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Abstract—In this paper we characterize the workload of a
Netflix streaming video web server. Netflix is a widely popular
subscription service with over 81 million global subscribers [24].
The service streams professionally produced TV shows and
movies over the Internet to an extremely diverse and represen-
tative set of playback devices over broadband, DSL, WiFi and
cellular connections. Characterizing this type of workload is an
important step to understanding and optimizing the performance
of the servers used to support the growing number of streaming
video services.

We focus on the HTTP requests observed at the server from
Netflix client devices by analyzing anonymized log files obtained
from a server containing a portion of the Netflix catalog. We
introduce the notion of chains of sequential requests to represent
the spatial locality of the workload and find that despite servicing
clients that adapt to changes in network and server conditions,
and despite the fact that the majority of chains are short (60%
are no longer than 1 MB), the vast majority of the bytes requested
are sequential. We also observe that during a viewing session,
client devices behave in recognizable patterns. We characterize
sessions usingtransient, stable and inactive phases. We find that
playback sessions are surprisingly stable; across all sessions 5%
of the total session time is spent in transient phases, 79% in stable
phases and 16% in inactive phases, and the average duration of
a stable phase is 8.5 minutes. Finally we analyze the chains to
evaluate different prefetch algorithms and show that by exploiting
knowledge about workload characteristics, the workload can be
serviced with 13% lower hard drive utilization or 30% less system
memory compared to a prefetch algorithm that makes no use of
workload characteristics.

I. I NTRODUCTION

The hypertext transfer protocol (HTTP) and web servers,
while originally designed to deliver predominantly statictext
and images, have been re-purposed for many new services,
including streaming video. There are a wide variety of com-
panies now streaming video over the Internet using HTTP and
standard web servers. Some of these include: Adobe, Amazon,
Apple, HBO, Hulu, Microsoft, Netflix, YouTube, most major
sports leagues, and television networks in many countries.As a
result of the popularity of these services, streaming videonow
constitutes more than 50% of Internet traffic [26]. One reason
for this is the growing number of consumers who no longer
use traditional television services. In 2015, 4% of American
households use a streaming service as their sole source of TV
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content [14]. As streaming Internet video services continue to
supplant traditional broadcast television services, and demand
on the large number of web servers supplying streaming
video grows, understanding the characteristics of production
workloads is critical to designing, implementing, improving
and provisioning servers in an effective and efficient manner.

Existing workload characterizations have mainly focused
on user-generated video services [4], [8], and have typically
been constructed from traces observed at the edge of the
network [10], [11], rather than directly from server tracesas
we have done. Also, there has been widespread adoption of
DASH algorithms (Dynamic Adaptive Streaming over HTTP)
in clients, to provide high quality video by adjusting the bit
rate in reaction to changes in network and server conditions.
Studies that have examined DASH have analyzed client imple-
mentations [13], [18], [19] and use of network bandwidth [12],
[20], rather than the impact of DASH on the servers. We
study the workload of Netflix servers because Netflix client de-
vices use DASH and because the long format, professionally-
produced content available on Netflix servers has different
workload characteristics than user-generated video services.

For this paper, we obtained log files (HTTP request traces)
from a production Netflix web server. Netflix uses different
configurations of servers to store content based on popularity.
We obtained log files from a hard-drive-basedCatalogserver
that is used to service the long tail of less popular videos
rather than an SSD-basedFlash Cacheserver used for the
most popular content. The log file provides us with a unique
perspective that to our knowledge has not been examined.
Namely, to characterize the workload of a production HTTP
streaming video server accessed by a wide variety of DASH
devices. We focus in particular on understanding the spatial
locality in the server workload. Our contributions includethe
following:

• We find that client playback devices use a surprising va-
riety of methods to download content. The client devices
use two different methods for issuing HTTP requests; 2/3
use range requests and 1/3 use open-ended requests that
specify the start of the range but not the end, indicating
the request is for the rest of the file. Also, about 60% of
files are downloaded using parallel TCP connections.



• We introduce an abstraction calledchainsto characterize
the spatial locality of requests regardless of whether they
are open-ended or range requests, or made using single
or parallel TCP connections. Our algorithm for finding
chains extends the typical tests for sequentiality [15]
by accounting for out-of-order requests caused by the
use of parallel TCP connections from individual clients.
We analyze chain lengths and find that although there
are a large number of short chains (60% are less than
1 MB), the bulk of content is downloaded in long chains
(chains greater than 10 MB account for 92% of bytes
downloaded). We show that the chain length distribution
has a power law form for lengths between 1 MB and
200 MB.

• We capture the complex, time-varying behaviour of
clients by dividing client sessions into phases. These
include transient, stable, and inactive phases. Across
all sessions, transient phases, which encompass DASH
activity, account for 5% of the total time. Stable phases,
when a single file is accessed sequentially, account for
79% of total time. Stable phases last for 8.5 minutes, on
average. Inactive phases account for 16% of total time.

• We evaluate different prefetch algorithms for servicing
the workload. We find that by using workload-specific
characteristics, such as the probability that chains will
be long or short, we can adjust prefetch sizes to either
reduce hard drive utilization by 13% or system memory
use by 30%, compared to a prefetch algorithm that does
not use workload information.

II. BACKGROUND

Netflix is a widely popular Internet service for streaming
TV shows and movies (collectively calledtitles). In the past,
Netflix made extensive use of CDNs such as Akamai, Lime-
light and Level 3 [1] but the rapid growth of its popularity has
led it to create and manage its own CDN, starting in 2012 [23].

Thenetflix.com site is served from the Amazon AWS
cloud in geographically relevant regions. However, audio and
video content is serviced using high-capacity web servers or
clusters of such servers, placed in Internet exchange sites
around the world. In addition, ISPs may also utilize one
or more Netflix-supplied servers inside their data centre, to
reduce inter-ISP traffic [21]. Together these servers can be
thought of as comprising the Netflix CDN.

The Netflix CDN does not operate like a traditional pull-
based CDN. Nightly, during off-peak hours (called afill
period), the Netflix control plane predicts which titles are
likely to be requested during the next 24 hour period and
directs each individual content server to remove and add
titles according to those predictions. Then, to playback a title
selected by a user, a client device acquires a manifest from
the control server that specifies which content servers should
be accessed by the client and provides URLs for the files
containing the different bit rates for the selected title. Clients
strive to use the highest quality video and audio supported
by the network and available content servers. They select a

primary server for playback and for the most part continue to
use that server unless it experiences low throughput, errors,
timeouts or rebuffering events while playing at an already low
bit rate.

A. Netflix Servers

Netflix servers are Open Connect Appliances (OCAs) [22]
which run FreeBSD 10.0 andnginx. There are different
hardware configurations that are continually evolving. We
focus on a log file from aCatalog (or Storage) server which
contains 36 hard drives of 3 TB and 6 SSDs of 512 GB. A
single storage server has too little capacity to store the entire
Netflix catalog (about 2 Petabytes of data) so it is part of a
cluster of 20 servers.

The server logs obtained from Netflix contain information
about every HTTP request that is received by the servers. Each
log entry contains the URL of the file being read (which is
anonymized), the offset and size of the request, a timestampfor
the completion time of the request (with 1 second accuracy),
the time required at the server to service the request, and
the number of bytes sendfile reports was sent. This is
actually the number of bytes added to the socket buffer. It is
not possible to determine, in the application, if and when the
bytes are actually sent. In particular, the client can terminate
the connection at any time. Each log entry also specifies which
playback device type was used and includes an anonymized
viewing session identifier. Normally session identifiers are
not included in web server logs and appropriately discerning
sessions in such logs can be difficult because HTTP requests
do not require an application-layer session. Subscribers are not
identified in the log files, so we cannot tell whether any two
sessions involve the same subscriber.

The request data provided in the server logs are in terms of
bytes, which is difficult to interpret when files are available in
many different bit rates and because variable bit rate (VBR)
encodings are used. In order to convert byte values into
quantities that are meaningful in the context of titles and which
can be used to compare requests with different bit rates, we
obtained information about all the files present on the server.
For each file, we have the nominal bit rate of the file, the
size of the file in bytes, and the identity of the hard drive or
SSD on which the file is stored. When necessary, we convert
a file offset in bytes into anominal title timeby dividing the
byte offset by the nominal bit rate. This is an approximation
because the average bit rate of VBR-encoded content fluctuates
over time and is not necessarily equal to the nominal bit rateat
a given file offset. As a result, there may be variation in title-
relative calculations, which is reduced by computing averages
over many requests.

B. Data Collected

Table I provides statistics about the contents of the catalog
server log files. The log was collected over 24 hours, in March
of 2014.

Requests are logged after servicing the request. As a result,
the end of each log file will be missing requests that were



Total Data Sent 30.8 TB
Average Throughput 2.9 Gbps
Peak Throughput 5.5 Gbps
Number of Sessions 126,064
Number of Unique Titles 9,793
Number of Unique Files Requested 102,386
Number of TCP Connections 2,586,301
Number of HTTP Requests 64,993,469

TABLE I
SUMMARY OF SERVER LOG FILE CONTENTS.

issued but not completed before the end of the log period.
To simplify the handling of these cases, we ignore sessions
started in the last hour of the log period. Peak throughput isa
bit less than double the average throughput and the server is
capable of servicing substantially more traffic if required.

III. C HARACTERISTICS OFCLIENT REQUESTS

In this section we describe and characterize the requests
that are issued by Netflix client devices during a viewing
session. We first describe the basic operation of Netflix clients.
We then provide two examples that illustrate some patterns
of requests and demonstrate the variety of different client
implementations. Finally, we quantify the different typesof
requests issued by the clients.

A. Netflix Request Types

Netflix supports many different types of client devices,
including consumer electronic devices like Blu-ray players
and televisions, desktop computers, laptops, Android and iOS
mobile devices, and game consoles. Audio and video content
is encoded separately, at many different variable bit rates.
Some clients require the content to be stored in separate
audio and video files to allow the selection of video bit rate
independently from the audio bit rate, and to allow audio
playback in different languages. Other clients require audio
and video content to be combined in the same file. The server
log files include references to 5 differentaudio bit rates, 14
different videobit rates and 8 differentcombinedbit rates.

Title content is divided into 2 second intervals called
segments. An entire segment is required for decoding and
playback, thus clients change bit rates at segment boundaries.
Because segments vary in size, there is a table at the start
of each file that specifies the offsets of all segments. When
a session starts, the client downloads segment offsets and
content from multiple files with different bit rates, then selects
a starting bit rate that can be supported by available network
bandwidth. Clients continue to download segments sequen-
tially from the same file unless network or server conditions
change (which may result in switching to a different bit rate)
or a user event occurs (e.g., stopping or skipping to a new
title position). Clients that are in a steady state limit the
number of segments they download ahead of the playback
point to avoid waste when a user event occurs. This is called
pacing[30] and is a defining feature of HTTP streaming video
clients [3]. There is no simple relationship between segments
and requests; some clients download multiple segments with

a single request, while others use multiple concurrent HTTP
requests to obtain segments in multiple parts.

Netflix clients issue HTTP GET requests using two different
formats. Some clients fully specify the block of data they are
requesting by providing the offsets of the first and last bytes,
calledchunkrequests (orrange requests). Alternately, clients
can specify only the offset of the first byte, and the server
will send data until the client terminates the TCP connection
(or the file ends), calledopen-endedrequests. Clients do
not necessarily use only one of these request formats; often
different request formats are used for audio and video content.

B. Example Sessions

To illustrate client behaviour during a session, we now
present and describe two individual examples of sessions.

Figure 1 shows a session that lasts for about 32 minutes,
consisting of requests for about 22 minutes of title content. The
top half of Figure 1 uses rectangles to represent each request.
The x-coordinate of the bottom left corner of each rectangle
indicates the elapsed time at which the request is issued and
the y-coordinate shows the position within the title of the first
byte of the request. The x-coordinate of the top right corner
indicates the time at which the request is completed and the
y-coordinate identifies the position within the title of thelast
byte of the request. A tall and narrow rectangle indicates that
a large request was serviced quickly and a short and wide
rectangle denotes a small request that was serviced slowly.
The y-axis values (position in the title by minutes) are an
approximation, since the content is encoded using variablebit
rates. We convert file offsets to title positions by dividingthe
byte offset of a request by the file size, then multiplying the
resulting fraction by the title duration.
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Fig. 1. Requests issued during a session

The bottom half of Figure 1 shows the different bit rate
files that are accessed during the session, with the bit rates
labelled on the right. Each interval (between two vertical lines)
depicted in the bottom half of the figure corresponds to a
rectangle in the top half.

There are a total of 51 open-ended request in this session.
Audio and video content is obtained from separate files and



only a single audio bit rate is accessed. There is a period
from about the 19 to 29 minute marks where there are no
requests, likely indicating that the user paused playback.There
are periods when a large number of files with different video
bit rates are accessed over a short period, such as at times
0, 2, 4 and 11 minutes. In these cases 6, 6, 5 and 5 video
bit rates are accessed, respectively. These unstable periods
reflect the actions of the DASH algorithm, either downloading
segment offset tables or performing rate adaptation. Thereare
also stable periods when only a single bit rate is accessed, for
an extended period from 13 to 20 minutes, as well as many
shorter periods.

Figure 2 shows the first 1.5 minutes of a different example
session. This zoomed-in view illustrates the use of chunk
requests, and the spacing of the requests (the slope formed
by the series of rectangles) reveals important details about
request timing. The initial unstable period lasts for about0.1
minutes, then the client accesses a single video bit rate forthe
remaining time. From 0.1 to 0.5 minutes, the client downloads
about 2 minutes of title content in 0.4 minutes of elapsed time,
so content is downloaded about 5 times faster than the bit rate
of the content, indicating a period of time when the client
is filling its playback buffer. After 0.5 minutes, 1 minute of
content is downloaded in 1 minute of elapsed time, which
indicates thatpacing is occurring. These patterns of requests
and inter-arrival timings are important characteristics of client
implementations.
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Fig. 2. Details of session startup

Figure 2 also reveals details about how chunk requests are
issued. After 0.75 minutes of session time, requests are issued
in clusters that are separated by time gaps, illustrating the
method used forpacing chunk requests. Pacing occurs natu-
rally due to TCP flow control for open-ended requests [19].
Requests in the clusters overlap in elapsed session time (e.g., at
the 1 minute mark in the top portion) due to the use of parallel
TCP connections. These concurrent requests are occasionally
processed out of order, with examples of this just after 0.75
minutes of elapsed time and just before the 1 minute mark.
In these cases, there are requests that are higher in the graph

(indicating a later title time) while starting further to the left
(indicating an earlier elapsed time).

From these examples, it is clear that DASH clients have
complicated patterns of requests, and that different client
implementations may use substantially different methods for
downloading content.

C. Request Statistics

The variation in the format and sizes of requests issued
by Netflix clients reflects the wide variety of client devices.
Table II categorizes requests based on the type of content, for
both open-ended and chunk requests. Audio accounts for about
5% of the total bytes requested. Only 1.3% of all requests
are open-ended, but they account for 1/3 of the total bytes
requested. Clients are more likely to use open-ended requests
for audio and combined content, but more likely to use chunk
requests for video content. Clients often use different requests
types for audio and non-audio content, and for about 10%
of sessions, clients alternate between open-ended and chunk
requests.

Type Requests % GB %
Open Audio 208,045 0.3 1,095.7 3.5
Open Video 445,728 0.7 5,828.1 18.5
Open Combined 166,720 0.3 4,033.0 12.8
Open Total 820,493 1.3 10,956.8 34.8
Chunk Audio 2,654,422 4.1 299.2 0.9
Chunk Video 53,758,669 82.3 18,411.5 58.4
Chunk Combined 8,102,517 12.4 1,832.2 5.8
Chunk Total 64,515,608 98.7 20,542.9 65.2
Total 65,336,101 31,499.6

TABLE II
PREVALENCE OF REQUEST TYPES

There is significant variation in request sizes, even after
considering the different available bit rates. The number of
bytes downloaded with open-ended requests is extremely
variable, and depends more on session events than client
implementations, so we examine only the chunk requests in
Figure 3. The figure shows the average lengths of chunk
requests, both in bytes (left axis), and in nominal title time
(right axis). For most audio and combined content, the average
amount requested is more than 2 seconds in terms of title time;
this is caused by clients requesting more than one 2 second
segment at a time. For video content requests (bit rates 235-
10,000), the average title time is between 0.4 and 1.9 seconds
because some clients divide a segment into multiple parts and
download the parts in parallel, while others download multiple
segments in a single request, and some do both.

Because parallel downloading has a large effect on the
request size, we measure how frequently clients issue parallel
requests for the same file. Table III shows, for each file in
each session, the percentage of files that are downloaded using
parallel connections at some point in a session. We compute
these numbers by finding the maximum number of concurrent
requests to the same file during the same second, which is
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Fig. 3. Average sizes of chunk requests

the granularity of the timestamps. More than half of files are
downloaded in parallel during a session.

Number of Connections 1 2 3 4 5 ≥ 6
Percent of Files 41.9 18.0 33.0 6.0 0.8 0.3

TABLE III
PER-FILE USE OF PARALLEL DOWNLOADS

Next, we introduce an abstraction that provides a unified
view of requests that is independent of how different clients
issue requests.

IV. CHAINS

In this section we analyze the spatial locality of the server
workload. Although requests from individual clients are com-
monly viewed as being highly-sequential, trick play opera-
tions, and especially rate adaptation (which causes requests to
be issued for different files) can disrupt sequentiality. Deter-
mining the degree of spatial locality is important since it can
be used to understand whether or not aggressive prefetching
is likely to be as effective on this workload, as it has been on
other workloads [30] [29]. Additionally, it may be possible
to use workload characteristics to tailor the web server to
better handle this particular workload. In Section VI, we use
simulation to evaluate a prefetching algorithm that makes use
of our workload characterization to make better decisions
when prefetching.

To study spatial locality, we introduce achain abstraction
that represents a contiguous sequence of requests to the same
file from the same client. Unlike prior characterizations ofse-
quential access, a chain can include requests that were received
out-of-order, on different parallel TCP connections used by
the same client. We analyze the spatial locality in the server
workload by examining characteristics of the chain lengths,
such as the overall chain length distribution. Our simulations
in Section VI also employ the chain abstraction, as a higher-
level workload representation than individual requests.

Our algorithm for finding chains of requests is simple in
principle: find sequences of adjacent requests for content from
the same file during the same session. The algorithm uses two
passes. First, we iterate through each request in a session to
determine if the end offset of the request is directly adjacent

to the start offset of another request for the same file. To
handle potentially out-of-order requests, we recognize adjacent
requests regardless of the relative order in which they were
received, as long as the adjacent requests are received within
40 seconds of each other. We chose this limit after analyzing
the distribution of time gaps and finding that the longest
commonly occurring gap due topacing is 32 seconds, so a
limit of 40 seconds encompassespacinggaps while preserving
gaps caused by client inactivity. For the second pass, the
algorithm combines adjacent requests into the longest chains
possible.

We applied the chain-formation algorithm to the Netflix
workload and found about 2.3 million chains in the 65 million
requests. Table IV provides statistics about the chains. The
“%” column specifies the percentage of the total number
of chains of each type andNTT/chainspecifies the average
lengths of chains in seconds of nominal title time. The table
shows that chains rarely consist of more than one open-
ended request, in contrast to chains of chunk requests with 41
requests on average. The average sizes of video and combined
chains are similar for both chunk and open-ended requests,
indicating that the spatial locality of non-audio chains is
similar regardless of the way HTTP requests are made.

Chain Type % Reqs MB NTT
/chain /chain /chain

Open Audio 7.2 1.3 6.8 534.1
Open Video 17.3 1.1 15.1 63.7
Open Combined 7.0 1.0 25.5 148.5
Open Total 31.5 1.2 15.5 189.8
Chunk Audio 10.7 10.8 1.3 134.7
Chunk Video 54.6 43.0 15.1 51.6
Chunk Combined 3.2 109.5 25.5 147.6
Chunk Total 68.5 41.1 13.4 69.1
Grand Total 100.0 21.5 14.1 107.1

TABLE IV
CHAIN STATISTICS

A. Lengths of Chains

We now characterize the lengths of the chains found.
Figure 4 provides two different cumulative distributions of the
length of chains, ordered by bytes, from shortest to longest.
The curve labelledChains shows the percentage of chains
that are shorter than a given length, and theBytes Requested
curve shows the cumulative percentage of total bytes that
are downloaded in chains. More than 60% of the chains
are 106 bytes (1 MB) or shorter and only about 15% of
chains are longer than107 bytes (10 MB), so the majority
of chains are relatively short. However, most of the contentis
downloaded in long chains. More than 90% of the total bytes
are downloaded in chains longer than 10 MB and fewer than
2% are downloaded in chains shorter than 1 MB. These results
suggest that despite servicing DASH clients that access many
different bit rate files, most bytes will be requested in long
chains with high spatial locality.
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Fig. 4. Percentage of chains ordered by chain size

B. Chains Starting at Offset Zero

Clients must download segment offset tables before request-
ing content from files so that playback can be started from
any position in the title. This supports the implementationof
DASH algorithms as well as user actions such as skipping
backward and forward in the title. About 24% of chains start
from an offset of zero, where the segment offsets are stored,
so these chains are a significant subset of the workload.

Figure 5 shows a CDF of the lengths of all chains that start
from a file offset of zero and therefore contain segment offset
information, compared to the chains with non-zero offsets.We
divide the zero-offset chains into two categories, depending on
whether the chain consists of open-ended or chunk requests.
For chains of open-ended requests, 84% are exactly 768 KB
in length (likely due to the size of socket buffers used on
the server), and only 0.4% are shorter. For chains of chunk
requests, the majority of chains are very short; more than 49%
are shorter than 16 KB and 98% are shorter than 128 KB.
Chains that start at an offset of zero are easy to recognize and
tend to be much shorter than chains with non-zero starting
offsets. We evaluate a prefetch algorithm that makes use of
these properties in section VI.
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C. Chain Survival Distances

We now analyze the chain length distribution to determine
whether it can be described by simple equations. Figure 6
is a complementary cumulative distribution function (CCDF)
that is generated from the measured chain lengths. This figure

contains the same information as Figure 4, but shows the
percentage of all chains that are longer than a given length
as opposed to the percentage of chains that are shorter than a
given length. For example, Figure 6 shows that about 10% of
chains are longer than 20 MB (2x107 bytes) and about 1% are
longer than 450 MB. We display the data using log scales on
both axes in order to find potential power-law relationshipsin
the data, which will appear as straight segments on the curve.
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We observe that the curve appears very straight for chain
lengths between 1 MB and 200 MB, so we divide the chain
lengths into three segments: shorter than 1 MB, between 1 MB
and 200 MB, and longer than 200 MB, and fit power-law
equations to each of those segments. We compute the survival
functionS(x) for a chain of lengthx in bytes from the set of
all chain lengthsX as follows:

S(x) = Prob(X > x) = Ax−c (1)

The three power-law equations are shown in Figure 6. For
each equation, the values for A and c were calculated using a
linear fit of the logarithms of the data values.

These equations can be used to compute a conditional
probability for how long chains will survive. We would like
to determine the probability that a chain that is longer thanx
will have total length at leastx + d. We call d the survival
distancefor a given chain length and probability.

We compute an expected survival distanced, given a
particular probabilityP that a chain of length at leastx will
have total length longer thanx+ d as follows:

P =
Prob(X > x+ d)

Prob(X > x)
=

A(x+ d)−c

Ax−c
(2)

which can be solved ford:

d = (P−1/c
− 1)x (3)

To use this equation, we can select a probability target, for
example,P = 0.45, and compute thatd = 3.35x for the range
1 MB to 200 MB. So for any chain that reaches a length
between 1 MB and 60 MB (= 200 MB/ 3.35), there is a 45%
chance the chain will grow to 3.35 times that length.



V. PHASES

While examining traces of individual sessions, such as those
in Figures 1 and 2, and others not included in this paper, we
found that clients seem to exhibit patterns of requests. For
example, the bottom part of both Figures 1 and 2, show that
each session starts by issuing requests for multiple files (each
containing a different bit rate encoding). This pattern of issuing
requests for multiple files for a short period of time occurs in
many other sessions we have examined, in addition to the
examples in Figure 1. We also noticed patterns where clients
either access content sequentially from a single bit rate (i.e.,
a single file), or they do not access any files (i.e. playback
is paused). Our goal in this section is to try to understand if
such patterns are common across sessions and to understand
the impact of these patterns on the sequentiality of requests.
Our characterization provides insight into client behaviour
including the use of rate adaptation and helps explain the
observed chain length distribution.

We first characterize phases by examining patterns of ac-
tivity for chunk requests. We analyze chunk requests because
their short duration provides fine-grained information about
average download rates, compared to open-ended requests. We
show how chain lengths can be used to recognize transient
phases, then we show how the average download rate of
chunk requests varies during the stable phase. Finally we
show that the average transfer characteristics of chains ofboth
open-ended and chunk requests are similar, so our findings
specifically about chunk requests are applicable to both types
of chains.

A. Request Patterns During Phases

In our model, we identify three differentphases, where
clients issue requests with characteristic patterns during each
phase. In the following list, we informally describe the patterns
of requests that identify each phase, as well as the actions of
the client during the phase.

a) Transient: The client issues requests for a number of
different bit rate files in a short period of time. For most clients
this occurs at the start of a session, when there is a change
in network or server bandwidth, or after the user changes
to a different playback position. This pattern of requests for
different files over a short period of time reflects the operation
of the rate adaptation algorithm, when the client downloads
segment offset tables and content from many different bit rate
files.

b) Stable: The client retrieves content sequentially from
the same file because the bit rate being used is stable. At some
points in time (e.g., at the beginning of a session) the client
retrieves content as quickly as possible. The client operates in
this mode when it must fill its playout buffer after a transient
phase. As a result, we call this mode of operationfilling mode
. Once the playout buffer contains enough data, requests are
paced to arrive at the server so the average download rate is
approximately equal to the bit rate of the file. We refer to
this mode of operation aspacing mode. Clients use different

mechanisms forpacing requests, depending on whether they
are issuing open-ended or chunk requests.

c) Inactive: The client temporarily stops issuing requests
for content from files of any bit rate. After this phase, the client
usually enters the transient phase.

B. Phases at the Start of Sessions

In this section, we analyze non-audio chunk requests issued
at the beginning of sessions, where we assume that clients start
in a transient phase, followed by a stable phase. We validate
this assumption in Section V-C, after we develop a method for
recognizing phases, by showing that 97% of sessions start in
a transient phase.

Figure 7 shows average request characteristics calculatedby
aggregating all non-audio chunk requests in the workload. The
values are generated in 1 second intervals, relative to the start
of each session. We compute the four measurements for each
second of each session, then calculate averages by totalingthe
measurements over each second and dividing by the number
of sessions that have not yet ended during that second. The left
axis shows the number of concurrent connections and files, and
the right axis shows the arrival interval and request duration.
The curves in Figure 7 are smoothed because there are few
long sessions. We average data values in bins equal to 1% of
the elapsed session time for all the graphs in this section.
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The Concurrent Filescurve in Figure 7, which shows the
number of unique files that were requested during each second
of elapsed time, can be used to characterize the first transient
phase, when a number of files with different bit rates are
accessed in a short amount of time. The number of concurrent
files peaks after 3 seconds, then declines steadily; which
indicates that the first transient phase is less than 20 seconds
for most sessions.

From 1 second to 10 seconds theConcurrent Connections
curve andConcurrent Filescurve are quite similar. This indi-
cates that, on average, a single connection is used to request
files during this time. Afterwards, clients use an average of
about two TCP connections to access each file.

The Request Durationcurve is fairly level, indicating that
the average request size remains constant regardless of phase.
The Arrival Interval curve is calculated by subtracting the
arrival time of the next request from the arrival time of the



current request (regardless of which parallel TCP connections
are used), and will be equal to 0 if the requests arrive during
the same second. The average time between arrivals gradually
increases during the period from 10 to 200 seconds because
an increasing proportion of clients transition from the transient
phase or filling mode (when requests are issued as quickly as
possible) to the pacing mode (when requests are issued at the
same rate as content is consumed). After about 200 seconds,
almost all clients are in pacing mode, so the average arrival
interval remains nearly constant.

We have now characterized the pattern of chunk requests
for the phases that occur at the start of sessions. In the
following sections, we provide algorithms for recognizing
phases whenever they occur during a session, which are also
applicable to sessions with open-ended requests.

C. Transient Phases

During the transient phase, many different bit rate files are
accessed in quick succession in order to download segment
offset tables and video content from many different bit rate
files, which results in a cluster of relatively short chains.
During the stable phase, all content is requested sequentially
from the same file which causes relatively long chains. The
clusters of short requests that occur during transient phases
have significantly different patterns depending on the client
implementation and the action that triggered the transient
phase. Figure 1 shows some examples of different patterns
of requests for transient phases. Because of this wide variety
of patterns, we use a robust and simple algorithm to recognize
phases.

We defineshort chains as those with a duration of less
than or equal to 40 seconds, andlong chains have a duration
longer than 40 seconds. We then find clusters of short chains
that have less than a 10 second gap between the end of one
short chain and the start of another. We define the discrete
clusters of short chains as representing transient phases.The
long chains identify stable phases. We determined the 40
second and 10 second threshold values experimentally. We
searched for values that would result in roughly an equal
number of short clusters and long chains, because we expect
that a transient phase will typically be followed by a stable
phase. Figure 8 shows, for each second of elapsed time, the
percentage of active sessions that are starting a cluster ofshort
chains and the percentage of sessions that are starting a long
chain. Over 97% of sessions start with a transient phase, and
approximately equal numbers of transient phases and long
chains start after 100 seconds of elapsed time. Using our
chosen threshold values, the occurrence of transient phases
and the other phases meets our expectations.

D. Stable Phases

Chains not belonging to a transient phase make up stable
phases. That is, each chain longer than 40 seconds comprises
a stable phase. The average duration of a stable phase is
8.5 minutes. This provides an estimate of the average interval
between events, which include skips, pauses, or ending the
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session by the user, as well as the operation of the rate
adaptation algorithm by client devices.

We use two different methods to characterize changes in
the download rate during a stable phase, which will enable
us to identify the transition from filling mode to pacing mode.
The first method is only valid for chains of chunk requests. We
compute the average download rates to directly show the point
where the chain transitions from high download rates to lower
download rates. The second method characterizes download
rates indirectly, but can be used for chains of both open-ended
and chunk requests.

1) Download Rates:Figure 9 shows the average number
of bytes downloaded in requests, categorized by the length of
chain that contains the request, during each second of elapsed
session time. The average download rate is the total number of
bytes requested during each second divided by the number of
sessions that are active during that second. TheLong Chains
curve has an early peak signifying the filling mode, followed
by a decrease to a largely constant rate after 200 seconds.
From this curve, it appears that almost all sessions are in
pacing mode after 200 seconds, in accord with Figure 7. The
apparent decrease in the download rate for long chains after
1,000 seconds is caused by an increasing number of sessions
that are in inactive phases (as shown in Figure 11).
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Figure 9 also shows a large variation in total download rates
by elapsed session time. The average download rate of all
requests is about 3 times higher at the start of the session
(between 6 and 11 seconds) than it is after 200 seconds. This



indicates that typical clients use much less bandwidth in the
stable phase than is available during the first transient phase.

2) Transfer Ratios: For open-ended chains, we cannot
directly observe changes to the transfer rate because they
occur at the TCP level, via TCP flow control [19], which
is not recorded in the server traces. However, we can use
an indirect method to show that the transfer characteristics
of chains of open-ended and chunk requests are similar, and
therefore conclude that the characteristics of the filling mode
are the same for both types of requests. We use the property
that the filling mode is limited in duration, so the longer the
chain, the higher the proportion of time spent in the pacing
mode. Since the ratio of content downloaded in a chain to the
duration of the chain (thetransfer ratio) is equal to 1 while
in pacing mode and greater than 1 while in filling mode, we
expect that the longer a chain, the closer the transfer ratiowill
be to 1.

Figure 10 shows the average transfer ratios for chains with
the same elapsed time, calculated separately for chains of
open-ended and chunk requests. The transfer ratio is much
larger than 1.0 for short chains, particularly chains of open-
ended requests, where the maximum ratio of 14.5 is for
chains with 2 second duration. The transfer ratio declines quite
gradually, indicating that the filling mode is very long for some
sessions. The calculated ratios for chains of open-ended and
chunk requests are nearly identical for durations longer than
12 seconds. This is strong evidence that, although we cannot
directly measure them, the patterns of changes of transfer rates
for open-ended requests are similar to the patterns shown in
Figure 9 for long chains of chunk requests.
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E. Inactive Phases

To detect inactive phases, we simply find periods of time
when no requests are issued. Figure 8 shows the percentage
of sessions (that have not yet ended) that are in an inactive
phase during each second of elapsed time. A session is in
an inactive phase if it issues no requests for any file for a
period of at least 40 seconds. We chose the threshold value of
40 seconds to match the 40 second threshold for inter-arrival
gaps for chains (as described in Section IV). Inactive phases
are common; at least 10% of sessions are in an inactive phase
after the first few seconds, and the percentage increases rapidly

after 5,000 seconds. This indicates that most long sessionsare
caused by inactive phases.
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F. Impact on Sequentiality

Now that we have defined and examined the different
phases, we consider the proportion of time spent in each phase
for this workload. Across all sessions, transient phases account
for 5.2% of the time, stable phases 79.1%, and inactive phases
16.4%. These numbers add up to 100.7% because there is
a small amount of overlap between the transient and stable
phases for some clients. With respect to bytes transferred,
7.6% of the total number of bytes are downloaded in transient
phase chains, and 92.4% in stable phase chains. The proportion
of bytes downloaded in the transient phase is higher than the
proportion of time because clients do not use pacing during
the transient phase.

Understanding these phases helps to explain the distribution
of chain lengths in Figure 4. There are many short chains
that occur during transient phases, but not much content is
read from each file, resulting in a large number of short
chains. Clients spend a large proportion of time in stable
phases, and the stable phases last a long time (8.5 minutes on
average), so there are relatively few long chains that account
for a large proportion of the total bytes requested. Given
the large proportion of time spent in stable phases and their
relatively long length we now examine potential algorithms
for prefetching.

VI. A PPLICATION TO PREFETCHING

In this section, we demonstrate the utility of our workload
characterization by using it to develop a workload-specific
prefetch algorithm. We also apply our workload characteri-
zation in developing a simple simulation model of the system
that is used to carry out a first-cut performance evaluation of
the algorithm, in comparison to a baseline prefetch algorithm.
In the future, the insights we gain can be used as a starting
point for modified server implementations, which can then be
evaluated experimentally.

A. Prefetch Algorithms

We describe two algorithms for choosing a prefetch size:
a baseline algorithm that requires no workload information,



and an alternate algorithm that makes use of our workload
characterization.

a) Fixed: The baseline algorithm has been previously
used to service an HTTP streaming video workload [29] and
uses a single fixed prefetch size. It requires no workload
information.

b) First-Grow: This algorithm makes use of workload
chain characteristics in two ways. The algorithm uses one
of three specifically-determined prefetch sizes for thefirst
prefetch in a chain, depending on the type of chain and
its starting offset in the file. Second, itgrows the size of
subsequent prefetches by a multiplier, based on the power-law
relationship we derived from the chain lengths in Section IV-A,
until the prefetch size reaches a maximum.

The First-Grow algorithm uses a relatively small prefetch
size at the start of chains because the majority of chains are
short. Using a relatively small first prefetch size will reduce
the amount of content that is prefetched but not subsequently
requested by clients for short chains. Additionally, chains that
start from an offset of zero (where the segment offset table is
stored) are very short, as shown in Figure 5. We divide chains
into three categories with substantially different chain length
distributions: chains of open-ended requests that start atzero,
chains of chunk requests that start at zero, and the remaining
chains. We perform a separate cost-benefit analysis for each
category and determine the best first prefetch sizes. For this
analysis, the benefit is the amount of data that is requested
by clients at the start of each chain, up to the prefetch size.
The cost has two components: prefetching data that will not
be requested because the chain is shorter than the prefetch
size, and performing seeks for the chains that are longer than
the prefetch size. The prefetch sizes that provide the lowest
cost-benefit ratios are listed in Table V and they vary widely,
reflecting the different chain length distributions.

Offset of Chain Start Request Type Prefetch Size (KB)
Starts at zero Open-Ended 1,025
Starts at zero Chunk 128
Starts later than zero Either Type 2,867

TABLE V
SIZE FOR FIRST PREFETCH IN A CHAIN

The First-Grow algorithm also gradually increases the
prefetch size to take advantage of the characteristics of longer
chains derived in Section IV-C. The multiplier used to increase
the prefetch size is calculated to provide a 45% survival rate,
based on Equation 3. We tried a range of different survival
rates between 5% and 95% (with a starting prefetch size of
1 MB and a maximum size of 32 MB) and determined that
45% provided the lowest disk utilization for the workload.
Therefore, we used the 45% value with the different maximum
size limits.

B. Evaluation Methodology

For our analysis, we track the usage of two important
resources: the hard drives that store content, and the system
memory that holds prefetched content. We determine resource

usage by applying a prefetch algorithm to each chain indepen-
dently. Given the length of a chain in bytes, as well as the start
and end times of the chain duration, we simulate the timing
and size of the prefetch operations that would be required
to service each chain. We maintain a global record, divided
into 60 second intervals over the elapsed time of the logs, that
aggregates resource usage from individual chains to determine
total utilization over time. After processing all chains, we find
the maximum system memory consumption and the maximum
utilization of a hard drive that occurs during an interval.

To determine the consumption of system memory, we
calculate the amount of prefetched data and the time that
it is resident in memory. Notionally, when a chain starts, a
memory buffer equal to the first prefetch size is allocated,
which is reused and potentially resized for any subsequent
prefetches. The prefetch buffer is freed 40 seconds after the
chain ends. This 40 second interval matches our criteria for
forming chains, so this delay in deallocating a prefetch buffer
represents the actions of a memory management algorithm that
keeps prefetched data in memory until a chain is known to end.
We make the simplifying assumptions that prefetched data will
not be evicted prematurely, and also that there is sufficient
system memory for prefetch buffers, to avoid simulating a
memory management algorithm.

To track hard drive utilization, we consider two separate
operations: transferring data from disk and repositioningthe
disk head between prefetch operations. We calculate hard
drive utilization as a fraction of maximum capacity. Given the
maximum transfer ratetmax and the maximum seek ratesmax,
we compute transfer utilization ast/tmax and seek utilization
as s/smax. We add these utilization fractions together (since
a hard drive cannot seek and transfer data at the same time) to
determine total disk utilization. If the calculated utilization of
a hard drive is more than 100%, then the prefetch algorithm
is infeasible because it would overload a hard drive.

To obtain values forsmax and tmax, we use benchmark
results for a Hitachi Deskstar 5K3000, which has been used
by Netflix in the past [22]. We found measured transfer rates
for two benchmarks: 125.5 MB/s for 2 MB sequential transfer
reads and 48.4 MB/s for 2 MB random transfer reads [27], so
tmax = 125.5 MB/s and we calculatesmax = 39.4 seeks/s.

C. Results

Figure 12 shows our results using two different curves:
the percentage utilization of the highest-loaded hard drive
(labelled Util and using the left axis), and the maximum
consumption of system memory (labelledMemand using the
right axis). Each data point is the result of analyzing one ofthe
prefetch algorithms using a prefetch size parameter shown on
the x-axis. The parameters have different meanings for each
algorithm. For theFixed algorithm, the parameter is the single
size used for prefetching. For theFirst-Grow algorithm, it is
the maximum prefetch size.

For the Fixed algorithm, the best prefetch size is 7 MB
with a maximum hard drive utilization of 57% and maximum
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memory consumption of 47 GB. By comparison, theFirst-
Grow algorithm reduces hard drive utilization and consumes
less system memory because the prefetch sizes that are used
are smaller, on average. UsingFirst-Grow, a maximum 50%
hard drive utilization can be achieved with a prefetch param-
eter of 14 MB (or larger), which is a 13% reduction from
Fixed, but requires 60 GB of system memory. Using the same
47 GB of system memory asFixed, First-Grow reduces hard
drive utilization by 8%. Alternately,First-Grow can equal the
57% hard drive utilization ofFixedwhile consuming 30% less
system memory.

VII. R ELATED WORK

There are studies of services that stream TV shows and
Movies other than Netflix: PowerInfo [32], Tencent Video [6],
and TV4 [2]. These studies are not directly comparable to
ours because we characterize the workload at a single server,
while existing studies aggregate the demand for many different
servers. One of these studies aggregates information collected
from all clients of a service [6], and the other two aggregate
information collected from multiple servers [2], [32].

There are many studies that characterize the requests issued
from HTTP streaming video clients, and these are generally
helpful for understanding phases. Martin et al. [20] and Raoet
al. [25] study Netflix clients, but they measure only bandwidth
consumption and not detailed characteristics of requests.Liu
et al. [18] perform a detailed investigation of TCP connection
use and determine that content is often downloaded repeatedly,
and they provide a client-side solution to reduce redundant
requests for data. Adhikari et al. [1] provide some details of
Netflix bandwidth use, but they investigate CDNs, rather than
individual servers.

There are other workload studies that have characterized
spatial locality in some manner. Many studies characterize
session duration [7], [10], [32]. Some researchers extend
this and quantify the effect of skips and pauses on spatial
locality [5], [9]. We have not found a study that considers
the effect of rate adaptation on the spatial locality of HTTP
streaming video workloads.

Other researchers have used abstractions that are similar
to chains [16], [17], [31], and are used in algorithms that
recognize sequential accesses from multiple concurrent clients.
Li, et al. [15] survey different definitions of sequentiality that
have been used, and discuss three features of algorithms for
detecting sequentiality in workloads: 1) whether strided access
is recognized or if requests must be strictly consecutive, 2)
how many interleaved sequences of requests can be recog-
nized, and 3) whether there is a limit on the inter-arrival time
of requests. Our algorithm extends this work by recognizing
sequential access when multiple concurrent TCP connections
are used by the same client, resulting in out-of-order requests.

The most closely related work on prefetching is our inves-
tigation of aggressive prefetching using the fixed algorithm
defined in Section VI-A, for a streaming video benchmark
without rate adaptation [30]. We have also performed experi-
ments to determine that the best prefetch size depends on many
different workload characteristics and developed a methodfor
dynamically and automatically adjusting to a suitable prefetch
size [29]. Our work in this paper demonstrates that aggressive
prefetching should provide benefits even for workloads that
include rate adaptation.

VIII. C ONCLUSIONS

Consumers are increasingly “cutting the cord” by canceling
their subscriptions to conventional sources of TV shows and
Movies in favour of HTTP streaming video services such
as Netflix which supply high quality content to a variety of
devices, anywhere at anytime. In this paper, we analyze an
anonymized web server log file to characterize the workload
of a Netflix streaming video server.

The Netflix workload consists of complex and varied pat-
terns of requests caused by a large number of different rate-
adapting clients. We organize and characterize the requests
using chains and phases. We demonstrate the utility of our
workload characterization by developing and analyzing a
prefetch algorithm that utilizes workload-specific characteris-
tics to reduce hard drive utilization and system memory con-
sumption. This approach can likely be adapted for analyzing
other streaming video workloads that are similar to Netflix.

Netflix is currently studying these findings and is consider-
ing adopting some of the strategies we have devised into their
nginx web servers. Specifically, Netflix is investigating: 1)
the use of larger prefetch sizes, 2) the use of different prefetch
sizes for different bit rates, and 3) the use of information
about the client’s progress to potentially moderate aggressive
prefetching when clients are in a transient phase. In the
future, we plan to create a Netflix-like benchmark for eval-
uating video servers, using a more complete characterization
of the Netflix workload, including characteristics of titles and
sessions [28].
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