usenix
.’ THE ADVANCED
COMPUTING SYSTEMS

ASSOCIATION

Fence: Protecting Device Availability With Uniform
Resource Control

Tao Li and Albert Rafetseder, New York University; Rodrigo Fonseca, Brown University;
Justin Cappos, New York University

https://www.usenix.org/conference/atc15/technical-session/presentation/li

This paper is included in the Proceedings of the

2015 USENIX Annual Technical Conference (USENIC ATC '15).
July 8-10, 2015 - Santa Clara, CA, USA
ISBN 978-1-931971-225

Open access to the Proceedings of the
2015 USENIX Annual Technical Conference
(USENIX ATC "15) is sponsored by USENIX.

\
\'.'

Fence: Protecting Device Availability With Uniform Resource Control

Tao Li" Albert Rafetseder’ Rodrigo Fonseca® Justin Cappos’

TNew York University

Abstract

Applications such as software updaters or a run-away web
app, even if low priority, can cause performance degra-
dation, loss of battery life, or other issues that reduce a
computing device’s availability. The core problem is that
OS resource control mechanisms unevenly apply unco-
ordinated policies across different resources. This paper
shows how handling resources — e.g., CPU, memory, sock-
ets, and bandwidth — in coordination, through a unifying
abstraction, can be both simpler and more effective. We
abstract resources along two dimensions of fungibility
and renewability, to enable resource-agnostic algorithms
to provide resource limits for a diverse set of applications.

We demonstrate the power of our resource abstrac-
tion with a prototype resource control subsystem, Fence,
which we implement for two sandbox environments run-
ning on a wide variety of operating systems (Windows,
Linux, the BSDs, Mac OS X, iOS, Android, OLPC, and
Nokia) and device types (servers, desktops, tablets, lap-
tops, and smartphones). We use Fence to provide system-
wide protection against resource hogging processes that
include limiting battery drain, preventing overheating,
and isolating performance. Even when there is interfer-
ence, Fence can double the battery life and improve the
responsiveness of other applications by an order of mag-
nitude. Fence is publicly available and has been deployed
in practice for five years, protecting tens of thousands of
users.

1 Introduction

Unfortunately, it is still common for end-user devices
to suffer from unexpected loss of availability: applica-
tions run less responsively, media playback skips instead
of running smoothly, or a full battery charge lasts hours
less than expected. The cause might be a website run-
ning JavaScript [5, 6], a software updater overstepping
its bounds [10], an inopportune virus scan [20, 27], or a
file sync tool such as Dropbox indexing content [3,7]. A
buggy shell that leaks file descriptors can prevent other
applications from running correctly [14]. Moreover, the
cause may be unwanted apps or functionalities bundled
with a legitimate application, such as advertisements [71]
or hidden BitCoin miners [18]. Malicious applications
may even attempt to overheat the device to cause perma-
nent damage [54].

Although dealing with resource contention is a problem

*Brown University

as old as multiprogrammed operating systems, today’s
platforms present renewed challenges. Key properties of
a system such as battery life, application performance, or
device temperature depend on multiple resources. This,
along with the resource-constrained nature of mobile de-
vices and the number and ease of installing applications
from “app stores,” exacerbates the problem.

In many cases, one cannot simply identify and kill pro-
cesses that consume too many resources, because many
programs execute useful-but-gluttonous tasks. For exam-
ple, a web browser may execute inefficient JavaScript
code from a site that slows down the device. However,
the browser overall consists of many interrelated pro-
cesses that render and execute code from different sites.
Selectively containing resource usage is much better than
killing the browser.

Our work addresses the problem of improving device
availability in the presence of useful-but-gluttonous appli-
cations that can consume one or more types of resources.
We introduce a non-intrusive mechanism that mediates
and limits access to diverse resources using uniform re-
source control. Our approach has two parts: a unifying
resource abstraction, and resource control. We abstract
resources along two dimensions, allowing uniform rea-
soning about all system resources, such as CPU, memory,
sockets, or I/O bandwidth. The first dimension classifies
each resource as fungible (i.e., interchangeable, such as
disk space) or non-fungible (i.e., unique, such as a spe-
cific TCP port). The second dimension classifies resources
as either renewable (i.e., automatically replenished over
time, such as CPU quanta) or non-renewable (i.e., time
independent, such as RAM space). Using only these two
dimensions, we are able to fully define a policy to control
a specific resource. Adding a mechanism that quantifies
and regulates access to each resource, either through inter-
position or polling, provides the desired level of control.

We demonstrate the feasibility of our approach by de-
signing and building a resource control subsystem for
sandbox environments, which we call Fence. Fence allows
arbitrary limits to be placed on the resource consumption
of an application process by applying a resource control
policy consistently across resource types. This allows it
to provide much better availability, when faced with a
diverse set of resource-intensive applications, than would
resource-specific tools. As we show in §5, when the sys-
tem is under contention from a resource-hungry process,

USENIX Association

2015 USENIX Annual Technical Conference 177

our current user-space implementation of Fence provides
double the battery life and a performance improvement
of an order of magnitude relative to widely used OS-level
and hardware solutions.

Fence is the first approach for controlling multiple re-
sources across multiple platforms. By arbitrarily limit-
ing resource consumption, Fence bounds the impact that
applications can have on device availability as well as
on properties such as heat or battery drain. Fence runs
in user space, which makes it usable even within Vir-
tual Machines (VMs) and on already deployed systems,
where privileged access might be problematic and low-
level changes could be disruptive.

2 Scope

Fence’s controls work insofar as it can interpose on ap-
plications’ requests for resources. As a proof of concept,
Fence is targeted at application hosts, such as sandbox
environments, VMs, browsers, or plugin hosts. The same
unified policies could be implemented in an OS.

Most modern operating systems have mechanisms for
identifying and limiting the resource usage of applica-
tions and processes [11, 15,25]. However, as the preva-
lence of availability problems indicates, and we further
demonstrate in §5, existing mechanisms do not adequately
isolate resources among applications. A major cause of
device availability problems is that there is no single re-
source where contention happens, which implies that any
mechanism that controls a single resource will not be ef-
fective. Furthermore, because existing mechanisms use
different abstractions and control points, it is very hard,
if not ineffective, to write coordinated policies across dif-
ferent resources. Priority-based allocation and resource
reservation systems (along with hybrids of the two) offer
partial solutions in some cases, but the combined prop-
erties and guarantees are far from sufficient in practice.
They apply ad-hoc and uncoordinated resource control
across diverse resource types, and do not offer uniform
functionality, abstractions, or behavior.

Recent developments in Linux’s cgroups (cf. §7) pro-
vide a more unified approach to resource management,
but are still restricted to one operating system. We imple-
ment Fence’s resource control mechanisms — polling and
interposition — at the user level, making it easily portable
across many different platforms.

In this paper we assume that hog applications are
“useful-but-gluttonous.” That is, a hog application may
attempt to consume a large amount of resources, but is
otherwise desirable. Specifically, we do not attempt to pro-
tect against applications that perform clearly malicious
actions, such as deleting core OS files, killing random pro-
cesses, or installing key loggers (existing work addresses
such issues). The desired outcome is that the user has
control over properties such as the responsiveness, battery

Condition Fungible ~ Renewable | Result

1 quantity < quota Yes either reduce quota, grant access
2 quantity > quota Yes Yes block until replenished

3 quantity > quota Yes No error

4 unallocated resource No either allocate, grant access

5 busy resource No Yes block until replenished

6 busy resource No No error

Table 1: Accessing resources with different characteristics

life, and heat for any set of applications, especially hogs.

Our main focus in this paper is how to provide the
needed mechanisms for resource-control, not on provid-
ing a specific resource control policy. As a first step, we
demonstrate the effectiveness of Fence with two simple
policies, both assuming that we can identify and have
the privilege to control the hog process: one in which we
manually provide static limits (most scenarios in §5), and
one in which the policy sets dynamic resource limits to
achieve a desired battery lifetime (§5.5). We anticipate,
however, that more sophisticated policies are possible and
applicable in other scenarios.

Lastly, a note about who interacts with Fence. Fence’s
mechanisms are integrated into a platform, e.g., a new
sandbox environment, by the authors of the environment.
Policies, on the other hand, can be written by the same
authors, by third parties such as machine administrators,
or by end-users. This paper does not specify higher-level
interfaces for specifying policies. Fence should be trans-
parent to applications running within the environment.

3 Managing Resources

In this section, we present Fence’s resource abstraction,
and discuss how using a simple classification of resources,
along the dimensions of fungibility (§3.1) and renewabil-
ity (§3.2), makes it possible to control their usage in a
unified way. We assume a simple policy of limiting re-
source consumption by imposing a quota, given in terms
of either an absolute quantity or a utilization.! Following
that, §3.3 explains how control is enforced on resources,
and §3.4 discusses choosing resource limit settings.

3.1 Fungible and non-fungible

One way to characterize low-level resources is by whether
or not they are fungible, i.e., whether one instance of the
resource can stand in for or indiscernibly replace any other
instance. A fungible resource is something like a slot in
the file descriptor table. It does not matter to the applica-
tion that accesses a file where exactly the slot maps into
the kernel’s table. However, overconsumption of the re-
source can cause stability issues [14]. Fungible resources
only need to be counted. The maximum allowed utiliza-
tion by an application is capped by a quota. Fungible
resources can be managed by maintaining, according to
the resource’s usage, an available quantity relative to a
quota.

I As we show in §5.5, this quota needs not be static.

178 2015 USENIX Annual Technical Conference

USENIX Association

Lines 1, 2 and 3 of Table 1 summarize how gaining ac-
cess to fungible resources works. As long as the requested
resource quantity is within the quota, access is granted
and the consumed quantity is logged. If a request exceeds
the quota, granting access depends on the renewability of
the resource (defined in §3.2 below), and will either fail or
block until the required quantity becomes available. This
will happen either over time (for a renewable resource), or
through explicit release by the caller (for a non-renewable
resource).

For a non-fungible resource, like a listening TCP or
UDP port, each resource is unique. Each application may
request one specific instance and will effectively block
all other uses of this resource instance. Non-fungible re-
sources need to be controlled on a system-wide basis. In
most cases, non-fungible resources are assigned by Fence
and reserved by applications, even when the application
is not executing. Thus, even if a webserver application
is not running, it may reserve TCP port 8080 to prevent
other applications from using the port (closing a common
security hole [83]).

Non-fungible resource access is summarized in lines
4,5 and 6 of Table 1. A non-fungible resource that is not
currently allocated can be accessed (after allocating it to
the caller). Otherwise, access to a busy resource will either
block or raise an error. Similar to fungible resources, non-
fungible resources will either replenish over time, or are
released explicitly by the caller.

3.2 Renewable and non-renewable

Some low-level resources, such as CPU cycles and net-
work transmit rate, have an innate time dimension wherein
the operating system continually schedules the use of the
device or resource. These low-level resources are renew-
able resources because they automatically replenish as
time elapses. Put another way, one cannot conserve the
resource by not using it. If the CPU remains idle for a
quantum, this does not mean there is an extra quantum of
CPU available later. The control mechanism for a renew-
able resource is to limit the rate of usage, or utilization.
Utilization is controlled over one or more periods, where
the application’s use of the resource is first measured and
then paused for as long as required to bound it below a
threshold, on average.

For example, to bound data plan costs, one may set a
per-month limit for an application. Preventing the appli-
cation’s data usage from impacting the responsiveness
of other network applications may also require a per-
second limit. If an application attempts to consume a
renewable resource at a faster rate than is allowed, the
request is not issued until sufficient time has passed. (An
extreme version of this involves batching requests to-
gether [17,58,76].)

Lines 1 and 4 in Table 1 show that access is granted

when there is sufficient quota or unallocated resources.
When a renewable resource is oversubscribed or busy
(as shown in lines 2 and 5), it will block access until the
resource is replenished, which will happen when the caller
refrains from using the resource for an interval.

Non-renewable resources like memory, file descriptors,
or persistent storage space are acquired by an applica-
tion and (ignoring memory paging) are not time-sliced
out or shared by other applications. As a result, granting
access to a non-renewable resource is a conceptually per-
manent allocation from the application’s perspective. For
resources other than persistent storage space, the alloca-
tion usually coincides with the lifespan of the application
instance, although the application may often choose to
voluntarily relinquish the resource at any time. Short of
forcibly stopping the application instance, there is lit-
tle remedy for reclaiming most non-renewable resources
once they are allocated.

To monitor and control the usage of non-renewable
resources, it suffices to keep a table of resource assign-
ments that track and update requests and releases. Once
resource caps are set, an application can never request
more non-renewable resources than the cap. A request
can be met if the requested quantity is no greater than
the cap on a fungible resource (see line 1 of Table 1), or,
for a non-fungible resource, if the resource is not already
allocated (line 4). Trying to exceed the cap will result in
an error signal (line 3), as will trying to access an already
allocated resource (line 6).

3.3 Enforcing Resource Controls

In the preceding discussion it was assumed that resource
consumption can be measured and controlled in some
way. While the restrictions Fence intends to place upon re-
sources are fully specified by their fungibility and renewa-
bility, the method of enforcing resource controls is not,
and will potentially vary across implementations of Fence,
on different platforms. We describe two specific types of
enforcement that allow Fence to control resources: (1)
call interposition and (2) polling and signaling (indicated
in Figure 1).
Call interposition. Interposition allows Fence to be
called every time a process consumes a resource. How-
ever, there are different strategies that one may choose
to control resources. For example, consider the case of
restricting network I/O rate (a renewable resource). Sup-
pose that a program requests to send 1MB of data over a
connected TCP socket. The fundamental question is when
Fence’s control of this resource should be enforced.
Pre-call strategy. If an application is only charged for
sent data before the call executes, then often times it will
be overcharged. Given our example of a IMB send, the
send buffer may not be large enough to accept delivery of
the entire amount and so much less may be sent. In such

USENIX Association

2015 USENIX Annual Technical Conference 179

!
Application 1

call interposition(l I >
[P G I
resource J’nj Fence qj :
< + >\ :

state I I
Operating System | restriction

- .

Network Disk

stats polling

Memory CPU

Figure 1: Fence’s resource control via call interposition and
polling/signaling.

a scenario, Fence would block the program for a longer
time than is actually needed.

Post-call strategy. If the application is only charged
after the call executes, however, it is possible to start
threads that make huge requests to transmit information.
This could allow the user to monopolize resources in the
short term and to consume a large amount of resources.

Pre-and-post-call strategy. To better meter renewable
resources, one can decouple the potential delay of access
(done to adjust utilization based on past usage), from
accounting, which is best performed after access. With
this method, the pre-call portion of control will block until
the use from prior calls has replenished; after that, the
function is executed and the post-call portion charges the
consumed amount.

Micro-call strategy. Finally, another option is to break
a large call up into smaller calls and then allow Fence to
handle them separately. However, this has the drawback
of changing the original call semantics in some cases. For
example, suppose that an application is only permitted to
send 20kB of data per second. However, the caller wants
to send a UDP datagram of 60kB. Instead of sending one
60kB datagram, the application could send three sepa-
rate 20kB datagrams. Since each datagram is a “message”
and the loss / boundaries between messages are mean-
ingful (unlike the stream abstraction of TCP), sending
three 20kB datagrams has a different meaning than does
sending one 60kB datagram.

In practice, Fence is largely used with the pre-and-post-
call strategy for renewable resources. For non-renewable
resources, the pre-call strategy is predominant, because
it will block access to an unauthorized resource before it
occurs. Other strategies can be used, depending on how
Fence is integrated into a platform.

Polling and signaling. For resources on which it cannot
interpose, Fence uses polling, coupled with some form of
limit enforcement, such as signaling, as a complementary
mechanism to control resource usage. For example, for
CPU scheduling, Fence does not modify the OS; rather,

the OS scheduler manages process scheduling directly.
Fence needs to poll to understand how often a process has
been scheduled and must signal the scheduler to stop or
start executing the application. This has a number of im-
plications [80, §5.5.3], [78, §18.3] that call interposition
does not present.

Atomicity. While trivially implementable for call in-
terposition (e.g., by guarding calls with semaphores), re-
source access is not guaranteed to be atomic. This raises
potential Time-Of-Check To Time-Of-Use (TOCTTOU)
issues between threads of the same application as well as
other applications wanting to access the resource.

Interference due to load. Fence’s polling and signaling
impose a certain amount of overhead that depends on the
rate of checking and control. When the machine is under
load, Fence might not be able to keep up with its planned
check and control schedule. As a result, a process under
its control can consume a resource for longer than the time
scheduled by Fence. Thus, in the worst case, this causes
overconsumption and reinforces the overload condition.

Rate of checking and control. The fidelity and overhead
of resource control depend on the rate at which control
is enforced. The minimum rate (i.e. the longest interval
between interruptions) is given by the minimal fidelity
desired. If the rate is too low, a process might overspend a
resource between checks. The maximum rate is bounded
by the maximum acceptable overhead — each check and
interruption causes additional cost — and the granularity
of checking and control (which defines the minimum
possible length of interruption).

Polling and signaling granularity. Granularity is the
smallest unit of measurement and control of a resource,
e.g., the resolution of the system clock, or the unit job
that control functions can handle (process, thread). If the
granularity is too coarse, Fence might misapprehend the
resource consumption of a process under its control dur-
ing polling or enforce undue restrictions on the process.

3.4 Choosing Resource Control Settings

A question that follows from the previously discussed
framework is how to choose which resources to allocate
to a process. This can be viewed along two axes. First,
policies can set direct per-resource usage limits or quo-
tas, or indirectly establish limits based on the effect of
resource usage on device availability. Second, such lim-
its may be static, set manually and a priori, or dynamic,
where policies continually adjust limits to achieve avail-
ability goals?.

For most non-fungible resources (like TCP / UDP port

2We also envision that different stakeholders desire different policies:
For example, a programmer could include Fence in their application in
order to tame it; a sysadmin may specify policies based on user groups,
time of day etc.; the end user sets values with respect to their current
workload and usage requirements.

180 2015 USENIX Annual Technical Conference

USENIX Association

Policy

quota

kill
suspend
sleep
resume

Fence Resource Control

tattle_add_item()
tattle_quantity() tattle_remove_item() is_item_allowed()

CPU*, Network RIW Memory, UDP/TCP ports.
File RIW, - Thread, -
HW randomnes Storage
R abl on abl

tattle_quantity()

Fungible Non-fungible Fungible Non-fungible

Renewable on-renewable Non-ren

Figure 2: Fence’s uniform control APIs for resources based
on fungibility and renewability

numbers) or for items that are hard to quantify (like pri-
vacy, cf. §6), choosing appropriate resource settings is
typically done manually during packaging or installation.

However, the relationship between a limit (say, 30%
of CPU or disk bandwidth), and user-observable proper-
ties (such as response time, battery life, or heat) is non-
obvious and dependent on a number of factors. Accurate
resource modeling is very difficult and in general requires
advanced techniques [35, 45, 68, 75, 89], but determin-
ing a workload that approximates the maximum negative
impact is an easier task.

Fence provides the capability to automatically choose
resource limits, in particular, for fungible resources. When
Fence is installed, it can benchmark the platform and
check the usage impact on different resources, such as
performance degradation, battery usage, or temperature.
By understanding the impact of individual resources, one
can choose resource settings that provide device availabil-
ity in the face of contention. In §5.5 we show a policy
that sets limits both indirectly and dynamically, based on
a target battery lifetime.

4 Implementation

Fence’s fully functional open source implementation that
runs across various hardware platforms and OSses in-
cludes the features and functionality described in the pre-
vious sections. The core implementation is 790 lines of
Python code (as counted by s1occount). There are two
major portions of the Fence code: the uniform resource
control code (140 LOC) and the operating system specific
code (650 LOC).

4.1 Uniform Resource Control

Because the uniform resource control code only differs
in its characteristics of fungibility and renewability, it
fits within 140 LOC. Fence is informed about resource
consumption by performing a set of four calls as is shown
in Figure 2.

The specific call made depends on the type of re-

def sendmessage (destip,destport,msg,localip, localport) :

check that we are permitted to use this port...
if not fence.is_item allowed(’'messport’, localport):
raise ResourceAccessDenied("...")

get the 0S’s UDP socket
sock = _get_udp_socket (localip, localport)

Register this socket descriptor with fence
fence.tattle_add_item("outsockets", id(sock))

Send this UDP datagram
bytessent = sock.sendto(msg, (destip, destport))

Account for the network bandwidth utilized
if _is_loopback_ipaddr (destip):
fence.tattle_quantity(’loopsend’, bytessent + 64)
else:
fence.tattle_quantity(’'netsend’, bytessent + 64)

Figure 3: Fence additions to the Seattle sandbox’s sendmes-
sage call. Added lines of code are in bold text.

source being consumed. For example, the Seattle sand-
box (described in more detail in § 6) required an addi-
tional 79 lines of code to support Fence, 68 of which
were direct calls to Fence Figure 3 shows some of
the code changes made to sendmessage, Seattle’s
API call for sending UDP datagrams. The first call,
is_item_allowed (), checks whether the UDP port (a
non-fungible, non-renewable resource) can be consumed.
The tattle_add_item() call is used to charge for
entries in the socket descriptor table to prevent the ker-
nel from being overloaded with active sockets. The
tattle_quantity () call charges for the consumed
bandwidth (a renewable resource), depending on the des-
tination interface.

In addition, there is an API that can be used to set high
level policy. This is done by setting low-level resource
quotas for the different resources that Fence manages.
For example, if energy is the primary concern, resource
quotas can be set to restrict the maximum expected en-
ergy consumption over a polling period. Actual energy
consumed can be measured and the resource quota values
updated appropriately.

4.2 Operating System Specific Code

The bulk of the Fence code (650 LOC) is operating sys-
tem specific and involves supporting polling or enforce-
ment across various platforms, including Windows XP
and later, Mac OS X, Linux, BSD variants, One Laptop
Per Child, Nokia devices, iPhones / iPods / iPads, and
Android phones and tablets.

While all these platforms have the necessary low-level
functionality, a convergence layer is still required because
polling and enforcement semantics differ from platform
to platform. For example, resource statistics are gathered
in a fundamentally different way across many types of de-
vices. However, the operating systems for many platforms

USENIX Association

2015 USENIX Annual Technical Conference 181

are derived from similar sources and thus share some
subset of resource control functionality. For example, the
Android port of Fence is based on the convergence layer
of the Linux implementation of Fence and reuses almost
all of its code.

4.3 Operating System Hooks Utilized

At the lowest level, Fence polls OS specific hooks for
performance profiling to obtain statistics about the re-
source consumption of an application. To gain con-
trol over scheduling, Fence uses the job control inter-
face on most OSes (SIGSTOP and SIGCONT), or the
SuspendThread/ResumeThread interface on Win-
dows. This informs the scheduler when to suspend or
continue a process, in order to impose a different schedul-
ing policy than the underlying OS scheduler. This can
give a program less CPU time than it would ordinarily
have to limit its performance impact, rate of battery drain,
or heat.

To control resources other than the CPU, Fence con-
structs a uniform interface to low-level functionality that
operates in an OS-specific manner. Consider memory
as an example: On Linux and Android, Fence can use
proc to read the memory consumption (Resident Set
Size) for the process. On Mac OS X, similar actions are
performed by interfacing with 1ibproc. On Windows,
calls to kernel32 and psapi, the process status API,
reveal the required information. Inside of its resource mea-
surement and control routines, Fence can then use a single
high-level call to gather the memory usage of a process,
no matter what underlying OS or platform is used.

5 Evaluation

We evaluated Fence’s software artifact and its deployment
to investigate the following questions.

In situations with resource contention, how effectively
do uniform resource control and legacy ad-hoc techniques
provide device availability? (§5.2)

How well does uniform resource control function
across diverse platforms? (§5.3)

How much overhead is incurred when employing uni-
form resource control during normal operation? (§5.4)

Can realistic, high level policies be expressed with
Fence? (§5.5)

How diverse are the resources that can be metered by
uniform resource control? (§6)

How time consuming and challenging is it to add a new
resource type to Fence? (§6)

5.1 Experiment Methodology

To understand the tradeoffs between customized solutions
and uniform resource control, we compared Fence to well-
known, deployed tools found on common OSes. These
included nice (which sets the scheduling priority of a

process), ionice (similarly for I/O priority), ulimit
(which imposes hard limits on the overall consumption
of resources like file sizes, overall CPU time, and stack
size), as well as a combination of these tools. We also
included cpufreg-set, which changes the CPU fre-
quency within the device and slows down all processing.

To create a model hog application that stresses re-
sources, we created a series of processes that were in-
tended to consume the entirety of a specific type of re-
source. For example, a CPU hog will simply go into an
infinite loop, while a memory hog will acquire as much
memory as possible and constantly touch different parts
of it. We also created an ‘everything hog’ process that
would use all of the memory, CPU, network bandwidth,
and storage I/O it was allowed to consume.

For those experiments that looked at power consump-
tion and temperature, we used the devices’ built-in ACPI
interfaces. Measurements were taken after a machine had
been in a steady load state for ten minutes, to account for
heating and cooling effects between load changes.

5.2 Availability of Fence vs Legacy Tools

5.2.1 Performance Degradation

Setup. To evaluate all of the tested tools’ abilities to
contain a hog process, we ran an experiment where the
‘everything hog’ interfered with VLC playback of a 1080p
H.264 video [24] stored on disk. The results presented
here were generated on a Dell Inspiron 630m laptop run-
ning Ubuntu 10.04; however, our results were similar
across different device types and operating systems. We
set all of the tools, including Fence, to their most restric-
tive settings® in order to contain the hog processes. For
nice and ionice, VLC was additionally set to have
the highest possible priority.

Result. Figure 4 shows the results* in terms of the pro-
portion of frames decoded by the player when competing
with hog processes. Existing tools performed very poorly
when competing with the ‘everything hog’ — using nice
(19.2%), ionice (17.7%), or ulimit (16.4%) showed
not much more impact than not using them (16.7%). Even
using a combination of all these tools showed little ef-
fect (21.8%). Setting the CPU frequency lower (7.9%)
slowed down the entire system, including the video player,
causing even more dropped frames. Because Fence limits
all types of resources, even the everything hog has very
limited impact (Fence delivers 99.8% of the frames).
One surprising finding was that nice was highly inef-
fective in protecting the video player against a CPU hog.

3Le. nice level +20, ionice class idle, lowest CPU frequency
setting, and ulimit memory to 10 MB; for Fence, 1% of the CPU,
10kBps disk rate, 10 MB of memory

4 An video that shows the playback quality in this experiment is
available [8].

182 2015 USENIX Annual Technical Conference

USENIX Association

combination ——=
cpufreq_set(lowest) ——
Fence ——

no restriction

nice m——

ionice =

ulimit ==

100 M M M M M

h

80 - B

60 -

20 H
= L=/ =
0

CPU Memory Disk Network Everything
Hogs

Decoded frames (%)

Figure 4: Proportion of decoded frames during video play-
back when competing with different resource hogs (aver-
ages of ten runs +o, larger is better).

75

+ nice
B (017 e
70 - . ulimit
. combination
3 65 | + cpufreqg-set
© . Fence
Q '
2 60 -
§ | % O
855 : (o}
m .
E 50 o ©
5 ‘ %
£ 45| | o)
40 . © idle :
35 | | | J
20 30 40 50

Battery Drain (W)

Figure 5: Battery drain and heat control ranges for various
tools. The dashed rectangle bounds the minimum observed
(when idle) and maximum observed battery drain / heat of
the device. Fence effectively sweeps the full range.

It provides little benefit for a high-priority program that
exhibits bursty behavior with implicit deadlines for work
activities. However, tasks that constantly consume CPU,
such as benchmarks, benefited substantially from nice.

Evaluations of the ‘everything hog’ showed that heavy
use of one resource tended to cause a performance prob-
lem for other resources. Thus, resource conflicts seemed
to compound, yet defenses were about the same as the
strongest individual defense. This implies that uniformly
strong defenses are essential to preventing an application
from degrading performance.

5.2.2 Control Of Power And Heat

Setup. We next compared the effectiveness of popu-
lar tools in controlling the rate of power consumption
and thermal effect (heat) caused by an application. To
make this comparison, we ran an ‘everything hog’ pro-
cess on the laptop for ten minutes and examined the ACPI
battery and temperature sensors. We then applied Fence,

ulimit, cpufreg-set, nice, and ionice on the
hog process, for ten minutes each, and read the battery
and temperature sensors again. To understand the im-
pact of the tool, we varied the hog’s priority or resource
settings by choosing a variety of settings, including the
lowest to highest settings permitted by the tool. Interme-
diate settings were used to further understand the tool’s
effective range of control. An ideal tool would allow the
temperature and battery drain of the ‘everything hog’ to
be precisely controlled in a range from idle (no impact
from the hog) to full system utilization (full performance
of the hog).

Results. Figure 5 shows the ability of tools to control the
rate of battery consumption and heat. Existing tools, such
asulimit and nice, showed no measurable impact on
a hog’s ability to consume power (48.4W) or to raise the
temperature of a device (71.5°C). This is because when
there are available resources, any program (no matter how
low its priority) can exhaust the battery and thermal capa-
bilities of a device. In comparison, ulimit can at least
slightly improve battery life (41.9W) and thermal effect
(67.4°C) because it will reduce memory use. Using all
these tools simultaneously on a hog produced a similar ef-
fecttoulimit (42.2W, 67.1°C). Thus ulimit, nice,
and ionice are not effective in controlling battery drain
or heat.

In our experiment, cpufreg—set was much more
effective than were other off-the-shelf tools (30.8W,
47.7°C). However, as described in the previous section,
cpufreg-set negatively impacted all applications. It
also failed to control access to resources other than the
CPU, which resulted in high residual battery drain and
temperature (e.g., from wireless network adapters).

Fence was much more effective in controlling battery
consumption; it brought these values down to within .2%
of idle. The uniform resource control impacted all power
consuming resources, which led to effective control of
battery drain and heat.

5.3 Effectiveness on Diverse Platforms

Setup. We ran a series of benchmarks to investigate
whether uniform resource control is effective on diverse
platforms. We tested Fence on smartphones (Samsung
Galaxy Y, Nokia N800), tablets (Samsung Galaxy Tab,
Apple iPad), laptops (MacBook, Inspiron, Thinkpad),
desktop PCs (Alienware, Ideacenter), and also the com-
mercial Amazon EC2 cloud computing platform. Operat-
ing systems tested included Windows 7, Ubuntu 10.04 to
12.04, Mac OS X 10.8.4, Nokia’s 0S2008, Android 2.3.5
and 4.0.3, and a jailbroken iOS 5.0.1

We ran five benchmarks for the Seattle testbed, includ-
ing an HTTP server serving a large file, an Amazon S3-
like block storage service, an HTTP server benchmark
with small files / directory entries, a UDP P2P messaging

USENIX Association

2015 USENIX Annual Technical Conference 183

Blockstore, no restriction
Blockstore, Fence mmmm
Webserver-large, no restriction
Webserver-large, Fence ———=

100
80
60
40

Performance (%)

20

Figure 6: Benchmark performance across devices and OSes
in the face of a hog (average of eight runs +o, larger is
better). *The iPad crashed when run with an unrestricted
‘everything hog’.

program, and the Richards benchmark [19], set up against
an ‘everything hog’.

Note that the last four benchmarks were qualitatively
and quantitatively similar, so we only present the results
from the S3 blockstore. Figure 6 shows the results of
these benchmarks with both an ‘everything hog’ with
no restrictions and an ‘everything hog’ under Fence’s
control. The values are all normalized by dividing by the
benchmark time on an idle device.

Results. The benchmark performance when the hog was
unrestricted ranged from about 60% (Lenovo IdeaCentre
running Ubuntu 11.04) down to 2% (Nokia N800). Note
that performance results for the unrestricted hog on a
jailbroken iPad are not represented because parts of the
system crashed when we instantiated an unrestricted hog
process.

If the hog process is bound by Fence to consume at
most 1% of a device’s resources, a typical VM size in
the Seattle testbed [67], the hog’s impact on a bench-
mark is minimal. If the hog is restricted to 1%, then the
benchmark should run with about 99% of the original
performance. The lowest value (90%) was recorded on
a Nokia N800 that was purchased in 2007. On very low
power devices such as this, Fence’s overhead for polling
and signaling is significant. However on other platforms,
the benchmark’s execution time was within 98% of the
original performance. Our tests show that uniform re-
source control provides strong device availability with
low overhead across a diverse array of modern platforms.

5.4 Overhead of Fence

Both interposition and polling can incur overhead on
applications. Although the exact overhead will depend
on where and how uniform resource control is imple-
mented, it is important to have a rough understanding
of the cost. We measured the overhead from both pre-
post call interposition (§3.3) and polling / signaling using

25
20 -100ms ——
15 -

10

Overhead (%)

5

0 1 1 1 1 1 1 1 1 1)
0 10 20 30 40 50 60 70 80 90 100

Percentage of CPU Allowance

Figure 7: Overhead of CPU limiting which Fence inflicts on

a CPU-intensive benchmark, at different polling rates.

60

Tap -

Reserve rate

Fence rate -
restricted rate

nd Max power «-------

50

40

30

Power (W)

20 [

0 100 200 300 400 500 600 700 800
Time (s)

Figure 8: Fence restricts a benchmark’s power draw using
a simple token-bucket high-level policy [75]. Tap is the long-
term power target; reserve rate the maximum currently al-
lowed power. Benchmark idles in shaded regions.

Pulse-Frequency Modulation [37]. Figure 7 shows the
relative overhead incurred by the CPU polling mecha-
nism> used by Fence when compared with an unrestricted
benchmark on a Lenovo IdeaCentre K330 desktop PC
running Ubuntu 11.04. Results for other operating sys-
tems and platforms were qualitatively similar. Fence’s
current implementation uses a 100ms polling interval for
Linux on a desktop machine, which causes an overhead
of less than 4% across the range of CPU allowances. If
the polling interval was reduced to 20ms, control would
be finer-grained, but the overhead would exceed 10% for
allowance values above 50%. (Only at 100% allowance,
i.e., no CPU restrictions, does the overhead drop again.
In this case, Fence never detects that the CPU allowance
was exceeded; thus, only polling causes overhead and no
signaling overhead is incurred.) Results for many shorter
polling rates (e.g., Ims) are omitted because they do not
fit on the graph. Using a 100ms polling interval for Fence
results in low overhead across a wide variety of resource
restriction settings.

5.5 Expressing a High-Level Policy

We now explore how a high-level policy can be expressed
with Fence. To demonstrate this we implemented a sim-
ple policy from Cinder [75, Fig.1] to limit the long-term
power draw of an application. Cinder uses reserves that

SResource types other than CPU have an impact on the order of
100 ns to 8 s per interposition.

184 2015 USENIX Annual Technical Conference

USENIX Association

store energy and faps that transfer energy between re-
serves per unit time to control energy use. In this scenario,
a fixed-rate tap replenishes a reserve at fixed intervals, and
the application can only draw energy from the reserve.
(This is analogous to a token bucket where the tap is the
filling rate of the bucket and the reserve is the number
of tokens in the bucket.) The tap limits the long-term
power draw, which is useful to provide battery lifetime
guarantees, while the reserve allows for bursts. We imple-
mented the policy as a control loop that reads the battery
information from ACPI to determine the power draw for
the previous interval, computes the necessary limits for
processes, and sets the quota for Fence to enforce.

We examined the power draw on a Dell M1210 lap-
top. The long-term power draw goal from the battery was
set to 25.4W, corresponding to about 69% between idle
(12.0W) and maximum (31.5W) power draw on this ma-
chine. The “battery tap” replenished a reserve from which
the application drew energy. To read the battery informa-
tion from the system, we used the power supply API that
updated approximately every 15 seconds. The theoretical
maximum power draw in the reserve for one period was
tracked at the same temporal resolution.

Fence operates at the user level and as such does not
have low-level information about the energy consumption
of individual hardware components. To enforce energy
consumption restrictions, we requested that Fence set the
quota on every renewable resource based on the amount
of energy in the reserve. For example, if the reserve al-
lowed for 28 W for the next interval, then all renewable
resources were set to 82% of their maximum value, as
28W = 12.0W + 0.82% - (31.5W — 12.0W). While this
policy has many simplifying assumptions, we find that in
practice it works.

We ran a Richards benchmark [19] in the following
fashion. It ran for 10 periods (where a period is the amount
of time between power supply readings), and then slept for
2 periods. After doing this three times, it ran continually
for 20 periods. The benchmark was run according to this
schedule, both with and without Fence.

Results of this benchmark are shown in Figure 8. The
shaded areas indicate when the benchmark was sleeping.
The tap rate, representing the long-term power draw goal,
was 25.4W for each period. The unrestricted rate shows
the benchmark’s power draw in absence of any power re-
strictions: For the majority of time that the benchmark test
was active, it caused the battery to drain at approximately
the maximum rate.

The Fence rate shows the benchmark’s power draw
when run under Fence. Note that unlike the unrestricted
benchmark, the behavior of this line is limited by two
power rates: The maximum power draw that the system al-
lows, and also the amount in reserve in each period. When
the reserve is large (for example, right after a sleep pe-

riod), Fence behaves similarly to the unrestricted rate, and
uses energy at approximately the maximum rate. When
the reserve is small, Fence restricts power use to approxi-
mately the rate of the tap. Cinder’s policy uses Fence to
enforce that the overall power use stays within budget,
while allowing the application to have flexibility in when
it consumes its energy budget.

Fence’s power restrictions are inaccurate, due in part
to our implementation working at user space. As such we
do not directly account for complex issues of power use
in the underlying platform (e.g. tail power consumption
[34]). However, Fence will read the new battery level
during the next period and will drain the reserve based
upon what was actually consumed. Fence’s adjustment in
subsequent periods mitigates the effect of this inaccuracy.

Fence made implementing Cinder’s policy very
straightforward. The implementation is 150 lines of code
and did not require any detailed knowledge of the under-
lying resource types or control mechanisms. The imple-
mentation simply reads the battery level and adjusts the
values in the resource table based upon the reserve and
tap settings. This demonstrates that uniform resource con-
trol may make policy implementation easier, which we
hope will lead to more application developers and system
designers using such mechanisms.

6 Practical Fence Deployments

Seattle’s Use of Fence. Fence is deployed as a part of
the Seattle testbed [21]. Seattle runs on laptops, tablets,
and smartphones, with more than twenty thousand installs
distributed around the world [88]. The Seattle testbed is
used to measure end user connectivity, to build peer-to-
peer services, and as a platform for apps that measure and
avoid Internet censorship [16,44,46,73, 81]. Seattle is
also widely used in computer science education where it
has been used in more than fifty classes at more than a
dozen universities [39,41, 67].

Each device running Seattle uses Fence to allocate
a fixed percentage (usually 10%) of the device’s CPU,
memory, disk, and other resources to one or more VMs.
When a Seattle sandbox [40] is started, it reads a text file
that lists the resources allocated to the program. Each
line contains a resource type and quantity (for fungi-
ble resources) or the name of the resource (for non-
fungible resources). For example, resource memory
10000000 sets the memory cap to 10 million bytes, and
resource udpport 12345 allows the program to
send and receive UDP traffic on port 12345.

Seattle’s categorization of resources and enforcement
mechanisms are shown in Table 2. In the Seattle plat-
form’s sandbox, the calls to network and disk devices
are routed through Fence, whereas usage statistics on
memory and CPU are polled from the operating system.
Unfortunately, there is not a clean, cross-platform way

USENIX Association

2015 USENIX Annual Technical Conference 185

Resource Fungible ~ Renewable Seattle Control ~ Lind Control
CPU Yes Yes Polling Polling

Threads Yes No Interposition Interposition
Memory Yes No Polling Interposition
Storage space Yes No Polling Interposition
UDP / TCP ports No No Interposition Interposition
Open sockets Yes No Interposition Interposition
Open files Yes No Interposition Interposition
File R/'W Yes Yes Interposition Interposition
Network R/'W No Yes Interposition Interposition
HW randomness Yes Yes Interposition Interposition

Table 2: The user-space Fence implementation’s resource
categorization used in Seattle [40] and Lind [65].

for Fence to reclaim memory used by an application. As
such, Seattle enforces a hard maximum allowed memory
limit for an application, so a process trying to exceed the
limit will be forcefully killed.

Lind’s Use of Fence. In addition to being used in Seat-
tle’s sandbox, Fence is also used in a Google Native Client
sandbox called Lind [65]. Since this sandbox provides
a different abstraction (a POSIX system call), some of
the low-level resource characteristics (and thus, means of
controlling consumption) vary from Seattle’s deployment.
This sandbox has a hook that allows Fence to interpose
on memory requests and avoid polling. (This also allows
Fence to control native programs that cannot be executed
in the Seattle sandbox.) The rightmost column of Table 2
overviews Lind’s resource categorization.

The Sensibility Testbed’s Use of Fence. Fence is
not limited to controlling traditional computational re-
sources — it is currently being integrated by the Sensibility
Testbed [22] developers. Sensibility Testbed consists of
smartphones and tablets where researchers get access
to dozens of diverse sensors including WiFi network in-
formation, accelerometer readings, battery level, device
ID, GPS, and audio. Sensibility Testbed uses the same
sandbox as the Seattle testbed. However, in addition to
limiting a program’s access to resources for performance
reasons, Sensibility Testbed allows users who pass an IRB
review to get access to devices’ sensors at a rate meant
to preserve user privacy (e.g. by limiting the rate or ac-
celerometer queries to prevent sniffing keystrokes [70]).
The demonstrated ability of Fence to provide privacy guar-
antees across “sensor resources” validates the generality
of uniform resource control as a technique.

Experiences / Limitations. Our experience is that
Fence’s effectiveness depends on the amount of resource
information available to the developer. E.g., it is relatively
straightforward for a sandbox operating in user space to
limit disk I/O when interposing on a read or write call
on a file descriptor for a regular file — the number of disk
blocks accessed is fairly easy to predict. However, it is
very hard to provide performance isolation for a call like
mount: It may perform a substantial number of disk I/O
operations in the kernel, which are not predictable by a
sandbox in user space. (For similar reasons, a hardware

resource like L2 cache may be difficult to meter using
software in an OS kernel.)

The time it takes a developer to understand the re-
sources consumed by a call depends a lot on the imple-
menter. In our experience, adding calls into Fence in the
appropriate parts of the code only takes a few minutes per
API call. In fact, outside groups have used Fence to pro-
vide resource controls on many platforms (Android, iOS,
Nokia, Raspberry PI, and OpenWrt) each necessitating
only a few days’ worth of effort. The bulk of the effort
lies in understanding what resources a call will consume.

7 Related Work

Our work follows a substantial amount of prior work that
has recognized the need to prevent performance degra-
dation, enhance battery control, and manage heat. Fence
is unique in that it works across diverse platforms and
presents a portable, user-space solution that unifies re-
source control across resource types.

Deployed Solutions For Improved Availability. The
need for improved device availability has produced strate-
gies for preventing performance degradation, with differ-
ent levels of required privileges, including per-application,
per-user, OS-wide, and hypervisor-based approaches. For
example, modern web browsers monitor the run time of
their JavaScript engine to detect “runaway” scripts, i.e.,
programs that take excessive time to execute and allow
the user to stop the script. A malicious script can fool
the timer however, by partitioning its workload, or by
using Web Workers [69]. The runaway timer also ignores
other resources that the JavaScript program may take,
such as network and memory. Another application-level
example, the Java Virtual Machine [12], supports setting
a limit on the amount of memory that can be allocated by
a process. However, much like Lua [56], Flash [1], and
other programming language VMs, the Java Virtual Ma-
chine (JVM) does not support limiting the rate of some
fungible/renewable resources, such as CPU — the pri-
mary cause of energy drain and heat on many devices.

Operating system virtual machine monitors control
many different resource types, depending on the imple-
mentation [13,26,28,29,36,72]. However, the resource
controls are ad hoc and specific to the type of resource.
Bare-metal hypervisors [13,36] require kernel changes,
whereas hosted hypervisors [26,28] have substantial per-
VM resource costs. As a result, none of these are practical
to deploy on a per application basis, especially on devices
like smartphones and tablets.

More recently, the cgroups [4] infrastructure in
Linux addresses many of the issues discussed in this paper
(CPU, memory use, and disk I/O). cgroups, however,
is specific to newer versions of Linux. Due to its location
in the kernel, it has better resource granularity than Fence.
However, cgroups focuses on point solutions for spe-

186 2015 USENIX Annual Technical Conference

USENIX Association

cific resources, rather than a more uniform and general
solution. In contrast, Fence provides a user-space uniform
resource control solution that works across a wide array
of devices without kernel modifications.

Operating Systems Research. There are many clean
slate OS approaches that would achieve the same im-
provements as Fence. Since many deployed OSes are
ineffective at preventing performance degradation, Fence
focuses on providing this property in user space. Several
OS-level efforts aim at managing processes’ low-level re-
sources consumption in a system-wide manner to control
battery life. ECOSystem [89], Odyssey [48], Cinder [75],
and ErdOS [85] focus on extending battery life. Their
reasoning about resources is fixated on the energy con-
sumed by renewable resources. Scheduling decisions are
made exclusively on this foundation. Fence also supports
energy-aware resource limiting, but we measure resource
consumption as “unit of resource,” which enables interest-
ing use cases, such as control strategies based on device
responsiveness or service availability.

Research projects [42,43,54,60,61,66,87] try to man-
age thermal effects through temperature-aware priority-
based scheduling and thread placement on the CPU. Our
work demonstrates that priority-based scheduling is inef-
fective at upper-bounding a process.

The efforts presented above require deep changes to ap-
plications to support resource aware operation, are based
on new kernels, or use forms of priority-based schedul-
ing that do not succeed in limiting resource consump-
tion. In contrast, Fence requires no changes to OSes or
applications, and operates entirely in user space. Further-
more, Fence puts boundaries on any type of resource
consumption and can affect more than battery drain. This
is achieved by reasoning about, tallying, and controlling
multiple different resources in a uniform way.

Controlling resource consumption is well researched
in the real-time OS community [31, 64, 74]. Our research
focuses on techniques to enhance general-purpose OSes
with minimal disruption to existing systems.

There have been a substantial number of complimen-
tary user-space techniques for improving security that
involve system-call interposition [52,53,59], host intru-
sion detection [47, 50], and access control [55, 77, 86].
These mechanisms aim to permit or deny access to re-
sources requested by applications based upon how they
will impact the security of the system. Fence’s goal is
fundamentally different: It limits the rate of resources
consumption so that the use of allowed resources does not
impact the availability or correct operation of a device.

Idle Resource Consumption A variety of frame-
works, such as Condor [63], SETI@Home [23], and Fold-
ing@Home [9] allow trusted developers to consume idle
resources on a users device. These wait for the user’s

system to be idle and then run, so as to not interfere with
performance. However, once they run, these programs
may fully utilize the CPU, GPU, and similar resources on
the device, often leading to significant power drain [2].
Fence may also operate in such an on-off manner, but it
is flexible enough to allow more advanced policies.

One related effort to Fence in this domain was the
construction of an idle resource consumption framework
by Abe et al. [30]. This system runs in user space and
leverages special functionality from OS-specific hooks in
Solaris revolving around dt race [38]. While this pro-
vides easy control of native code (which Fence lacks),
equivalent techniques do not exist across platforms. As
such, this will only work for a few environments, such
as BSD, that support similar hooks. As a result, Abe’s
work cannot be deployed on many systems. (For example,
Windows lacks a non-bypassable method for interpos-
ing on an untrusted application’s operating system calls.)
Additionally, as this work seeks to enable background
execution only when foreground execution is idle, many
of the detection and scheduling results from this work do
not apply to our domain.

Distributed Systems Research Controlling resource
utilization is also an important problem in distributed
contexts [32, 33, 49, 51, 57, 62, 79, 82, 84]. Significant
prior work has focused on efficiently allocating avail-
able resources between multiple parties. While managing
distributed resources is orthogonal to our goals, Fence
embraces richer semantics to reason about resource con-
sumption, rather than utilization; we believe that our ap-
proach towards uniform resource control would apply
well as a heterogeneity-masking technique in distributed
contexts.

8 Conclusion

This paper introduces uniform resource control by clas-
sifying resources along the dimensions of renewability
and fungibility. Our system, Fence, demonstrates that uni-
form resource control provides flexibility by controlling
multiple heterogeneous resources across almost a dozen
diverse operating systems. Furthermore, we demonstrate
that this technique is particularly adept at addressing is-
sues of performance degradation, heat, and battery drain
that many users face today.

In addition to the experimental validation presented
in this paper, Fence has been deployed and adopted to
provide resource containment of untrusted user code in
several testbeds. As a result, tens of thousands of smart-
phones, tablets, and desktop OSes around the world rely
on Fence to prevent device degradation. Beyond our de-
ployment, we believe Fence’s abstractions and mecha-
nisms could be used to provide better resource control for
sandboxes, web browsers, virtual machine monitors, and
operating systems.

USENIX Association

2015 USENIX Annual Technical Conference 187

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Adobe flash player. http://www.adobe.com/
software/flash/about.

BOINC wiki: Heat and energy considerations.
http://boinc.berkeley.edu/wiki/
Heat_and_energy_considerations.

Box Sync ruins my tMBP. https://support.

box.com/entries/21766312-Box—-Sync—
ruins—my—-rMBP.

cgroups. http://www.kernel.org/doc/
Documentation/cgroups/cgroups.txt

Crash Internet Explorer 9 in one line of Javascript!
http://www.roslindesign.com/2011/
04/08/crash—-internet—-explorer—-9-
in-one-line-of-javascript

Death to Javascript: CNN Edition. http:
//www.goodbyemicrosoft.net/news.
php?item.708.4.

Dropbox using 100% of each core when I turn

my machine on. https://forums.dropbox.

com/topic.php?id=62054.

Fence vs nice, ionice, ulimit, cpufreq-set demo
video. https://www.youtube.com/user/
fencedemo.

Folding@Home. http://folding.
stanford.edu/.

installd took 130% of CPU and sent
temperatures through the roof. Why?

https://discussions.apple.com/
thread/3738340.

ionice.
ionice.

http://linux.die.net/man/1/

Java Virtual Machine. http://docs.oracle.

com/javase/specs/jvms/se7/html/
index.html.

Kernel-based virtual machine.
linux-kvm.org/page/Main_Page

Linux - File descriptors exhausted, how to recover.
http://www.linuxquestions.org/
questions/linux—newbie-8/linux-
file-descriptors—exhausted-how-to-
recover—4175417070/.

nice. http://www.kernel.org/doc/man—
pages/online/pages/man2/nice.2.
html.

http://www.

[16]

[17]

(18]

(19]

(20]

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

Open3GMap.
ac.at/.

https://o3gm.cs.univie.

Optimizing downloads for efficient network
access. https://developer.android.
com/training/efficient-downloads/
efficient—-network—access.html.

Potentially Unwanted Miners — Toolbar Ped-
dlers Use Your System To Make BTC. http:
//blog.malwarebytes.org/fraud-
scam/2013/11/potentially—unwanted—
miners—-toolbar-peddlers-use-your-
system-to-make-btc/.

Richards benchmark. http://www.cl.cam.
ac.uk/~mrl10/Bench.html.

Scan causes CPU to overheat. https:
//community.norton.com/t5/Norton-
Internet-Security—-Norton/Scan—
causes—-CPU-to-overheat/td-
p/642743.

Seattle web page. https://seattle.poly.
edu/.

Sensibility Testbed. https://

sensibilitytestbed.com/.

SETI@Home.
berkeley.edu/.

http://setiathome.

Sintel trailer. http://www.sintel.org/

download.

ulimit. http://linux.die.net/man/1/
ulimit.

VirtualBox. https://www.virtualbox.
org/wiki.

VirusScan freezes up completely during full
scan. https://community.mcafee.com/
message/211811.

VMware workstation.
com.

http://www.vmware.

Windows Virtual PC. http://support.
microsoft.com/kb/958559.

Y. Abe, H. Yamada, and K. Kono. Enforcing appro-
priate process execution for exploiting idle resources
from outside operating systems. In Proceedings
of the 3rd ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2008, pages 27-40,
2008.

188

2015 USENIX Annual Technical Conference

USENIX Association

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

L. Abeni, G. Buttazzo, S. Superiore, and S. Anna. In-
tegrating multimedia applications in hard real-time
systems. In In Proceedings of the 19th IEEE Real-
time Systems Symposium, pages 4—13, 1998.

Y. Agarwal, S. Savage, and R. Gupta. Sleepserver:
a software-only approach for reducing the energy
consumption of pcs within enterprise environments.
In Proceedings of the 2010 USENIX conference on
USENIX annual technical conference, 2010.

A. AuYoung, B. Chun, C. Ng, D. Parkes, J. Shnei-
dman, A. Snoeren, and A. Vahdat. Bellagio:
An economic-based resource allocation system for
planetlab. http://www.sysnet .ucsd.edu/
~aauyoung/bellagio/about .php.

N. Balasubramanian, A. Balasubramanian, and
A. Venkataramani. Energy consumption in mobile
phones: a measurement study and implications for
network applications. In Proceedings of the 9th
ACM SIGCOMM conference on Internet measure-
ment conference, pages 280-293. ACM, 2009.

G. Banga, P. Druschel, and J. C. Mogul. Resource
containers: A new facility for resource management
in server systems. In the 3rd Symposium on Operat-
ing Systems Design and Implementation, 1999.

P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Har-
ris, A. Ho, R. Neugebauer, I. Pratt, and A. Warfield.
Xen and the art of virtualization. In the nineteenth
ACM symposium on Operating systems principles,
2003.

M. Broughton. Pulse-frequency modulation applied
to the digital control of a thyristor. IEEE Trans.
Industrial Electronics and Control Instrumentation,
24(2):173-177, May 1977.

B. M. Cantrill, M. W. Shapiro, and A. H. Leventhal.
Dynamic instrumentation of production systems. In
Proceedings of the Annual Conference on USENIX
Annual Technical Conference, ATEC 04, pages 2-2,
2004.

J. Cappos, 1. Beschastnikh, A. Krishnamurthy, and
T. Anderson. Seattle: a platform for educational
cloud computing. In 40th ACM technical symposium
on Computer science education, 2009.

J. Cappos, A. Dadgar, J. Rasley, J. Samuel,
I. Beschastnikh, C. Barsan, A. Krishnamurthy, and
T. Anderson. Retaining sandbox containment de-
spite bugs in privileged memory-safe code. In the
17th ACM conference on Computer and communi-
cations security, 2010.

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

(51]

J. Cappos and R. Weiss. Teaching the security mind-
set with reference monitors. In 45th ACM technical
symposium on Computer science education, 2014.

J. Chen, C. Hung, and T. Kuo. On the minimization
fo the instantaneous temperature for periodic real-
time tasks. In Real Time and Embedded Technology
and Applications Symposium, 2007. RTAS’07. 13th
IEEE, pages 236-248. IEEE, 2007.

J. Choi, C. Cher, H. Franke, H. Hamann, A. Weger,
and P. Bose. Thermal-aware task scheduling at the
system software level. In Proceedings of the 2007

international symposium on Low power electronics
and design, pages 213-218. ACM, 2007.

L. Collares, C. Matthews, J. Cappos, Y. Coady, and
R. McGeer. Et (smart) phone home! In Proceed-
ings of the compilation of the co-located workshops
on DSM’11, TMC’11, AGERE!’11, AOOPES’11,
NEAT’11, VMIL’11, SPLASH ’11 Workshops,
pages 283-288, New York, NY, USA, 2011. ACM.

S. S. Craciunas, C. M. Kirsch, and H. Rock. 1/O re-
source management through system call scheduling.
ACM SIGOPS Operating Systems Review, 42(5):44—
54, 2008.

J. Eisl, A. Rafetseder, and K. Tutschku. Service
architectures for the future converged internet: Spe-
cific challenges and possible solutions for mobile
broad-band traffic management. Future Internet
Services and Service Architectures, 15:49, 2011.

H. Feng, J. Giffin, Y. Huang, S. Jha, W. Lee, and
B. Miller. Formalizing sensitivity in static anal-
ysis for intrusion detection. In Security and Pri-
vacy, 2004. Proceedings. 2004 IEEE Symposium on,
pages 194-208, 2004.

J. Flinn and M. Satyanarayanan. Managing bat-
tery lifetime with energy-aware adaptation. In ACM
Transactions on Computer Systems (TOCS), 2004.

R. Fonseca, P. Dutta, P. Levis, and I. Stoica. Quanto:
Tracking energy in networked embedded systems.
In the 8th USENIX conference on Operating systems
design and implementation, 2008.

S. Forrest, S. Hofmeyr, A. Somayaji, and
T. Longstaff. A sense of self for unix processes.
In Security and Privacy, 1996. Proceedings., 1996
IEEE Symposium on, pages 120-128, 1996.

Y. Fu, J. Chase, B. Chun, S. Schwab, and A. Vahdat.
Sharp: an architecture for secure resource peering.
In Proceedings of the nineteenth ACM symposium
on Operating systems principles, SOSP *03, 2003.

USENIX Association

2015 USENIX Annual Technical Conference 189

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

T. Garfinkel, B. Pfaff, and M. Rosenblum. Ostia: A
delegating architecture for secure system call inter-
position. In IN NDSS, 2003.

I. Goldberg, D. Wagner, R. Thomas, and E. A.
Brewer. A secure environment for untrusted helper
applications confining the wily hacker. In Proceed-
ings of the 6th Conference on USENIX Security Sym-
posium, Focusing on Applications of Cryptography -
Volume 6, SSYM’96, 1996.

J. Hasan, A. Jalote, T. N. Vijaykumar, and C. E.
Brodley. Heat stroke: Power-density-based denial of
service in SMT. In Proceedings of the 11th Interna-
tional Symposium on High-Performance Computer
Architecture, HPCA ’05, pages 166—177, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

T. L. Hinrichs, D. Martinoia, W. C. Garrison III,
A.J. Lee, A. Panebianco, and L. Zuck. Application-
sensitive access control evaluation using parameter-

ized expressiveness. In Computer Security Founda-
tions Symposium, 2013. 26th IEEE, 2013.

R. Terusalimschy, L. H. de Figueiredo, and W. Celes.
Lua - an extensible extension language. In Software:
Practice & Experience, 1995.

D. Irwin, J. Chase, L. Grit, A. Yumerefendi,
D. Becker, and K. G. Yocum. Sharing networked
resources with brokered leases. In Proceedings of
the annual conference on USENIX *06 Annual Tech-
nical Conference, ATEC 06, 2006.

D. M. Jacobson and J. Wilkes. Disk scheduling
algorithms based on rotational position. Technical
report, Technical report HPL-CSP-91-7rev1, 1991.

T. Jaeger, R. Sailer, and X. Zhang. Analyzing in-
tegrity protection in the selinux example policy. In
Proceedings of the 12th Conference on USENIX Se-
curity Symposium - Volume 12, SSYM’03, pages
5-5, Berkeley, CA, USA, 2003. USENIX Associa-
tion.

R. Jayaseelan and T. Mitra. Temperature aware
scheduling for embedded processors. In VLSI De-
sign, 2009 22nd International Conference on, pages
541-546. IEEE, 2009.

A. Kumar, L. Shang, L. Peh, and N. Jha. Hybdtm:
a coordinated hardware-software approach for dy-
namic thermal management. In Proceedings of the

43rd annual Design Automation Conference, pages
548-553. ACM, 2006.

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

(71]

K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. A.
Huberman. Tycoon: An implementation of a dis-
tributed, market-based resource allocation system.
Multiagent Grid Syst., 1(3), Aug. 2005.

M. Litzkow, M. Livny, and M. Mutka. Condor-a
hunter of idle workstations. In Distributed Comput-
ing Systems, 1988., 8th International Conference on,
pages 104-111, 1988.

R.J. Masti, C. Marforio, A. Ranganathan, A. Fran-
cillon, and S. Capkun. Enabling trusted scheduling
in embedded systems. In Proceedings of the 28th
Annual Computer Security Applications Conference,
ACSAC 12, pages 61-70, New York, NY, USA,
2012. ACM.

C. Matthews, J. Cappos, R. McGeer, S. Neville, and
Y. Coady. Lind: Challenges turning virtual composi-
tion into reality. In Freeco 2011 Onward! Workshop:
Towards Free Composition of Software Modules,
2011.

A. Merkel and F. Bellosa. Task activity vectors: a
new metric for temperature-aware scheduling. ACM
SIGOPS Operating Systems Review, 42(4):1-12,
2008.

Monzur Muhammad and Justin Cappos. Towards
a Representive Testbed: Harnessing Volunteers for
Networks Research. In The First GENI Research
and Educational Workshop, GREE’12, 2012.

R. Neugebauer and D. McAuley. Energy is just an-
other resource: Energy accounting and energy pric-
ing in the nemesis os. In Hot Topics in Operating
Systems, 2001. Proceedings of the Eighth Workshop
on, pages 67-72. IEEE, 2001.

Nicholas C. Zakas. Responsive Interfaces.
http://de.slideshare.net/nzakas/
responsive-interfaces.

E. Owusu, J. Han, S. Das, A. Perrig, and J. Zhang.
Accessory: Password inference using accelerome-
ters on smartphones. In Proceedings of the Twelfth
Workshop on Mobile Computing Systems &
Applications, HotMobile *12, pages 9:1-9:6, New
York, NY, USA, 2012. ACM.

A. Pathak, Y. C. Hu, and M. Zhang. Where is the
energy spent inside my app?: fine grained energy ac-
counting on smartphones with eprof. In Proceedings
of the 7th ACM european conference on Computer
Systems, EuroSys ’12, pages 29—-42, New York, NY,
USA, 2012. ACM.

190

2015 USENIX Annual Technical Conference

USENIX Association

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

L. Peterson, A. Bavier, M. E. Fiuczynski, and
S. Muir. Experiences building planetlab. In Pro-
ceedings of the 7th Symposium on Operating Sys-
tems Design and Implementation, OSDI *06, pages
351-366, 2006.

A. Rafetseder, F. Metzger, D. Stezenbach, and
K. Tutschku. Exploring youtube’s content distri-
bution network through distributed application-layer
measurements: a first view. In Proceedings of the
2011 International Workshop on Modeling, Analysis,
and Control of Complex Networks, Cnet "11, pages
31-36. ITCP, 2011.

R. Rajkumar, K. Juvva, A. Molano, and S. Oikawa.
Resource kernels: A resource-centric approach to
real-time and multimedia systems. In In Proceed-
ings of the SPIE/ACM Conference on Multimedia
Computing and Networking, pages 150-164, 1998.

A. Roy, S. M. Rumble, R. Stutsman, P. Levis,
D. Mazieres, and N. Zeldovich. Energy manage-
ment in mobile devices with the cinder operating
system. In EuroSys 2011, 2011.

C. Ruemmler and J. Wilkes. An introduction to disk
drive modeling. Computer Volume 27 Issue 3, 1994.

M. Sherr and M. Blaze. Application containers
without virtual machines. In Proceedings of the
I1st ACM Workshop on Virtual Machine Security,
VMSec ’09, pages 39-42, New York, NY, USA,
2009. ACM.

A. Silberschatz, P. B. Galvin, and G. Gagne. Operat-
ing System Concepts. Wiley Publishing, 8th edition,
2008.

I. Stoica, H. Abdel-Wahab, and K. Jeffay. On the
duality between resource reservation and propor-
tional share resource allocation. Technical report,
Old Dominion University, Norfolk, VA, USA, 1996.

A. S. Tanenbaum. Modern Operating Systems. Pren-
tice Hall PTR, Upper Saddle River, NJ, USA, 2nd
edition, 2001.

K. Tutschku, A. Rafetseder, J. Eisl, and W. Wieder-
mann. Towards sustained multi media experience
in the future mobile internet. In Intelligence in Next

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

Generation Networks (ICIN), 2010 14th Interna-
tional Conference on, pages 1-6. IEEE, 2010.

B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource
overbooking and application profiling in a shared
internet hosting platform. ACM Trans. Internet Tech-
nol., 9(1), Feb. 2009.

Using SO_REUSEADDR and
SO_EXCLUSIVEADDRUSE. Accessed April 14,
2012. http://msdn.microsoft.com/en-
us/library/ms740621%28VS.85%29.
aspx.

M. Valero, A. Bourgeois, and R. Beyah. Deep: A
deployable energy efficient 802.15.4 mac protocol
for sensor networks. In Communications (ICC),
2010 IEEE International Conference on, pages 1-6,
2010.

N. Vallina-Rodriguez and J. Crowcroft. Erdos:
achieving energy savings in mobile os. In Pro-
ceedings of the sixth international workshop on Mo-
biArch, MobiArch ’11, pages 3742, New York, NY,
USA, 2011. ACM.

H. Vijayakumar, J. Schiffman, and T. Jaeger. Process
firewalls: Protecting processes during resource ac-
cess. In Proceedings of the 8th ACM European Con-
ference on Computer Systems, EuroSys *13, pages
57-70, New York, NY, USA, 2013. ACM.

J. Yang, X. Zhou, M. Chrobak, Y. Zhang, and L. Jin.
Dynamic thermal management through task schedul-
ing. In Performance Analysis of Systems and soft-
ware, 2008. ISPASS 2008. IEEE International Sym-
posium on, pages 191-201. IEEE, 2008.

Yanyan Zhuang and Albert Rafetseder and Justin
Cappos. Experience with Seattle: A Community
Platform for Research and Education. In The Sec-
ond GENI Research and Educational Workshop,
GREE’13, 2013.

H. Zeng, C. S. Ellis, A. R. Lebeck, and A. Vahdat.
Ecosystem: Managing energy as a first class oper-
ating system resource. In /0th international con-
ference on Architectural support for programming
languages and operating systems, 2002.

USENIX Association

2015 USENIX Annual Technical Conference 191

