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ABSTRACT
We analyze over 100 Gb of electric bicycle (e-bike) usage data col-
lected through the University of Waterloo WeBike field trial. The
WeBike fleet consists of 31 instrumented e-bikes used by Univer-
sity of Waterloo faculty, staff and students. We break down usage
and battery charging habits by gender and by occupation, and we
compare participants’ initial estimates of how much they thought
they would ride their e-bike with their actual riding histories. We
also discuss data pre-processing challenges such as identifying trip
start and end times from noisy and incomplete sensing data.

1. INTRODUCTION
Electric bicycles (e-bikes), equipped with a battery and a motor

that provides assistance to the rider, are an emerging mode of trans-
portation that is clean, inexpensive and healthy. They are no longer
a niche technology: there are more than 200 million e-bikes in use
in China alone [13], with rapidly dropping prices and increasing
quality. Thus, it is important and timely to study e-bikes and their
impact on travel behaviour, the electricity grid and public health.

To do so, we are conducting a three-year field trial at the Uni-
versity of Waterloo, called WeBike [14], with 31 e-bikes given
to selected professors, staff members and students. Each bike is
equipped with a sensor kit that captures GPS coordinates, move-
ment and battery charging current every minute (details in Sec-
tion 3). Additionally, before the field trial began, each participant
was asked to estimate how much he or she would ride their e-bike.

In this paper, we analyze over 100 Gigabytes of WeBike usage
data collected since the beginning of the project in Summer 2014
till the end of the 2015 cycling season (October). We make the
following contributions:

1. We show how to identify trips from the per-minute data feeds
generated by the e-bikes; while this may seem simple, chal-
lenges arise due to noisy and incomplete sensing data.

2. We present a break-down of trip statistics and battery charg-
ing habits for male vs. female participants and for facul-
ty/staff members vs. students.
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3. We compare participants’ initial estimates of how much they
would ride their bikes with actual riding histories.

2. RELATED WORK
In our literature review, we identified five recent e-bike field stud-

ies, summarized in Table 1. The two closest to ours are Fyhri &
Fearnley [6] and Paefgen & Michahelles [10], which also focus on
usage patterns. The former collected odometer data and reported a
statistically significant increase in trip frequency and distance for
participants who were given e-bikes versus those in a control group
who used regular bicycles. The increase was greater for female par-
ticipants. The latter involved 17 e-bikes with GPS loggers available
for loan to employees of an insurance company. However, only pre-
liminary results from two e-bikes were presented, suggesting that
the bikes were used mainly for commuting, with many trips taking
place during morning and afternoon rush hours.

Two studies focused on safety. Dozza et al. [5] used extensively
instrumented e-bikes, with cameras and braking pressure sensors,
to analyze near-collisions and other safety-critical events. They
found that the higher speed of e-bikes may lead to more hazardous
interactions with motorized vehicles. They also reported an average
trip duration of 14 minutes and average speed of 17 km/h. Langford
et al. [9] analyzed GPS data from a bike-sharing fleet at the Univer-
sity of Tennessee, Knoxville, and discovered that e-bike and regular
bike users (mostly male students) engaged is similar types of un-
safe behaviour, including not coming to a full stop at red lights and
stop signs and going the wrong way on one-way streets. They also
found that e-bikes were ridden faster than regular bikes on streets
(13.3 km/h vs. 10.5 km/h on average), but not on shared-use paths.

One study, Schleinitz et al. [12], concentrated on speed and
found a statistically significant increase in the speed of e-bikes
compared to regular bikes. Furthermore, riders 40 years old or
younger were faster than riders over 65 years old.

Finally, several surveys of e-bike owners in China (see, e.g., [1,
3]), Europe (see, e.g., [8]) and the United States (see, e.g., [4, 11])
have been reported. Their findings align with those of the field
trials, e.g., that e-bikes are ridden faster and for longer distances,
and are often used for commuting.

The WeBike field trial is novel in several ways. For one, it is sig-
nificantly longer than most of the previous studies: it will run for
three years till 2017. For another, we are collecting battery-related
data in addition to GPS data to analyze charging patterns (and have
already used battery discharge data to develop a range prediction
model for e-bikes [7]). However, to keep costs and complexity low
so that the e-bikes can be used for several years without constant
maintenance, we have not installed cameras or any other special-
ized sensing equipment.



Table 1: Summary of previous e-bike field studies

Reference Purpose Location Participants Duration Data Collected
Fyhri & Fearnley [6] Usage Norway 66 2-4 weeks Odometer

Paefgen & Michahelles [10] Usage Switzerland 17 4 months GPS
Dozza et al. [5] Safety Gothenburg, SE 12 2 weeks Video, GPS, braking force, lateral movement

Langford et al. [9] Safety Knoxville, TN, USA 12 bikes 2 years GPS
Schleinitz et al. [12] Speed Germany 85 4 weeks Video, Speedometer

Figure 1: An eProdigy Whistler used in the WeBike field trial

3. THE WEBIKE PROJECT
The WeBike field trials involves 31 participants, selected based

on their answers to survey questions about their opinions on various
modes of transportation and how much they would ride their e-bike.
18 participants are male and 13 female; 16 are professors or staff
members at the University of Waterloo and 15 are students. Each
participant was given an e-bike and will be able to keep it at the end
of the project.

Figure 1 illustrates the eProdigy Whistler mountain bike selected
for the project. The electric motor is mounted at the bottom bracket
and the battery is located on the down-tube. The bike weights 21kg,
including the 2.5kg battery. The motor provides assistance up to a
maximum speed of 32 km/h; it spins whenever the rider is ped-
alling, or the bike may be used in electric-only mode without ped-
alling. The battery is detachable for recharging, which takes about
4-5 hours from empty, and can be plugged in to a regular wall out-
let. The manufacturer-reported maximum range is 45 km.

Each bike is equipped with a digital display that shows battery
voltage, speed and mileage. Since voltage is a rough approximation
of battery state-of-charge, participants are aware of the (approxi-
mate) battery level at all times.

The digital display does not store or transmit any data. For data
collection, we use custom-designed sensing hardware located in
the box on top of the battery. Figure 2 shows the components
when removed from the box; see [14] for an assembly guide. A
Samsung Galaxy III smart phone is powered by the bike’s battery
and provides GPS coordinates, angular speed (in all 3 axes; via
the gyroscope) and acceleration (in all 3 axes) through the standard
Android API. Additionally, a Phidget voltage sensor measures the
battery voltage, a Phidget current transducer measures the battery

Figure 2: Sensor kit for the WeBike project

charging current, a Digikey current transducer measures the battery
discharge current, and a Digikey sensor measures the temperature
of the battery.

Since the WeBike field trial is long-running and our participants
are not dedicated volunteers, we aimed to make the data collection
as simple and non-intrusive as possible. We made travel logs op-
tional and do not require the participants to press a button to start
recording data before they start riding. Instead, we configured the
smart phones to wake up for 4 seconds every minute and collect
four data samples, one per second, from all the sensors. We chose
not to collect data more frequently to avoid draining the bike’s bat-
tery and therefore reducing its range (even at the current sensing
frequency, the phone alone would drain the battery in less than
a week). We chose a wake-up window of 4 seconds because we
found that it takes at least 2 seconds to obtain a GPS fix after the
phone wakes up. Data are buffered on the phone and uploaded to a
MySQL database server via wi-fi whenever available. Each partici-
pant also has access to their data via a Web interface. As of October
2015, we have collected over 100 GB of data.

4. TRIP IDENTIFICATION
Since data are collected every minute, even when a bike is not in

use, we need to identify trip start and end times. Our initial attempt
using GPS data was unsuccessful for two reasons. First, since most
of the participants stored their bikes indoors, it takes 1-2 minutes at
the beginning of the trip to obtain the first GPS fix. Second, GPS



fixes coming from a parked bike were often several hundred meters
apart, falsely implying movement.

Instead, we use the phone’s gyroscope and linear acceleration
sensor. A potential trip starts when either one of these sensors de-
tects movement and ends if there has been no movement for 5 min-
utes. Consecutive potential trips with a gap of less than 5 minutes
between them are merged to account for traffic lights. Finally, we
discard trips shorter than 5 minutes (e.g., short test-rides or sensor
noise) and those with an average speed of over 25 km/h (most likely
corresponding to an e-bike being taken on a bus).

To validate our method, we obtained the true start and end times
of 225 trips, made in April and May 2015, from participants who
had maintained detailed travel logs. We missed five of these trips
because they were just under 5 minutes long (false negatives) and
identified two short spurious trips (false positives) likely due to
noise in the measurements. Reducing the minimum trip duration
eliminated the false negatives but added more false positives. Fur-
thermore, we found that, on average, the trip durations computed
by our method were within 5 percent of the actual durations.

5. DATA ANALYSIS
This section presents our analysis of trips, battery charging pat-

terns and differences between anticipated and actual riding. We
use the t-test at 95% confidence level when reporting differences
between mean trip durations or speeds across sub-populations such
as male vs. female participants. The bar charts in this section are
histograms, with probability-normalized frequency on the y-axes.
Table 2 summarizes the 4668 detected trips by gender and occupa-
tion; trip durations are measured in minutes.

Note: Recall from Section 4 that every trip is missing GPS data
for the first 1-2 minutes; furthermore, we found that most e-bikes
had missing GPS data during trips. This prevented us from recon-
structing trip trajectories and analyzing trip distances and average
speed. Instead, the trip statistics reported in this section are based
on trip durations.

Table 2: WeBike trip statistics
Total Female Male Student Staff/

Faculty
Number of trips 4668 2124 2544 2470 2124
Avg. num. of trips 156 163 141 164 137
per participant
Avg. trip duration 16.8 15.8 17.6 16.5 17.7
per participant

5.1 Trip Statistics
Start times. Figure 3 plots the trip start times with hour-of-day

on the x-axis. The two peaks occur during morning and afternoon
rush hours, suggesting that participants use their e-bikes mainly
for commuting. There are virtually no trips between 10pm and
5am. Figure 4 shows the distributions of trip start times for men and
women separately; there are no obvious differences. On the other
hand, Figure 5 suggests that students ride less than staff and faculty
in the morning (7-10am) but more in the evening (after 6pm).

Trip duration. Figure 6 shows the distribution of trip durations
(in minutes) in black, and the cumulative distribution in grey. Over
70 percent of all trips are under 20 minutes long. Figure 7 breaks
down the durations by gender and Figure 8 by occupation. Male
participants and faculty/staff appear to make longer trips (signifi-
cant with a p-value of 0.0001; also evident in Table 2).

Figure 3: Distribution of hour of the day when trips started

Figure 4: Distribution of hour of the day when trips started
divided by gender

Figure 5: Distribution of hour of the day when trips started
divided by occupation

Figure 6: Distribution of trip duration

Trips per month. Figure 9 shows the frequency of trips with
month of the year on the x-axis. Most trips happened between May
and October, with a dip in August due to vacations. However, de-
spite the cold winters in Waterloo, some participants did ride their
e-bikes all year. Breakdowns by gender and occupation did not
provide additional insight and are omitted for brevity.

5.2 Battery Charging Statistics
Next, we analyze over 2000 battery charging events recorded

in our dataset, identified as periods of time with non-zero charg-



Figure 7: Distribution of trip duration divided by gender

Figure 8: Distribution of trip duration divided by occupation

Figure 9: Distribution of trips per month

ing current. Table 3 provides an overview of the average number
of charging events per participant and the average number of trips
made between charges. Since males and staff/faculty have longer
trips (recall Table 2), they have fewer trips per charge.

Table 3: Battery charging statistics
Total Female Male Student Staff/

Faculty
Charging events 2007 791 1216 927 1080
Average 67 61 68 62 68
per participant
Average trips 2.3 2.7 2.1 2.7 2.0
per charge

Charging start times. Figure 10 plots the distribution of charg-
ing events by the hour of the day they started at. Comparing to
Figure 3, participants tend to charge batteries right after they come
to work in the morning and right after they arrive home in the after-
noon and evening. Figure 11 separately shows the distribution of
charging start times for male and female participants. Interestingly,
it appears that more men charge their batteries after 7pm. Finally,
Figure 12 shows that students have more charging events after 6pm
than faculty/staff, which is consistent with Figure 5 (students make

more evening trips).

Figure 10: Distribution of hour of the day when charging events
started

Figure 11: Distribution of hour of the day when charging events
started divided by gender

Figure 12: Distribution of hour of the day when charging events
started divided by occupation

Battery level at the beginning of charging. Here, we exam-
ine how full the battery was (state-of-charge) at the beginning of
charging. Figure 13 shows charging events for different levels of
state-of-charge (SOC)1; note that SOC=0 means that the battery
was empty. The frequency distribution is shown in black and the
cumulative frequency in grey. Only ten percent of charging events
occurred when the battery was less than 10 percent full. Most of the
time, batteries were at least 30 percent full when they were plugged
in for charging. In fact, over a quarter of all charging events started
when the battery was nearly full.

Figure 14 shows a breakdown of SOC at the beginning of charg-
ing by gender. It appears that men kept their batteries fully charged,
even if nearly full, more often than women. Similarly, Figure 15
suggests that staff and faculty topped up their batteries more often
than students.

1We calculated SOC at the beginning of charging using battery
voltage, as described in Chapter 8 of [2].



Figure 13: Distribution of state-of-charge at the beginning of
charging

Figure 14: Distribution of state-of-charge at the beginning of
charging divided by gender

Figure 15: Distribution of state-of-charge at the beginning of
charging divided by occupation

5.3 Anticipated vs. Actual Riding
In the pre-trial survey, each participant was asked to estimate the

number of kilometres per week that they would ride their e-bike in
the summer and how often they would ride in the winter. We now
study the correlation of the responses with actual trip data. Since
we were unable to reliably compute the total number of kilometres
ridden due to spotty GPS data, we use trip duration, in minutes, and
the number of trips as indications of actual riding frequency.

Summer riding. Figure 16 shows a scatter plot with the antic-
ipated number of km/week on the x-axis and the average number
of minutes ridden per week on the y-axis. Each data point repre-
sents one participant. There is no obvious trend and the Pearson
correlation coefficient is only 0.18. The only participant who an-
ticipated 30km/week had the most actual minutes ridden (top right
corner of the plot). However, the next two participants who es-

timated 25km/week rode significantly less, in fact less than many
participants who estimated they would ride fewer than 25 km/week.

Figure 16: Correlation between expected distance per week
(survey) and average summer minutes ridden per week

Similarly, Figure 17 shows a scatter plot with the anticipated
number of km/h per week on the x-axis, as before, but with the
average number of trips per week on the y-axis. Again, there is no
obvious correlation and the Pearson coefficient is only -0.03.

Figure 17: Correlation between expected distance per week
(survey) and average number of summer trips per week

Winter riding. We observe a similar lack of correlation for win-
ter riding. Figure 18 and Figure 19 plot the anticipated number
of km/week on the x-axes, versus the average minutes ridden per
month and number of trips per month, respectively, on the y-axes.
However, two of the participants who said they would ride their e-
bike frequently in the winter (1-3 times per week) do have the most
trips and minutes ridden.

6. DISCUSSION AND CONCLUSIONS
The main findings from the WeBike data so far are as follows.

• E-bikes are mainly used for commuting during the cycling
season, and for trips under 20 minutes long, though at least
three participants continue to ride regularly in winter.

• On average, men’s trips tend to be slightly longer than
women’s.



Figure 18: Correlation between usage (survey) and average
minutes ridden per month

Figure 19: Correlation between usage (survey) and average
trips ridden per month

• E-bikes are rarely used at night, but students are more likely
to ride in the evening than faculty and staff.

• There is little correlation between the anticipated usage fre-
quency before the field trial began and actual usage.

• E-bikes tend to be charged right after trips. When charg-
ing begins, the battery usually still has at least 30 percent of
charge remaining.

Some of our results are similar to those in previous field trials
and owner surveys, namely that e-bikes are often used for com-
muting and that men tend to ride more than women. Our average
trip durations are similar to those reported in European and Amer-
ican e-bike field trials, but the trip durations reported by riders in
Shangai and Kumming, China, were significantly longer, at 20-25
minutes [3].

Additionally, we have obtained new insight into the usage pat-
terns of e-bikes. For example, the lack of correlation between an-
ticipated and actual usage suggests that potential buyers may be
unfamiliar with e-bikes and their capabilities. Furthermore, e-bike
manufacturers may consider built-in fenders and lights for winter
and evening riding.

As for our charging analysis, one may argue that charging the
battery when it is not close to being empty indicates range anxiety:
the fear of running out of power before reaching the destination.
However, WeBike participants were instructed to keep their batter-
ies fully charged to extend battery life. The charging events when

the battery was nearly full likely happened when the bike was not
in use and only the smart phone was consuming the bike’s battery.

The WeBike field trail will continue till 2017. As we collect
more data, we have the following directions in mind for future
work:

• Reconstructing trip routes and speeds from sparse GPS data.

• Investigating factors affecting battery degradation. Does
winter cycling prematurely wear out the battery?

• Classifying riders into categories based on trip lengths/dura-
tions, average speed and battery consumption.

• Have usage habits changed over the course of the WeBike
field trial? Which participants are riding more/less?
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