typically shared with an
app for a specific set of inference categories. For ex-
ample, in Section 2.1, data is shared for inferring the
Transportation Mode, and in Section 2.2 it is for inferring
travel statistics. These categories and their labels form a
whitelist which the user wants to allow and obtain utility.
However, the same data can be used to infer keystrokes
and sensitive locations – inferences sensitive to the user.
The sensitive categories and their labels form the black-
list which the user wants to keep private. Each inference
category can also be associated with a user specified pri-
ority level (Section 6.2). The privacy problem is to de-
sign a system which will take as input a whitelist and a
blacklist of prioritized inference categories and translate
them into privacy actions on sensors such that the two
lists are balanced as per user specified priorities.

Side-Channel Attacks: Traditionally, side channel at-
tacks are designed to exploit the information revealed by
execution of cryptographic algorithms to recover their
secret key. These attacks typically use information chan-
nels which include but are not limited to running time,
cache behavior, power consumption pattern, acoustic
emanations and timing information [36, 54, 29] during
execution. Sometimes, even with no program execution,
information side channels can exist due to physical sig-
nals emanating from a hardware while it is being used
by a user. For example, acoustic [13, 42] and electro-
magnetic [57] emanations from a keyboard has been used
to infer keystrokes and recover sensitive passwords and
PINs. The feasibility of such attacks on the smart phone
using sensor data has been demonstrated in [14, 43].

Privacy Analysis Kirin [25], SOM [17], Stowaway [27]

Privacy Detection
Static: BlueSeal [32]
Dynamic: TaintDroid [24]

Privacy Mitigation

Mobile Based:
Dr. Android Mr. Hide [34], PMP [12],
Apex [45], MockDroid [18], AppFence [33],
pDroid [7], πBox [38]
Cloud Based:
Lockr [56], PDV [44], Persona [15]

Table 1: Categorization of prior work.

Our inference privacy problem differs from traditional
side-channel attacks in several ways. First, the shared
data used for the attack are not unintended physical sig-
nals emanated from the hardware, or covert timing infor-
mation but sensor data intended for the recipient. Sec-
ond, in our setting the recipient is also the adversary
whereas in case of side-channel attacks the adversary is
typically different from the intended recipient. Finally,
at least in principle, the side-channel attacks can be pre-
vented by placing the computational hardware in physi-
cally isolated and secure chamber whose boundaries the
electromagnetic, acoustic and such emanations cannot
cross which is not the case in our scenario. In [14], in-
ferring the keystrokes is referred as a side-channel at-
tack. However, we call it a blacklist inference as the sen-
sor data are intended to be shared with the app for the
whitelisted inferences and are not a side-channel.

4 Related Work

We group prior work on systems for protecting privacy
under three broad categories as shown in Table 1. The
Privacy Analysis category summarizes contributions to-
wards analysis of the Android permission model, confor-
mance of the various apps to this model, the usage pattern
of permissions across apps, and finally the expressibility
of the permission model [25, 17, 27]. Under Privacy De-
tection we have tools such as BlueSeal [32] which use
static analysis of the app bytecode to detect if sensitive
information is being leaked over the network interface
and inform it to the user at install time. Other systems
like TaintDroid [24] use dynamic flow tracking to detect
malicious app behavior. However, both techniques can
only alert the users of malicious behavior (BlueSeal at in-
stall time, and TaintDroid at runtime), and do not provide
suitable mechanisms to prevent information leakage.

Under the Privacy Mitigation category we group pri-
vacy systems implemented on mobile platforms. Dr.
Android and Mr. Hide [34] instrument and modify the
app’s dex bytecode to ensure that access to all private
resources is made available only through their trusted in-
terface. AppFence [33] builds on TaintDroid and pro-
vides shadow or synthetic data to untrusted apps and
measures the effect of such data on app utility. Other
systems in [18, 7, 45, 12, 38] provide users with the
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Figure 2: The data flow path from sensors to apps. Same
colored blocks represent components within the same process.

ability to control access to their resources at runtime -
a feature that is currently being integrated into the latest
Android release [1]. However, the above systems pro-
vide binary access control to resources, do not monitor
access to innocuous sensors, and lack high-level user-
understandable privacy abstractions (inferences). Cloud-
based solutions in [56, 44, 15] are for protecting pri-
vacy of data streams but require additional infrastructure.
A detailed exposition of other various privacy preserv-
ing techniques, and initial ideas on ipShield can also be
found in [21].

5 Background: Android

Below we describe data paths, from sensors to apps
and also highlight Android’s security model [3] to un-
derstand the process level isolation of the components.

5.1 Android Sensor Data Flow Path

We consider two data paths as shown in Fig. 2.
Path-S is used by sensors such as accelerometer, gy-
roscope, light and so on. Path-G is from the GPS
to apps. Note that the paths are simplified represen-
tation showing only the components of the Android
OS that are relevant to ipShield. SensorService and
LocationManagerService are system services (run-
ning continuously in the background) which are started
by the Android OS at boot time. These services run as
separate threads within the system server process, poll
the SensorHAL layer for sensor data and are responsible
for pushing the data to the apps. The apps typically do
not communicate directly with the services. Each sys-
tem service has a corresponding Manager which acts as
its proxy. Thus, to access sensor data an app instantiates
either a SensorManager or a LocationManager object
and uses the object’s public methods to register an event
listener for the desired sensor. As shown in Fig. 2, both
the app and the manager objects are part of the same pro-
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Figure 3: ipShield data flow.

cess (which also runs the Dalvik Virtual Machine ).

5.2 Android Security Model

Application Sandboxing: The core of the Android OS
is built on top of the Linux kernel, and this allows An-
droid to re-purpose the traditional security controls built
into Linux to protect user data, system resources, and to
provide app isolation. Android enforces kernel level Ap-
plication Sandboxing for every software that runs above
the kernel which includes all apps, OS libraries, OS-
provided app framework and app runtime. The Android
system sets up the sandbox and enforces security be-
tween apps by assigning a unique user ID (UID) to each
app and by running it as that user in a separate process.
Running apps within a sandbox environment ensures that
any memory corruption error will only allow arbitrary
code execution in the context of that particular app and
with the permissions established by the OS. User-specific
privileges also ensure that files created by one app cannot
be read or altered by another app.

Secure IPC: Android not only supports traditional
mechanisms such as filesystem, sockets and signals but
also implements newer and more secure mechanisms
such as Binder and Intents.

Access Control Using Manifest: Finally, Android
controls app access to resources by designating certain
APIs (such as camera, location, bluetooth etc.) as pro-
tected [3]. To use these resources an app needs to define
its requirements in its manifest (a control file provided by
every app). The user can either grant all of the requested
permissions as a block or not install the app at all.

6 Architectural Design

The design of ipShield is guided by four objectives
– better monitoring of sensor access, meaningful pri-
vacy abstraction, privacy rule recommendation and fine-
grained control over shared data. The architectural
requirements to achieve the above functionalities are
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shown in Fig. 3 and can be broken down into four major
blocks – (i) Databases (ii) Context Engine (iii) Firewall-
Manager (iv) Rule-Based Obfuscator. We describe each
of the blocks and their components in detail below.

Databases: We maintain two databases: Sensor Coun-
ters and Inference DB. Currently, apps have unrestricted
access to the class of innocuous sensors. One of our goals
in ipShield is to instrument the OS to monitor the number
of sensors accessed by an app. The information is popu-
lated in the Sensor Counters database (marked F ) and is
provided as an input to the FirewallManager block. The
database needs to be updated when a new sensor is ac-
cessed by an installed app or when an app in uninstalled.

Motivated by the database of virus signatures main-
tained by antivirus software, we maintain a similar
database for mapping the list of inference categories (and
their labels) that could be predicted using a combination
of sensors, together with the prediction accuracy and the
machine learning algorithm employed (Table 2 shows a
small subset of the Inference DB). Advances in sensing
coupled with increases in the sophistication of learning
algorithms result in newer inference categories and im-
proved accuracy. The inference DB (marked E ) thus
needs to be kept updated.

Context Engine: For granularity of rules, ipShield al-
lows trusted Context Engines (marked D ) to register
and provide as input context labels. A context engine
is a set of machine learning algorithms, which take as in-
put raw sensor data and output the current context label.
An inference label is same as the context label but it is
inferred from the shared data by the adversary. A user
can configure privacy rules to trigger on context labels.

FirewallManager interacts with the user and is re-
sponsible for generating the privacy rules. There are four
different sub-blocks within FirewallManager (marked
G through J ).

The Semantic Firewall Configurator ( G ) takes as in-
put the sensors accessed by an app and queries the Infer-
ence DB to present the user with a list of possible infer-
ence categories that can be predicted by the app. Using
inferences instead of sensors allow us to better commu-
nicate the privacy risks to the user [52]. The user then
configures a whitelist and a disjoint blacklist from the
enumerated list of inference categories.

The Rule Recommender ( H ) (Section 6.2) takes as
input the privacy preferences of the user expressed in
terms of the whitelist and blacklist and translates them
to actual privacy actions on the sensors. We observe that
the privacy actions are dependent on the inference labels,
the learning algorithm employed and the features used.
Therefore, to keep the recommender simple and generic
we limit the auto-generated privacy actions to Normal
and Suppress (Section 6.1). While the auto-generated
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Figure 4: Tree showing all the possible options currently im-
plemented in ipShield for constructing privacy rules. The leaf
nodes of the tree are instantiated to form the privacy rules.

rules are binary and conservative, we provide the user
with the flexibility to override them.

The Direct Firewall Configurator ( I ) allows the user
to manually configure fine-grained context-aware rules.
The contexts used can either be ones provided by ip-
Shield, or ones which are externally obtained from the
trusted Context Engine. ipShield is designed to operate
in the Semantic mode. The Direct Configurator is an op-
tional mode, which provides flexibility of rule configura-
tion at the cost of increased human interaction.

Finally, the Configurator Switcher block ( J ) allows
the user to switch between the Semantic and Direct Con-
figurator modes and configure rules.

Rule-Based Obfuscator ( B ) implements the different
privacy actions. It takes as input privacy rules and sensor
data and, depending on the app, applies the appropriate
rules to the data before releasing them.

6.1 Taxonomy of Privacy Rules

The complete list of choices for configuring privacy
rules is illustrated in Fig. 4. A rule has three basic
parts: Context, SensorType, and Action. We also al-
low conjunction (denoted by the ∧ operator) of the con-
text labels within a rule. The general form of a rule is
if (∧n

i=1Contexti) then apply Action on SensorType. For
example, if ((TimeO f Day in [10am−5pm])∧ (Place =
school)∧(AppName = f acebook)) then apply Action =
Suppress on SensorType = gps. As shown in Fig. 4
some of the simple contexts such as TimeOfDay, Day-
OfWeek, Place and AppName are built into ipShield. Ex-
ternal contexts provided by a registered Context Engine
can also be used to configure rules. SensorType refers
to the sensor (e.g., accelerometer, GPS, gyroscope) on
which the action is to be applied.

Excluding the default action of releasing data without
any changes (Normal), ipShield currently supports four
different privacy actions. The Suppress action (S-block
in B ) when applied blocks data from reaching an app
and the app is unable to detect any sensor event. The
Constant action (K-block in B ) allows user to replace

5
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actual data with a constant value. The user-specified con-
stant can be vector or scalar valued depending on the type
of sensor whose data is being replaced. The Perturb ac-
tion (P-block in B ) can be used to add noise to sensor
data. The noise values can be drawn from different prob-
ability distributions, the parameters of which are input
to this action. Finally, the Play-back action can be used
to suppress the data from the actual sensor hardware and
instead send synthetic sensor measurements from an ex-
ternal service to the requesting app (U-shaped datapath).
The synthetic data source and sensor type are input to this
action. The Play-back option can be used for generating
any arbitrary transformation on the data offline.

6.2 Rule Recommender

The Rule Recommender takes as input the whitelist
and the blacklist of inference categories and generates
a configuration for enabling or blocking of sensors ac-
cessed by an app. The goal is to ensure that only those
inference labels which form part of the whitelist are al-
lowed and those in the blacklist are blocked.

6.2.1 Problem Formulation

Let N be the number of sensors used by an app (ob-
tained from Sensor Counters) and s = [s1, . . . ,sN ] repre-
sent the sensor state vector where si ∈ {0,1} represents
the state of the ith sensor. Setting si to 0 indicates that
the sensor is disabled and a value of 1 indicates that
the sensor is enabled. We denote the set of inference
categories by L = {l1, . . . , l|L |}. We define a mapping
M : {0,1}N ×L → [0,1] where M(ψ, l) = 0 indicates
that there exists no learning algorithm which can use the
data streams from the sensors which are enabled as per
state vector ψ and infer a label in category l. A non-zero
value of M(ψ, l) correspond to the maximum accuracy
among all the learning algorithms that can be used to in-
fer category l from the data streams released as per the
state vector ψ . A value of 1 indicates that l can be per-
fectly inferred using the enabled sensors. Note, we might
use different learning algorithms to predict the same la-
bels using different sensor state vectors. The mapping M
is obtained from the Inference DB. Learning algorithms
typically work on features extracted from the raw sensor
data. But, our current model is agnostic to features be-
cause we are sharing the raw sensor data itself and hence
every required feature can be extracted from it. The set of
whitelisted categories W ⊆L , and the set of blacklisted
categories B ⊆L , are as specified by the users such that
W ∩B = /0. Finally, let pl ∈ {0, . . . ,Pmax} denote the pri-
ority level set for category l by the user such that a higher
value of pl indicates higher priority. The priority levels
represent a relative gradation of risk as perceived by the
user. For example, Pmax = 3 could correspond to low,

medium and high levels of perceived risks. We use the
above notations to formulate the inference-privacy prob-
lem as the following constrained optimization problem

maxψ∈2N ∑
l∈W

M(ψ, l)2pl − ∑
l∈B

M(ψ, l)2pl (1)

s.t. ∑
l∈B

pl=Pmax

M(ψ, l) = 0. (2)

The objective function in Eqn. 1 is designed to maximize
the prediction accuracy of the whitelisted labels and min-
imize the prediction accuracy of the blacklisted labels.
The priorities are exponentially scaled up to account for
whitelisted labels which can be detected with low accu-
racy than other labels but have a higher priority. The
constraint in Eqn. 2 ensures that users can force black-
listed inferences to be blocked by setting their priority to
Pmax. We note that the search space in the optimization
problem shown in Eqn. 1 is constrained to the vector of
elements with 0’s and 1’s corresponding to the enabled
and blocked sensors respectively. It then follows that
the search space is constrained to the vertices of a hy-
percube. It is also easy to show that this search space
is non-convex. Moreover, the optimization function de-
pends on the relation M on which we impose no structure
or even linearity. Thus, our program is non-linear inte-
ger program which is non-convex and NP-complete. We
observe from our investigation of prior work and apps
from Google Play (Section 8) that N ≤ 6 for almost all
the apps. Therefore, to solve a specific instance of the
optimization problem above (a given choice of whitelist,
blacklist, N, and priorities) we apply brute force and enu-
merate all possible state vector combinations. We filter
out all state vectors which satisfy the blacklisted con-
straint and maximize the objective function over this re-
duced space. The output vector ψ shows which sensors
should be enabled or disabled mapping preferences on
inferences to privacy actions on sensors. There will be
scalability issues for large N (> 15) but in practice we do
not think there will be a single inference made using 15
different sensor types on a phone in the near future.

6.2.2 Numerical Example

We return to the motivating example (Section 2.1) and
express it in terms of the notation described above. Thus,
L = {Transportation Mode,Location,Onscreen Taps}, W =
{Transportation Mode} and B = {Location,OnscreenTaps}.
The mapping M is presented in Table 2 (under Inference
Categories). We set the maximum priority level Pmax =
10 throughout this example and represent a user speci-
fied priority vector as a tuple (ptransport , plocation, ptap).
We apply the algorithm above for different choices of
priority vectors and report the evaluation results also in
Table 2 (under column titled Evaluation).

6
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Sensor Combination Inference Categories Evaluation
Transportation
Mode

Location
Onscreen
Taps

Priority1
{10,4,10}

Priority2
{10,0,7}

Priority3
{5,9,9}

GPS+ Acc + Gyro 95% 97% 80% 0 869.4 -875.8
GPS+WiFi 83.1% 97% 0% 835.4 849.9 -470.0
GPS+GSM 81.7% 98.2% 0% 820.9 835.6 -476.6
GSM+WiFi 72.9% 94.03% 0% 731.45 745.5 -458.1
GSM+Wifi+Acc+Gyro 92% 94.03% 80% 0 838.7 -861.6
Wifi+Acc+Gyro 91.1% 23.08% 80% 0 830.2 -498.6
GSM+Acc+Gyro 88.1% 94.03% 80% 0 798.8 -862.8
GPS 75.8% 97% 0% 760.7 775.2 -472.4
GSM 61.8% 94.03% 0% 617.8 631.9 -461.7
Acc+Gyro 84.6% 23.08% 80% 0 763.7 -500.7

Table 2: Left: A portion of the Inference DB (mapping M). Each entry (in %)is the maximum prediction accuracy for the inference
category using the sensor combination. Right: The objective function (Eqn. 1) evaluated for different priority vectors and Pmax = 10.

Consider Priority1 = (10,4,10) as the selected prior-
ity vector. The user is not too concerned about revealing
his Location and sets plocation to 4. She however wants to
strictly suppress the detection of Onscreen Taps and sets
ptap to 10. A high priority is also given to the whitelisted
inference category by setting ptransport = 10. The objec-
tive function values for the different sensor combinations
is shown in the column under heading Priority1. The
maximum occurs for the combination corresponding to
GPS+WiFi and is selected by the recommender. The se-
lected sensor state vector is such that accelerometer data
is suppressed in order to guarantee no leakage of the On-
screen Taps information. We also note that GPS+WiFi
configuration provides higher accuracy in predicting the
Transportation Mode and lower accuracy for Location
prediction compared to other sensor combinations.

We consider another scenario with priority vector
Priority2 = (10,0,7). In this case, the user does not
worry about Location disclosure, but wants to increase
the prediction accuracy of the Transportation Mode
while blocking the Onscreen Taps if possible. The ob-
jective function values are shown under column Prior-
ity2. The recommender selects the GPS+Accelerometer
combination which is biased towards performance. In
addition to meeting blacklist requirements the combina-
tion also provides the best accuracy.

Finally, the third user has high levels of concern about
revealing both Location and Onscreen Taps information.
She would like to trade the performance with privacy and
thus selects a priority vector Priority3 = (5,9,9). The
resulting sensor combination chosen is GSM+WiFi. The
rule recommender starts by suppressing the accelerom-
eter data (to prevent tap inference). It then selects the
combination which results in the worst Location infer-
ence from among the remaining set of combinations
(GSM and GSM+WiFi), while simultaneously maximiz-
ing the whitelist accuracy.

Model-Based Augmentation of Rule Recommender:
Prior research has shown that a user’s various context la-
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Figure 5: Implementation of ipShield on Android.

bels and transitions between them can be captured by a
Markov chain [30], by using a Dynamic Bayesian Net-
work [47], or explicitly enumerated [20]. A user speci-
fies a whitelist and a blacklist of inference categories, and
depending on the current context label and the learned
model the system can determine whether to release a
context with a particular probability. In other words, the
probability of release of a context should not increase the
adversarial accuracy of predicting a blacklisted inference
label. We envision that such model-based techniques can
also be included in our recommendation system for gen-
erating a richer set of privacy rules.

7 Implementation

The implementation of ipShield within the Android
stack (Fig. 5) is described below.

7
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7.1 Trust Model

We assume that the user installed third-party apps
(e.g., from Google Play) are untrusted but do not col-
lude with each other and share information. We trust the
Linux kernel on which Android OS is built and also the
Application Sandbox implemented by the kernel (Sec-
tion 5). We extend the chain of trust to include the OS
libraries and system services which run within the Ap-
plication Sandbox and are protected by UID and group
ID privileges. However, recent successful exploits from
Facebook on modifying the internal data structures of
the Dalvik VM [11] leads us to not trust the Applica-
tion Framework components which run within the same
process as the Dalvik VM.

7.2 Intercepting Data: Possible Choices

As indicated by the markers ( 1 - 10 ) in Fig. 2, there
exist different operating points in both the data paths
(Path-S and Path-G) at which we can intercept the sen-
sor data, apply privacy actions, and obfuscate it. How-
ever, also associated with an operating point is the im-
plementation complexity of the Rule-Based Obfuscator
block ( B in Fig. 3) at that point and also its vulnerabil-
ity to security attacks. We discuss below the trade offs in
selecting an operating point.

Points 1 and 6 , correspond to modifying the kernel
drivers to obfuscate data. While the drivers are protected
by kernel security mechanisms, they require our imple-
mentation to be vendor specific. It is also hard to push
app and rule information to the drivers and periodically
update rules inside a driver.

Points 2 and 7 correspond to changes in the Sen-
sorHAL layer. The HAL provides the abstraction be-
tween device specific kernel drivers and the Android sys-
tem above. However, changing the HAL like the kernel
driver has a high implementation complexity in terms of
pushing app and rule information.

Points 3 and 8 , correspond to modifying the An-
droid system services, namely SensorService and
LocationManagerService which are responsible for
handling the different sensors and the GPS respec-
tively. These services as shown in Fig. 2 run in a pro-
cess separate from the app and hence are protected by
the Application Sandbox. Both SensorService and
LocationManagerService maintain information about
installed apps, and can be easily signaled using binder
calls and as we show later in Section 8 they incur low
overhead while updating rules.

Points 4 and 9 correspond to changing the
SensorManager and LocationManager, respectively.
These points have the least implementation complexity,
however both SensorManager and LocationManager

accelerometer
GPS

microphone
WIFI

software sensors
bluetooth

gyroscope
cellular
camera
others

0 5 10 15 20 25
9

5
5
5

7
11

13
14

21
21

(a) Sensor Usage Statistics

N
am

e 
of

 S
en

so
r

1
2
3
4
5
6

0 10 20 30

1
1

5
9

13
23

(b) Number of Sensors Used Statistics

N
um

be
r o

f S
en

so
rs

Figure 6: Statistics of sensor usage from the Inference DB.

run within the same process as the app, and hence they
are not protected by process-level isolation. Recent ex-
ploits have used the above security vulnerability to mod-
ify code data structures at runtime [11].

Finally, points 5 and 10 correspond to static analy-
sis of the app code to understand privacy violations [32].
However, the information flow approaches are often con-
servative, incur large instrumentation and runtime over-
head, and typically stop at identification of a malicious
app. Based on the available choices we decided to im-
plement the Rule-Based Obfuscator block within the OS
in the SensorService and LocationManagerService
blocks in the respective data paths.

7.3 ipShield Code Blocks

ipShield is an open source project. The code for each
of the blocks together with complete instructions for
downloading and installing ipShield are available at [5].

7.3.1 Databases

Sensor Counters: This database, implemented as a
file, maintains a counter for each sensor on a per-app
basis. The counter for a sensor represents the num-
ber of events from the sensor that have been sent to
the app. We use an unsigned 64− bit long int for
our counter. Even at the maximum sampling rate of a
sensor, under continuous sensing, the counter will not
overflow within the lifetime of a phone. The entry for
an app together with the counters are deleted when the
app is uninstalled from the phone. A counter value
of zero indicates that the sensor is not being used by
the app. These counters are maintained by {Sensor,
LocationManager}Service and are periodically written
to the /data/sensor-counter file every minute. The
permissions on the file are such that it can be read by any
app but can be written to only by system services.

Inference DB: A knowledge repository generated
from a survey of 60+ papers published in relevant con-
ferences and journals over the past 3 − 5 years. This

8
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Inference Category Labels
Transportation Mode [53] still, walking, motorized
Device Placement [48] hand, ear, pocket, bag
Onscreen Taps [43] location of taps on screen
Location [19] [35] [46] home, work, public, restaurant...
Emotion [50] [22] happy, sad, fear, anger, neutral
Speaker [39] [46] male/female, identity
Text Entered on Phone [43] alphabets
Stress [40] [22] stressful or not

Table 3: Selected inference categories from Inference DB.

database captures a wide variety of inference categories
a small set of which is shown in Table 3. For each in-
ference category, we store the prediction accuracy over
the constituents labels for a particular sensor combina-
tion. If there are multiple papers using the same sensor
combinations predicting the same set of labels we store
details of the one with highest accuracy. We also main-
tain information about the set of sensors used, the fea-
tures extracted from the sensor data, the classifiers used,
and finally the paper title under which the results were
published. In Fig. 6, we show statistics of sensor usage
computed using the inference database. Based on our
survey, we found that (a) GPS and accelerometer sen-
sors are the most commonly used; (b) the number of
sensors accessed by any app is almost always less than
6 (we do not include papers which use external body
worn sensors in the plot, but even externally worn sen-
sors are less than 6 types). While newer inferences are
being made, we do not expect the database to change
rapidly. To enable crowdsourcing of the inference DB,
we have designed and published a web interface where
people can contribute entries [5]. Currently, we rely on
manual screening of the received entries before adding
them to the Inference DB.

7.3.2 Context Engine

To allow fine-grained context-aware rules, ipShield al-
lows trusted external context engines to register contexts
that they can provide using the interface in Fig. 7(e). The
user can then configure rules which will be triggered on
a particular context. ipShield expects the context engines
to use Android supported intents (action=label) as the
IPC mechanism for providing the context labels.

Contexts such as battery status, contact list, ringer
status etc., do not require access to sensor data and
can be obtained through APIs provided by the Android
OS. However, for contexts that require sensor data, the
external context engine must have access to raw sen-
sor data. To implement this when a data buffer from
the HAL is received by the SensorService and/or the
LocationManagerService it is first sent to the context
engine to get the current context label. On receiving the
context, the associated rules are then loaded and used by
the Rule-Based Obfuscator to obfuscate the data buffer.

We modified the Transportation Mode app [53] to im-
plement an activity context engine and test its integration
with ipShield. In our implementation, the context engine
used SensorManager for subscribing to accelerometer
data at the rate of SENSOR DELAY GAME. This resulted
in sensor data at a rate of 50Hz or a sample every 0.02s.
We used data buffered over a sliding window of 1s for
inferring the activity context. On an average, the engine
took about 8ms to generate activity context from a 1s ac-
celerometer window. Even with additional overhead due
to binder call and rule loading, we found that the asso-
ciated rules can take effect before the next sensor data
sample. This meant that our buffer size could be equal
to 1s of data without losing any sample. In general, for
keeping the buffer size bounded we observe that the pro-
cessing time of the context engine together with the rule
update time should be less than the inter arrival time be-
tween two data samples.

7.3.3 FirewallManager

The FirewallManager is a trusted Android app which
has three different components described below.

Semantic Firewall Configurator: This is an Android
activity. It reads the Sensor Counters for the installed
apps and queries the inference DB for possible inference
categories for each app. When launched it displays this
information (Fig. 7 (a)) for the user. Once the user selects
an app she is presented with the inference categories with
an option to classify each into a whitelist or a blacklist
(Fig. 7 (b)). The Configurator then passes the data user
preferences to the Rule Recommender.

Rule Recommender: The algorithmic aspects of the
rule recommender are described in detail in Section 6.2.
It is implemented within the Semantic Firewall Config-
urator. It then uses the FirewallConfigManager to
write the rules to /data/firewall-config file and
also use a binder call to signal the SensorService and
LocationManagerService to reload the new rules.

Direct Firewall Configurator: In this mode the user
can configure context-aware privacy rules (Fig. 7 (c) and
(d)). The user can specify actions on sensors used by
apps, and for each action also associate either built-in
contexts such as TimeOfDay, DayOfWeek, Place, or ex-
ternal contexts as triggers. For defining the Place context,
the user can drop a marker on the map as shown in Fig. 7
(f) to annotate a < latitude, longitude > tuple with a sig-
nificant place name. For external contexts the Configura-
tor implements a BroadcastReceiver which listens for
intents. When an intent containing a particular label is
received, the BroadcastReceiver invokes a rule loader
service which passes a pre-configured set of rules asso-
ciated with the label to the FirewallConfigManager.
The FirewallConfigManager in turn writes the rules
into the /data/firewall-config file and signals

9
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both SensorService and LocationManagerService

to reload the new rules. Note that the user can also ex-
plicitly request for loading a new set of rules.

7.3.4 Rule-Based Obfuscator

The Rule-Based Obfuscator block is responsible for
enforcing the actions specified by the privacy rules
described in Section 6.1. This block is imple-
mented both within LocationManagerService and
SensorService with the same functionality. The rules
are read from the /data/firewall-config file and in-
serted into a HashMap for faster access. The serialization
and deserialization of both rules and Sensor Counter is
implemented using Google Protocol Buffer [8]. The hash
for each rule is computed on the fields {appName, UID,

sensorType, ruleSeqNum} where ruleSeqNum is a
sequence number assigned to a rule for a sensorType.
This allows multiple rules for a sensor implementing
the OR operation on contexts (AND operation is im-
plemented by allowing multiple contexts for each rule).
UID is assigned to an app by Android at install time.

FirewallConfigManager, FirewallConfigService:
The FirewallConfigManager interfaces with both the
Semantic and the Direct Configurator modules of Fire-
wallManager app and communicates the privacy rules
to the FirewallConfigService through the binder
interface. The service runs within a system process and
writes the rules to the /data/firewall-config file
and signals the LocationManagerService as well as
the SensorService to reload the new rules.

8 Evaluation

We implemented ipShield by modifying the Android
Open Source Project [2] (AOSP, branch 4.2.2 r1).
We deployed and performed all our tests on the
Google Nexus 4 phone (1.5GHz quad-core Qualcomm
Snapdragon

TM
Pro, 2GB RAM).

8.1 Performance Overhead

We measured the overhead incurred by running ip-
Shield to highlight that it is feasible to deploy it on cur-
rent mobile platforms without impacting user experience
in terms of battery life and app responsiveness.

8.1.1 Rule Access

Android supports four different sampling rates.
On the Nexus 4 we found that on average SEN-
SOR DELAY NORMAL and SENSOR DELAY UI are less
than 10Hz, SENSOR DELAY GAME is around 50Hz and
SENSOR DELAY FASTEST is around 200Hz. In Fig. 8
(a), the blue bars show the times taken to load the
rules from the file (/data/firewall-config) into the
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Figure 8: (a) Time taken in for the rules to load into memory
and take effect. (b) Time overhead to fetch one sensor data
sample sampled at SENSOR DELAY FASTEST.

HashMap, which are negligible. The green bars in the
figure represent total time for the rules to take effect after
configuration. For SENSOR DELAY NORMAL and SEN-
SOR DELAY UI no data sample will be released before
the new rules take effect even for 200 rules. In reality, we
believe that the number of privacy rules will typically be
less than 50, therefore for SENSOR DELAY GAME and
SENSOR DELAY FASTEST less than 2 and 6 samples will
be released before the 50 rules take effect, respectively.

8.1.2 Sensor Data Access

The overhead i.e., difference in time for fetching one
data sample using ipShield compared to that on unmodi-
fied AOSP is shown in Fig. 8 (b). The overhead is com-
puted by taking the average of fetching 30000 samples.
Each sensor is sampled at SENSOR DELAY FASTEST
(200Hz). The time for ipShield is averaged over the
time for performing each of Constant, Perturb, and Nor-
mal (no change) actions on every accessed sample. We
can see that the access overhead per sample is less than
20µsec – negligible even for the fastest sampling rate.

8.1.3 CPU and Memory Overhead

The Rule-Based Obfuscator block is part of both
SensorService and LocationManagerService

which run as threads inside the system server process.
For each data sample, the Rule-Based Obfuscator block
is called to apply the privacy actions. We compare
the overhead of the Obfuscator block with AOSP by
profiling the average CPU utilization of the phone while
running the Ambulation app [53] which continuously
requests sensor data (GPS, accelerometer) at a rate of
1Hz on a Nexus 4 phone. CPU utilization with AOSP
averaged 2%. CPU utilization with various privacy
actions averaged 2.5% and never exceeded 3%. It should
be noted that the CPU utilization (and hence energy
consumption) will scale with the sampling rate. As
shown in the energy analysis that follows this section,
we believe that the overhead of ipShield is small enough
to have negligible effects on overall system performance.

Memory overhead for the transformations is shown in
Fig. 9 (a). The highest overhead is for Perturb and is less
than 0.5MB. There is a dip in memory usage for Sup-
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(a) (b) (c) (d) (e) (f)

Figure 7: (a) List of installed apps showing number of sensors and number of possible inferences. (b) Semantic Firewall Configu-
rator showing list of inference categories with option to block or allow. (c) List of rules configured for different sensors. Multiple
rules with combination of contexts can be configured for each sensor. (d) Direct Firewall Configurator for privacy actions and
their parameters. (e) List of external contexts registered with FirewallManager and ability to add new ones. (f) Screen to annotate
significant places on the map (provides built-in Location context for rules).
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press action which lowers the average memory overhead
over all the operations in ipShield to around 0.07MB.

8.1.4 Energy Overhead

We compare the energy overhead of ipShield to AOSP
by plotting the time to drain the phone battery from 100%
to 90%, while the Ambulation app is continually run-
ning in the foreground for Transportation Mode infer-
ence. All network interfaces and radios are turned off,
and the screen display is on at the lowest brightness. We
acquire a CPU wakelock in the app to prevent the phone
from sleeping. The inference frequency of the app is set
to 4Hz. We measure the drain due to three actions: Nor-
mal, Constant, and Perturb which will consume more
power than the AOSP. Fig. 9 (b) shows the results: ip-
Shield on average drains the battery 3min 37s (∼ 8.2%)
faster than AOSP, which we consider as a marginal over-
head. In typical usage scenarios where the screen is at
a higher brightness setting and the network subsystem is
active we expect the energy overhead for ipShield to be
relatively lower.

8.2 Vulnerability of Current Apps

We did a survey of the top 60 free apps from Google
play store to find the different sensors used by these apps.

We installed and executed each of the apps from the play
store, and noted the permissions to sensors requested by
the apps at install time, and also the sensors which were
being accessed without permission using ipShield. We
also made use of the description of the app provided at
the app store for additional information (if any). This
provided the list of sensors used by each app. We then
used the Inference DB to create the association between
app and possible inference categories as shown in Ta-
ble 4. The results from this survey validates our claim
that GPS and accelerometer which are the most used
sensors in academic research (Fig. 6) are also the most
widely used sensors in apps. We further note, that many
of these apps have access to data from innocuous sen-
sors, combinations of which can be maliciously used to
predict a lot more inferences than what they advertise.

8.3 Case Studies: Revisited

We now illustrate how ipShield can be used to config-
ure simple rules to overcome the privacy issues outlined
in the examples in Section 2.

Transportation Mode and KeyLogging: While
suppressing accelerometer at all times is a naive
solution, to obtain better utility from the app, the
user can use the Direct Rule Configurator to se-
lect an external context KEYBOARD UP, and use
it to define the following rules: If ((TimeO f Day
in [12am − 11 : 59pm]) ∧ (ExternalContext =
KEY BOARD UP) ∧ (AppName = Ambulation))
then apply action = Suppress on SensorType = acc;
and a similar rule for suppressing SensorType = gyro.
We exploit the fact that it is sufficient to block the ac-
celerometer and gyroscope data while the softkeyboard
is active to protect against keylogging. On executing
the above rules, the act of suppression will inform an
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Sensor Combination App Name Inference Categories

GPS
Twitter, iHeartRadio, Calorie Counter, Amazon,
eBay, MyTracks, Google Earth (and 12 more..) A1: Loc, Speed, Route

Acc Despicable me, Subway Surfers, Accupedo Pedometer A2: TM, Device Placement, Text on Keyboard
Audio Snapchat, Vine, Google Translate, Cadiograph A3: Speaker, Loc, Emotions, Stress
Acc + GPS Picsart, Noom Weight Loss Coach, Temple Run A1 + A2
GPS + Audio FB, FB Messenger, Tango, Whatsapp, Shazam, GoSMS A1 + A3
Acc + GPS + Audio Instagram, Neon motocross A1 + A2 + A3
Acc + Pro + GPS + Audio Skype A1 + A2 + A3
Acc + Rot + GPS Maps A1 + A2, Onscreen Taps, Text Entered on Phone
Acc + Gyro + Pre + GPS Saga Lifelogging A1 + A2, Onscreen Taps, Text Entered on Phone

Table 4: Sensors and possible inferences from top apps in Google Play Store (all have access to network). Loc:Location,
Acc:acclerometer, Pro:proximity, Rot:rotation vector, Gyro:gyroscope, Pre:pressure, TM:Transportation Mode.

adversary that the user is entering text, but she cannot
infer anything more. The Ambulation app will now
continue to work at all times when the user is not
entering text, maximizing its utility to the user.

Saga and Location: A user would often like to
keep some of his visits to sensitive places private.
ipShield allows the user to configure the following
rules to spoof her location trace: (1) If ((TimeO f Day
in [12am − 11 : 59pm]) ∧ (Place = Friend′sHome) ∧
(AppName = Saga)) then apply action = Constant
and value = Starbucks on SensorType = GPS; (2) If
((TimeO f Day in [12am−11 : 59pm])∧(Place = Bar)∧
(AppName = Saga)) then apply action = Constant and
value = Restaurant on SensorType = GPS; As we men-
tioned earlier user can configure labels such as Starbucks,
friend’s home, bar using the map interface in ipShield.
To ensure plausibility of the shared location data the per-
turbation performed, or even the constant value provided,
should conform to a map [37].

9 Concluding Remarks

While phones have evolved into sophisticated sens-
ing platforms the corresponding sensing stack where
starting at the raw sensor data meaningful data abstrac-
tions are created at each layer (akin to a communica-
tion stack) [26] has not yet taken shape. Efforts like
CondOS [23], together with architectural changes such
as dedicated co-processors for context detection [4] are
steps in the direction towards introducing greater seman-
tic clarity for shared data. With such a stack in place it
is then a natural design choice to have a privacy system
built within the OS itself exploiting the semantic granu-
larity of data for improved privacy.

With ipShield we advocated the above design philoso-
phy and took the first step towards creating a framework
with architectural changes built within the Android OS to
protect user privacy. We introduced better monitoring of
accessed resources, proposed a user-understandable pri-
vacy abstraction in the form of possible inferences, al-
lowed users to configure semantic privacy rules, and en-

sured that user preferences are securely enforced.
Orthogonal to the enforcement of rules is their cre-

ation. In future, to minimize user interaction in rule for-
mulation it is imperative that systems are able to learn
rules based on the semantic similarity of shared data and
basic user preferences. With respect to granularity of
rules, even with user participation privacy rules can of-
ten tend to become conservative impacting the app utility.
To this end, careful integration of ipShield with various
static analysis tools [32] could provide better insight into
the working of apps and in the creation of balanced rules.

The other pertinent question is regarding the selection
of a suitable set of privacy actions. Integration of crypto-
graphic solutions would enrich the spectrum of available
actions. In addition, currently ipShield does not handle
traditional side-channels attacks and it will be an inter-
esting extension to the current system.

Finally, any such system should be able to run on re-
source constrained platforms. Our experiments with ip-
Shield indicate that it has low performance overhead and
can run continuously on various mobile platforms with-
out impacting app responsiveness.
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