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Abstract—In this paper we characterize the workload of a content [14]. As streaming Internet video services comital
Netflix streaming video web server. Netflix is a widely popular sypplant traditional broadcast television services, amahd
subscription service with over 81 million global subscribers [24]. on the large number of web servers supplying streaming

The service streams professionally produced TV shows and id derstanding the ch teristi f orodoct
movies over the Internet to an extremely diverse and represen- video grows, understanding the characteristics ot prooac

tative set of playback devices over broadband, DSL, WiFi and Workloads is critical to designing, implementing, impnogi
cellular connections. Characterizing this type of workload is an and provisioning servers in an effective and efficient manne
important step to understanding and optimizing the performance  gyisting workload characterizations have mainly focused
of the servers used to support the growing number of streaming . . .
video services. on user-generated video services [4], [8], and have tylpical
We focus on the HTTP requests observed at the server from b€en constructed from traces observed at the edge of the
Netflix client devices by analyzing anonymized log files obtained network [10], [11], rather than directly from server traces
from a server containing a portion of the Netflix catalog. We we have done. Also, there has been widespread adoption of
introduce the notion of chains of sequential requests to represent  pASH algorithms (Dynamic Adaptive Streaming over HTTP)
the spatial locality of the workload and find that despite servicing . . . . . . . .
clients that adapt to changes in network and server conditions, In cllgnts, to. provide high qEJa"ty video by adjusting thf? ,b'
and despite the fact that the majority of chains are short (60% rate in reaction to changes in network and server conditions
are no longer than 1 MB), the vast majority of the bytes requestd  Studies that have examined DASH have analyzed client imple-
are sequential. We also observe that during a viewing session, mentations [13], [18], [19] and use of network bandwidth][12
clleny dewce_s behqve in recognlza_ble patterns. We cha_lracterlze [20], rather than the impact of DASH on the servers. We
sessions usingransient, stable and inactive phases. We find that tudy th Kload of Netfli b Netflix cliest d
playback sessions are surprisingly stable; across all sessions S%S,u y the workioad of INetilix servers because Netilix cli i
of the total session time is spent in transient phases, 79% in stable Vices use DASH and because the long format, professionally-
phases and 16% in inactive phases, and the average duration of produced content available on Netflix servers has different

a stable phase is 8.5 minutes. Finally we analyze the chains toworkload characteristics than user-generated video csvi

il iferentpefetch sgortns nd sha et by @091 For s paper, e obtained log fles (HTTP request races)
serviced with 13% lower hard drive utilization or 30% less system from a production Netflix web server. Netflix uses different
memory compared to a prefetch algorithm that makes no use of configurations of servers to store content based on populari
workload characteristics. We obtained log files from a hard-drive-bas@dtalog server
that is used to service the long tail of less popular videos
rather than an SSD-basdflash Cacheserver used for the
The hypertext transfer protocol (HTTP) and web servermost popular content. The log file provides us with a unique
while originally designed to deliver predominantly staixt perspective that to our knowledge has not been examined.
and images, have been re-purposed for many new servidgamely, to characterize the workload of a production HTTP
including streaming video. There are a wide variety of constreaming video server accessed by a wide variety of DASH
panies now streaming video over the Internet using HTTP addvices. We focus in particular on understanding the dpatia
standard web servers. Some of these include: Adobe, Amaziagality in the server workload. Our contributions incluthe
Apple, HBO, Hulu, Microsoft, Netflix, YouTube, most majorfollowing:
sports leagues, and television networks in many countigs.
result of the popularity of these services, streaming vites
constitutes more than 50% of Internet traffic [26]. One reaso
for this is the growing number of consumers who no longer
use traditional television services. In 2015, 4% of Amarica
households use a streaming service as their sole source of TV

I. INTRODUCTION

« We find that client playback devices use a surprising va-
riety of methods to download content. The client devices
use two different methods for issuing HTTP requests; 2/3
use range requests and 1/3 use open-ended requests that
specify the start of the range but not the end, indicating
the request is for the rest of the file. Also, about 60% of

t Part of this work was conducted while on sabbatical at Netflix files are downloaded using parallel TCP connections.



« We introduce an abstraction calledainsto characterize primary server for playback and for the most part continue to
the spatial locality of requests regardless of whether thege that server unless it experiences low throughput, srror
are open-ended or range requests, or made using singigeouts or rebuffering events while playing at an alreawly |
or parallel TCP connections. Our algorithm for findingit rate.
chains extends the typical tests for sequentiality [15
by accounting for out-of-order requests caused by t
use of parallel TCP connections from individual clients. Netflix servers are Open Connect Appliances (OCASs) [22]
We analyze chain lengths and find that although thevéhich run FreeBSD 10.0 andgi nx. There are different
are a large number of short chains (60% are less thhardware configurations that are continually evolving. We
1 MB), the bulk of content is downloaded in long chaingocus on a log file from aCatalog (or Storagé server which
(chains greater than 10 MB account for 92% of bytesontains 36 hard drives of 3 TB and 6 SSDs of 512 GB. A
downloaded). We show that the chain length distributiosingle storage server has too little capacity to store thieeen
has a power law form for lengths between 1 MB andletflix catalog (about 2 Petabytes of data) so it is part of a
200 MB. cluster of 20 servers.

« We capture the complex, time-varying behaviour of The server logs obtained from Netflix contain information
clients by dividing client sessions into phases. Thesdout every HTTP request that is received by the server$ Eac
include transient, stable, and inactive phases. Acrdsg entry contains the URL of the file being read (which is
all sessions, transient phases, which encompass DA&kbnymized), the offset and size of the request, a timestamp
activity, account for 5% of the total time. Stable phasethe completion time of the request (with 1 second accuracy),
when a single file is accessed sequentially, account filie time required at the server to service the request, and
79% of total time. Stable phases last for 8.5 minutes, dhe number of bytes sendfi | e reports was sent. This is
average. Inactive phases account for 16% of total timeactually the number of bytes added to the socket buffer. It is

« We evaluate different prefetch algorithms for servicingot possible to determine, in the application, if and when th
the workload. We find that by using workload-specifibytes are actually sent. In particular, the client can teata
characteristics, such as the probability that chains wilhe connection at any time. Each log entry also specifiestwhic
be long or short, we can adjust prefetch sizes to eithplayback device type was used and includes an anonymized
reduce hard drive utilization by 13% or system memoryiewing session identifier. Normally session identifiere ar
use by 30%, compared to a prefetch algorithm that domst included in web server logs and appropriately discernin
not use workload information. sessions in such logs can be difficult because HTTP requests

do not require an application-layer session. Subscribreraat

identified in the log files, so we cannot tell whether any two
Netflix is a widely popular Internet service for streamingessions involve the same subscriber.
TV shows and movies (collectively callédles). In the past,  The request data provided in the server logs are in terms of
Netflix made extensive use of CDNs such as Akamai, Liméytes, which is difficult to interpret when files are avaikbt
light and Level 3 [1] but the rapid growth of its popularitysha many different bit rates and because variable bit rate (VBR)
led it to create and manage its own CDN, starting in 2012 [23ncodings are used. In order to convert byte values into
Thenet f1ix. comsite is served from the Amazon AWSquantities that are meaningful in the context of titles armiciv
cloud in geographically relevant regions. However, audid a can be used to compare requests with different bit rates, we
video content is serviced using high-capacity web servers abtained information about all the files present on the serve
clusters of such servers, placed in Internet exchange sifes each file, we have the nominal bit rate of the file, the
around the world. In addition, ISPs may also utilize onsize of the file in bytes, and the identity of the hard drive or
or more Netflix-supplied servers inside their data centoe, 8SD on which the file is stored. When necessary, we convert
reduce inter-ISP traffic [21]. Together these servers can adile offset in bytes into aominal title timeby dividing the
thought of as comprising the Netflix CDN. byte offset by the nominal bit rate. This is an approximation

The Netflix CDN does not operate like a traditional pullbecause the average bit rate of VBR-encoded content flestuat
based CDN. Nightly, during off-peak hours (calledfil overtime and is not necessarily equal to the nominal bitaiate
period), the Netflix control plane predicts which titles area given file offset. As a result, there may be variation iretitl
likely to be requested during the next 24 hour period aneélative calculations, which is reduced by computing agesa
directs each individual content server to remove and adder many requests.

tittes according to those predictions. Then, to playbacile t

selected by a user, a client device acquires a manifest fr&n Data Collected

the control server that specifies which content serversidhou Table | provides statistics about the contents of the cgtalo

be accessed by the client and provides URLs for the filesrver log files. The log was collected over 24 hours, in March

containing the different bit rates for the selected titliefts of 2014.

strive to use the highest quality video and audio supportedRequests are logged after servicing the request. As a result

by the network and available content servers. They selecthe end of each log file will be missing requests that were

Netflix Servers

Il. BACKGROUND



Total Data Sent 30.8 TB . . .

Average Throughput 2.9 Gbps a single request, while others_, use r_nult|ple concurrent HTTP

Peak Throughput 5.5 Gbps requests to obtain segments in multiple parts.

“Umgﬂ 0; Se_SSion;ﬂ 123%3;1 Netflix clients issue HTTP GET requests using two different
umper o nique litles y . .

Number of Unique Files Requested 102,386 formats. Some clients fully specify the block of data theg ar

Number of TCP Connections 2,586,301 requesting by providing the offsets of the first and last byte

Number of HTTP Requests 64,993,469 called chunkrequests (orange requesjs Alternately, clients

TABLE | can specify only the offset of the first byte, and the server

SUMMARY OF SERVER LOG FILE CONTENTS will send data until the client terminates the TCP connectio

(or the file ends), calletbpen-endedrequests. Clients do
not necessarily use only one of these request formats; often

issued but not completed before the end of the log peridjjfferent request formats are used for audio and video conte
To simplify the handling of these cases, we ignore sessioBs Example Sessions

st_arted in the last hour of the log period. Peak throughpat is To illustrate client behaviour during a session, we now
bit less than double the average throughput and the servepi§sant and describe two individual examples of sessions.
capable of servicing substantially more traffic if required Figure 1 shows a session that lasts for about 32 minutes,

[1l. CHARACTERISTICS OFCLIENT REQUESTS consisting of requests for about 22 minutes of title contéhe
In thi i d i d ch terize th to}g half of Figure 1 uses rectangles to represent each reques
n this section we describé and charactenze the requeply,  .,ordinate of the bottom left corner of each rectangle

that are \;\s/sm;_edt Ct;y N?tfﬂl)t(h clgant_ dewce? durlfns ?ﬂ.v'teswmﬂmdicates the elapsed time at which the request is issued and
session. We Tirst describe the basic operation of NEUIbntie y-coordinate shows the position within the title of thstfi

We then provide two examples that illustrate some Patterps:e of the request. The x-coordinate of the top right corner

.Of rlequesttst_and Iol_emﬁnstrate the t_var:ﬁty d(')mff d|ffetr?nt CIIeW1dicates the time at which the request is completed and the
implementations. Finally, we quantify the different typefs y-coordinate identifies the position within the title of thaest

requests issued by the clients. byte of the request. A tall and narrow rectangle indicates th
A. Netflix Request Types a large request was serviced quickly and a short and wide

rectangle denotes a small request that was serviced slowly.

Netflix _supports many different types of client dewcesrhe y-axis values (position in the title by minutes) are an

including consumer electronic devices like Blu-ray player C : . . .
9 y Paye approximation, since the content is encoded using variaible

and televisions, desktop computers, laptops, Android @1 i es. We convert file offsets to title positions by dividitig

mobile devices, and game consoles. Audio and video cont %ﬁe offset of a request by the file size then multiplving the
is encoded separately, at many different variable bit rat yte ¢ . qu Y ne size, uitiplying
ulting fraction by the title duration.

Some clients require the content to be stored in separé?g
audio and video files to allow the selection of video bit rate
independently from the audio bit rate, and to allow audios
playback in different languages. Other clients requirei@ud .
and video content to be combined in the same file. The serv
log files include references to 5 differeatdio bit rates, 14
different video bit rates and 8 differentombinedbit rates.

Title content is divided into 2 second intervals caIIed,§
segmentsAn entire segment is required for decoding andz 5 |
playback, thus clients change bit rates at segment boumjarit Hj

5 | Video Re'quests —_—
Audio Requests
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Because segments vary in size, there is a table at the sté&t 0 . 3000 2
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of each file that specifies the offsets of all segments. Whea' |~ = o o
a session starts, the client downloads segment offsets and |1 ¥ " =" " .2 & Tm gg &
content from multiple files with different bit rates, therlesgs . : » =
a starting bit rate that can be supported by available né&twor

} . i 5 10 15 20 25 30
bandwidth. Clients continue to download segments sequen- Elapsed Session Time (minutes)

tially from the same file unless network or server conditions
change (which may result in switching to a different bit jate
or a user event occurs (e.g., stopping or skipping to a newThe bottom half of Figure 1 shows the different bit rate
title position). Clients that are in a steady state limit théiles that are accessed during the session, with the bit rates
number of segments they download ahead of the playbdabkelled on the right. Each interval (between two vertiagad$)
point to avoid waste when a user event occurs. This is callddpicted in the bottom half of the figure corresponds to a
pacing[30] and is a defining feature of HTTP streaming videoectangle in the top half.

clients [3]. There is no simple relationship between segmen There are a total of 51 open-ended request in this session.
and requests; some clients download multiple segments wihdio and video content is obtained from separate files and

Fig. 1. Requests issued during a session



only a single audio bit rate is accessed. There is a peri@iddicating a later title time) while starting further toetheft
from about the 19 to 29 minute marks where there are fimdicating an earlier elapsed time).
requests, likely indicating that the user paused playbalckre From these examples, it is clear that DASH clients have
are periods when a large number of files with different videsomplicated patterns of requests, and that different tlien
bit rates are accessed over a short period, such as at tirmgslementations may use substantially different methauts f
0, 2, 4 and 11 minutes. In these cases 6, 6, 5 and 5 vidémwnloading content.
bit rates are accessed, respectively. These unstabledperio
reflect the actions of the DASH algorithm, either downloadinC. Request Statistics
segment offset tables or performing rate adaptation. TRE¥€  Thg yariation in the format and sizes of requests issued
also stable periods when only a single bit rate is acceseed, f,, Netflix clients reflects the wide variety of client devices
an extended period from 13 to 20 minutes, as well as mafype || categorizes requests based on the type of contant, f
shorter periods. . _ _ both open-ended and chunk requests. Audio accounts fot abou
Figure 2 shows the first 1.5 minutes of a different examplgy, of the total bytes requested. Only 1.3% of all requests
session. This zoomed-in view illustrates the use of chunke open-ended, but they account for 1/3 of the total bytes
requests, and the spacing of the requests (the slope formggdested. Clients are more likely to use open-ended resjues
by the series of rectangles) reveals important details @by 4ydio and combined content, but more likely to use chunk
request timing. The initial unstable period lasts for abddt ¢ ests for video content. Clients often use differentuests
minutes, then the client accesses a single video bit ratéhéor pes for audio and non-audio content, and for about 10%

remaining time. From 0.1 to 0.5 minutes, the client down®ad sessions, clients alternate between open-ended and chun
about 2 minutes of title content in 0.4 minutes of elapsedenmrequests_

so content is downloaded about 5 times faster than the lait rat

of the content, indicating a period of time when the client [ Type [ Requests] % ] GB|] % |
is filling its playback buffer. After 0.5 minutes, 1 minute of [ Open Audio 208,045] 0.3 1,095.7] 3.5
content is downloaded in 1 minute of elapsed time, which | Open Video 445,728 0.7 | 5,828.1| 185

indicates thapacingis occurring. These patterns of requests | Open Combined |  166,720| 0.3 | 4,033.0| 12.8
and inter-arrival timings are important characteristi€sl@nt 8EenkTXtﬂ' 5 zé(:l'j{zz ii 10’3955'; 3;":
: . un udio y y . . .

implementations. Chunk Video 53.758,669| 82.3 | 18,411.5| 58.4
Chunk Combined| 8,102,517| 12.4| 1,832.2| 5.8

4 ‘ ‘ ‘ Chunk Total 64,515,608| 98.7 | 20,542.9| 65.2
Video Requests —— [ Total [ 65,336,101[ [ 31,499.6[ ]
Audio Requests
3 P TABLE ||
_ o= PREVALENCE OF REQUEST TYPES

o

f There is significant variation in request sizes, even after

considering the different available bit rates. The numbler o
bytes downloaded with open-ended requests is extremely
variable, and depends more on session events than client
implementations, so we examine only the chunk requests in
Figure 3. The figure shows the average lengths of chunk
requests, both in bytes (left axis), and in nominal titleeim

[\
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Bit Rate (Kbps)
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025 05 075 1 125 15 (right axis). For most audio and combined content, the a@eera
Elapsed Session Time (minutes) amount requested is more than 2 seconds in terms of title time
Fig. 2. Details of session startup this is caused by clients requesting more than one 2 second

segment at a time. For video content requests (bit rates 235-

Figure 2 also reveals details about how chunk requests af5000), the average title time is between 0.4 and 1.9 second
issued. After 0.75 minutes of session time, requests anedss because some clients divide a segment into multiple pads an
in clusters that are separated by time gaps, illustratirg tHownload the parts in parallel, while others download rpisti
method used fopacing chunk requests. Pacing occurs natusegments in a single request, and some do both.
rally due to TCP flow control for open-ended requests [19]. Because parallel downloading has a large effect on the
Requests in the clusters overlap in elapsed session tigede. request size, we measure how frequently clients issuelglaral
the 1 minute mark in the top portion) due to the use of parallequests for the same file. Table Il shows, for each file in
TCP connections. These concurrent requests are occdgionadch session, the percentage of files that are downloadagl usi
processed out of order, with examples of this just after 0.P&rallel connections at some point in a session. We compute
minutes of elapsed time and just before the 1 minute matkese numbers by finding the maximum number of concurrent
In these cases, there are requests that are higher in thie graguests to the same file during the same second, which is
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¥ 5 Audo | Combined | Video 60 to the start offset of another request for the same file. To
=3 = Q‘ﬁﬁlgael #ﬁgg;’;me @ handle potentially out-of-order requests, we recognijacat

§ 10* 1 503 requests regardless of the relative order in which they were
3 168 1 40: received, as long as the adjacent requests are receiveith with
°§ 1 30E 40 seconds of each other. We chose this limit after analyzing
& 10° 1208 the distribution of time gaps and finding that the longest
o} ' commonly occurring gap due tpacingis 32 seconds, so a

= limit of 40 seconds encompasseacinggaps while preserving

Z gaps caused by client inactivity. For the second pass, the

algorithm combines adjacent requests into the longeshshai
possible.

Fig. 3. Average sizes of chunk requests We applied the chain-formation algorithm to the Netflix
workload and found about 2.3 million chains in the 65 million
requests. Table IV provides statistics about the chaing Th

the granularity of the timestamps. More than half of files ar86” column specifies the percentage of the total number
downloaded in parallel during a session. of chains of each type anNTT/chainspecifies the average
lengths of chains in seconds of nominal title time. The table

Number of Connectiong 1 2 3 4 5| >6 . . )
Borceri oT Elos 1o 50 330 60 08 03 shows that chams rarely conS|s_t of more than one open
TABLE 1N ended request, in contrast to chains of chunk requests With 4

requests on average. The average sizes of video and combined

chains are similar for both chunk and open-ended requests,

indicating that the spatial locality of non-audio chains is
Next, we introduce an abstraction that provides a unifiggimilar regardless of the way HTTP requests are made.

view of requests that is independent of how different chent

PER-FILE USE OF PARALLEL DOWNLOADS

issue requests. Chain Type % | Regs MB NTT
/chain | /chain | /chain
IV. CHAINS Open Audio 7.2 13 6.8 | 534.1
In this section we analyze the spatial locality of the server 8pen Video 1731 11) 151} 63.7
L. : pen Combined 7.0 1.0 25.5| 148.5
workload. Although requests from individual clients arerco Open Total 315 12 1551 1898
monly viewed as being highly-sequential, trick play opera- Chunk Audio 1071 108 13 1347
tions, and especially rate adaptation (which causes régjtes Chunk Video 54.6| 43.0| 15.1| 51.6
be issued for different files) can disrupt sequentialitytdde Chunk Combined] 3.2 | 109.5| 25.5| 147.6
mining the degree of spatial locality is important sincedhc Chunk Total 685 411]| 134 69.1
be used to understand whether or not aggressive prefetching [ Grand Total [ 100.0] 215] 141] 107.1]
is likely to be as effective on this workload, as it has been on TABLE IV
other workloads [30] [29]. Additionally, it may be possible CHAIN STATISTICS

to use workload characteristics to tailor the web server to

better handle this particular workload. In Section VI, we us

simulation to evaluate a prefetching algorithm that makss u .

of our workload charac?erization %o 21ake better decisioﬁ% Lengths of Chains

when prefetching. We now characterize the lengths of the chains found.
To study spatial locality, we introduce Ghain abstraction Figure 4 provides two different cumulative distributiorfstioe

that represents a contiguous sequence of requests to tiee siamgth of chains, ordered by bytes, from shortest to longest

file from the same client. Unlike prior characterizationssef The curve labelledChains shows the percentage of chains

guential access, a chain can include requests that wergedcethat are shorter than a given length, and Byges Requested

out-of-order, on different parallel TCP connections usgd lturve shows the cumulative percentage of total bytes that

the same client. We analyze the spatial locality in the servare downloaded in chains. More than 60% of the chains

workload by examining characteristics of the chain lengthare 10° bytes (1 MB) or shorter and only about 15% of

such as the overall chain length distribution. Our simalati chains are longer tham0” bytes (10 MB), so the majority

in Section VI also employ the chain abstraction, as a highef chains are relatively short. However, most of the conient

level workload representation than individual requests. downloaded in long chains. More than 90% of the total bytes
Our algorithm for finding chains of requests is simple ilmre downloaded in chains longer than 10 MB and fewer than

principle: find sequences of adjacent requests for content f 2% are downloaded in chains shorter than 1 MB. These results

the same file during the same session. The algorithm uses suggest that despite servicing DASH clients that accesy man

passes. First, we iterate through each request in a sessiodifferent bit rate files, most bytes will be requested in long

determine if the end offset of the request is directly adjicechains with high spatial locality.



contains the same information as Figure 4, but shows the

100 . ; .

00 | Chains —&— ,/E’E percentage of all chains that are longer than a given length

80 Bytes Requested as opposed to the percentage of chains that are shorter than a

pp p g

70 given length. For example, Figure 6 shows that about 10% of
) 28 chains are longer than 20 MB (26 bytes) and about 1% are
@ 10 longer than 450 MB. We display the data using log scales on
© 30 both axes in order to find potential power-law relationships

20 the data, which will appear as straight segments on the curve

10

O 'l
100 10t 100 10° 107 10* 107 10 100 — -
Length of Chains (bytes) g ]
Fig. 4. Percentage of chains ordered by chain size E 10 \\
®)] ,
o Y
B. Chains Starting at Offset Zero % 1 Chain Lengths ——— ’X
Clients must download segment offset tables before requesi 265 x 1111 \

ing content from files so that playback can be started fron%“ O-LF 91700 x?z;‘zz ) e
any position in the title. This supports the implementatidn © L1Se+14 X700 e
DASH algorithms as well as user actions such as skipping 001103 0t 100 10 107 100 10°  10'°
backward and forward in the title. About 24% of chains start Length of Chains (bytes)

from an offset of zero, where the segment offsets are stored,
so these chains are a significant subset of the workload.

Figure 5 ShOWS a CDF Of the |engthS Of a” ChaiI’IS that StartWe Observe that the curve appears Very Straight for Chain
from a file offset of zero and therefore contain segment dbffspngths between 1 MB and 200 MB, so we divide the chain
information, compared to the chains with non-zero offséfs. |engths into three segments: shorter than 1 MB, between 1 MB
divide the zero-offset chains into two Categories, demdn and 200 MB, and |onger than 200 MB, and fit power-|aw
whether the chain consists of open-ended or chunk requegiguations to each of those segments. We compute the survival

For chains of open-ended requests, 84% are exactly 768 KRction S(x) for a chain of length: in bytes from the set of
in length (likely due to the size of socket buffers used og|| chain lengthsy as follows:

the server), and only 0.4% are shorter. For chains of chunk

requests, the majority of chains are very short; more th&a 49 — Prob X — Apc 1

are shorter than 16 KB and 98% are shorter than 128 KB. §(x) = Prob(X > z) = Az @
Chains that start at an offset of zero are easy to recognide anThe three power-law equations are shown in Figure 6. For

tend to be much shorter than chains with non-zero startiggch equation, the values for A and ¢ were calculated using a
offsets. We evaluate a prefetch algorithm that makes use|igfear fit of the logarithms of the data values.

Fig. 6. Cumulative number of longer chains

these properties in section VI. These equations can be used to compute a conditional
probability for how long chains will survive. We would like
100 ‘ M——— i to determine the probability that a chain that is Ionger. than
90 : /_j;x will have total length at least + d. We call d the survival
80 /‘-’ distancefor a given chain length and probability.
- 10 V4 We compute an expected survival distanée given a
R 60 . - . .
= 50 particular probabilityP that a chain of length at least will
8 40 have total length longer than+ d as follows:
30
zero offset open-ended —8— -
20 zero offset chunk _ProX >x4d)  Alx+4d)° @
18 L ‘ non-zero offset —A— B Prob X > x) B Ax—c
10 10t 100 10° 107 10* 107 10 . _
Length of Chains (bytes) which can be solved fod:
Fig. 5. CDF of lengths of chains with different start offsets i
d=(P7Y¢ — 1)z 3)
C. Chain Survival Distances To use this equation, we can select a probability target, for

We now analyze the chain length distribution to determirexample,P = 0.45, and compute that = 3.35x for the range
whether it can be described by simple equations. Figurel6MB to 200 MB. So for any chain that reaches a length
is a complementary cumulative distribution function (CQDFoetween 1 MB and 60 MB (= 200 MB/ 3.35), there is a 45%
that is generated from the measured chain lengths. Thisfigghance the chain will grow to 3.35 times that length.



V. PHASES mechanisms fopacing requests, depending on whether they

. - Lo : are issuing open-ended or chunk requests.
While examining traces of individual sessions, such as those S . . N
¢) Inactive: The client temporarily stops issuing requests

in Figures 1 and 2, and others not included in this paper, we . . : i
found that clients seem to exhibit patterns of requests. Ig())rr content from files of any bit rate. After this phase, therd

example, the bottom part of both Figures 1 and 2, show th%%ua”y enters the transient phase.
each session starts by issuing requests for multiple filesh(e B. Phases at the Start of Sessions
containing a different bit rate encoding). This patternssiiing In this section, we analyze non-audio chunk requests issued

requests for multiple files for a short period of ime occurs iy he peginning of sessions, where we assume that cliemts st
many other sessions we have examined, in addition 10 te, transient phase, followed by a stable phase. We validate
examples in Figure 1. We also noticed patterns where clieqis assumption in Section V-C, after we develop a method for
either access content sequentially from a single bit raée, (i recognizing phases, by showing that 97% of sessions start in
a single file), or they do not access any files (i.e. playbackiiansient phase.

is paused). Our goal in this section is to try to understand if £iq,re 7 shows average request characteristics calcuigted
such patterns are common across sessions and to U”der%ﬂé‘ﬂigating all non-audio chunk requests in the workloae. T
the impact of these patterns on the sequentiality of requesfy| es are generated in 1 second intervals, relative totére s
Our characterization provides insight into client behavio y¢ a5ch session. We compute the four measurements for each
including the use of rate adaptation and helps explain thg:onq of each session, then calculate averages by totaéing
observed chain length distribution. N measurements over each second and dividing by the number
~ We first characterize phases by examining patterns of g-sessions that have not yet ended during that second. Tihe le
tivity for chunk requests. We analyze chunk requests b&caygis shows the number of concurrent connections and files, an
their short duration provides fine-grained information @bo e right axis shows the arrival interval and request dorati
average download rates, compared to open-ended requestsTRE curves in Figure 7 are smoothed because there are few
show how chain lengths can be used to recognize transigfiy sessions. We average data values in bins equal to 1% of

phases, then we show how the average download rategf elapsed session time for all the graphs in this section.
chunk requests varies during the stable phase. Finally we

show that the average transfer characteristics of chaibstbf

open-ended and chunk requests are similar, so our findings’ T o Comesie T 25 2

specifically about chunk requests are applicable to botbstyp i Concurrent Files —%— | %

of chains. = | Arrival Interval £

S Request Duration —a&— A

A. Request Patterns During Phases 5025{ e - S | Tg
s umE-—EI-\-rEW

In our model, we identify three differenphases where 3 ‘\_‘(\. " é

clients issue requests with characteristic patterns dusach 1t bl () S &

phase. In the following list, we informally describe thetpats 1 S

of requests that identify each phase, as well as the actibns o 0 1 10 100 1000 10008 <

the client during the phase. Elapsed Session Time (seconds)
a) Transient: The client issues requests for a number of
different bit rate files in a short period of time. For moseaolis
this occurs at the start of a session, when there is a chang&he Concurrent Filescurve in Figure 7, which shows the
in network or server bandwidth, or after the user changesmber of unique files that were requested during each second
to a different playback position. This pattern of requesits fof elapsed time, can be used to characterize the first transie
different files over a short period of time reflects the ogerat phase, when a number of files with different bit rates are
of the rate adaptation algorithm, when the client downloadgcessed in a short amount of time. The number of concurrent
segment offset tables and content from many different é refiles peaks after 3 seconds, then declines steadily; which
files. indicates that the first transient phase is less than 20 dscon
b) Stable: The client retrieves content sequentially fronrfor most sessions.
the same file because the bit rate being used is stable. At somErom 1 second to 10 seconds tB8encurrent Connections
points in time (e.g., at the beginning of a session) the tlieourve andConcurrent Filescurve are quite similar. This indi-
retrieves content as quickly as possible. The client operat cates that, on average, a single connection is used to teques
this mode when it must fill its playout buffer after a transierfiles during this time. Afterwards, clients use an average of
phase. As a result, we call this mode of operafilimg mode about two TCP connections to access each file.
. Once the playout buffer contains enough data, requests ar@he Request Duratiorcurve is fairly level, indicating that
paced to arrive at the server so the average download rat¢his average request size remains constant regardless s#.pha
approximately equal to the bit rate of the file. We refer tdhe Arrival Interval curve is calculated by subtracting the
this mode of operation gsacing mode Clients use different arrival time of the next request from the arrival time of the

Fig. 7. Request Activity Aggregated over all Sessions.



current request (regardless of which parallel TCP conoesti g 100 ' ' '
are used), and will be equal to O if the requests arrive during Long Chains Starting

the same second. The average time between arrivals gradual \ Transient Phases Starting —&—
increases during the period from 10 to 200 seconds because \

o

an increasing proportion of clients transition from thengiant = |
phase or filling mode (when requests are issued as quickly &s \S\

JM

possible) to the pacing mode (when requests are issued at fEe
same rate as content is consumed). After about 200 second?, 0-1
almost all clients are in pacing mode, so the average arrival

; ; 5 0.01
interval remains nearly constant. & | 10 100 1000 10000
We have now characterized the pattern of chunk requests Elapsed Session Time (seconds)

for the phases that occur at the start of sessions. In the
following sections, we provide algorithms for recognizing
phases whenever they occur during a session, which are also

Fig. 8. Start times of transient phases

applicable to sessions with open-ended requests. session by the user, as well as the operation of the rate
) adaptation algorithm by client devices.
C. Transient Phases We use two different methods to characterize changes in

During the transient phase, many different bit rate files atke download rate during a stable phase, which will enable
accessed in quick succession in order to download segmestto identify the transition from filling mode to pacing mode
offset tables and video content from many different bit raf€he first method is only valid for chains of chunk requests. We
files, which results in a cluster of relatively short chaing:ompute the average download rates to directly show the poin
During the stable phase, all content is requested seqllgntiavhere the chain transitions from high download rates to fowe
from the same file which causes relatively long chains. Th®wnload rates. The second method characterizes download
clusters of short requests that occur during transient gshagates indirectly, but can be used for chains of both opereénd
have significantly different patterns depending on thentlieand chunk requests.
implementation and the action that triggered the transientl) Download Rates:Figure 9 shows the average number
phase. Figure 1 shows some examples of different pattenioytes downloaded in requests, categorized by the lerfgth o
of requests for transient phases. Because of this widetyarighain that contains the request, during each second ofeglaps
of patterns, we use a robust and simple algorithm to recegnigession time. The average download rate is the total nuniber o
phases. bytes requested during each second divided by the number of

We defineshort chains as those with a duration of lessessions that are active during that second. Ddweg Chains
than or equal to 40 seconds, alog chains have a duration curve has an early peak signifying the filling mode, followed
longer than 40 seconds. We then find clusters of short chalts a decrease to a largely constant rate after 200 seconds.
that have less than a 10 second gap between the end of brgm this curve, it appears that almost all sessions are in
short chain and the start of another. We define the discrgcing mode after 200 seconds, in accord with Figure 7. The
clusters of short chains as representing transient ph@ibes. apparent decrease in the download rate for long chains after
long chains identify stable phases. We determined the 4®00 seconds is caused by an increasing number of sessions
second and 10 second threshold values experimentally. Yt are in inactive phases (as shown in Figure 11).
searched for values that would result in roughly an equal
number of short clusters and long chains, because we expect

that a transient phase will typically be followed by a stablez 700 //\" \-\ Transient Phases —=—
phase. Figure 8 shows, for each second of elapsed time, tHe600 taAﬁ Phases —a—
percentage of active sessions that are starting a clusgiroof 2 500 \

chains and the percentage of sessions that are startingga log 400 | _\

chain. Over 97% of sessions start with a transient phase, afdy, | % .

approximately equal numbers of transient phases and lorg 200 |

chains start after 100 seconds of elapsed time. Using o@g 100 \\\E\

chosen threshold values, the occurrence of transient phase

and the other phases meets our expectations. 0 1 10 100 1000 10000

Elapsed Session Time (seconds)
D. Stable Phases
Chains not belonging to a transient phase make up stable
phases. That is, each chain longer than 40 seconds comprisdsgure 9 also shows a large variation in total download rates
a stable phase. The average duration of a stable phaséyiselapsed session time. The average download rate of all
8.5 minutes. This provides an estimate of the average mitervequests is about 3 times higher at the start of the session
between events, which include skips, pauses, or ending thetween 6 and 11 seconds) than it is after 200 seconds. This

Fig. 9. Aggregate download rate for requests



indicates that typical clients use much less bandwidth @& thfter 5,000 seconds. This indicates that most long sesai@ns
stable phase than is available during the first transiensgaha caused by inactive phases.

2) Transfer Ratios: For open-ended chains, we cannot
directly observe changes to the transfer rate because they

occur at the TCP level, via TCP flow control [19], which® 100

is not recorded in the server traces. However, we can usg so /
an indirect method to show that the transfer charactesistic% /
of chains of open-ended and chunk requests are similar, argd 0

therefore conclude that the characteristics of the fillingdm é 0 /

are the same for both types of requests. We use the property I'J

that the filling mode is limited in duration, so the longer theg 20 Vs

chain, the higher the proportion of time spent in the pacing —

mode. Since the ratio of content downloaded in a chain to tHé © ) 10 100 1000 10000
duration of the chain (théransfer ratig is equal to 1 while Elapsed Session Time (seconds)

in pacing mode and greater than 1 while in filling mode, we
expect that the longer a chain, the closer the transfer valtio
be to 1.
Figure 10 shows the average transfer ratios for chains with Impact on Sequentiality
the same elapsed time, calculated separately for chains oNow that we have defined and examined the different
open-ended and chunk requests. The transfer ratio is myfases, we consider the proportion of time spent in eactephas
larger than 1.0 for short chains, particularly chains ofrepefor this workload. Across all sessions, transient phasestatt
ended requests, where the maximum ratio of 14.5 is f@sr 5.2% of the time, stable phases 79.1%, and inactive shase
chains with 2 second duration. The transfer ratio decling®q 16.4%. These numbers add up to 100.7% because there is
gradually, indicating that the filling mode is very long famse a small amount of overlap between the transient and stable
sessions. The calculated ratios for chains of open-endéd @hases for some clients. With respect to bytes transferred,
chunk requests are nearly identical for durations longan th7.69% of the total number of bytes are downloaded in transient
12 seconds. This is strong evidence that, although we canppkse chains, and 92.4% in stable phase chains. The paporti
directly measure them, the patterns of changes of trarsties r of bytes downloaded in the transient phase is higher than the
for open-ended requests are similar to the patterns showmpi@portion of time because clients do not use pacing during
Figure 9 for long chains of chunk requests. the transient phase.
Understanding these phases helps to explain the distiibuti
, , of chain lengths in Figure 4. There are many short chains
/\ Open-Ended Chains —&— that occur during transient phases, but not much content is
Chunk Chains . . .

read from each file, resulting in a large number of short

10I( \\ chains. Clients spend a large proportion of time in stable
N,

Fig. 11. Percentage of sessions in inactive phases atafiff¢éimes
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phases, and the stable phases last a long time (8.5 minutes on
average), so there are relatively few long chains that atcou
for a large proportion of the total bytes requested. Given
- S the large proportion of time spent in stable phases and their

1F ¢ (a2 O TR ) S D N - Fe=sTH

0 1 A relatively long length we now examine potential algorithms
1 10 100 1000 10000  for prefetching.
Chain Duration (seconds)

5

Nominal Title Time/Duration

V1. APPLICATION TO PREFETCHING

In this section, we demonstrate the utility of our workload
_ characterization by using it to develop a workload-specific
E. Inactive Phases prefetch algorithm. We also apply our workload characteri-
To detect inactive phases, we simply find periods of timeation in developing a simple simulation model of the system
when no requests are issued. Figure 8 shows the percentige is used to carry out a first-cut performance evaluatfon o
of sessions (that have not yet ended) that are in an inactitte algorithm, in comparison to a baseline prefetch algorit
phase during each second of elapsed time. A session islrinthe future, the insights we gain can be used as a starting
an inactive phase if it issues no requests for any file forpgwint for modified server implementations, which can then be
period of at least 40 seconds. We chose the threshold valuevéluated experimentally.
40 seconds to match the 40 second threshold for inter-arriva .
gaps for chains (as described in Section V). Inactive phadd Prefetch Algorithms
are common; at least 10% of sessions are in an inactive phas®@/e describe two algorithms for choosing a prefetch size:
after the first few seconds, and the percentage increasé$rapa baseline algorithm that requires no workload information

Fig. 10. Ratio of play time to chain duration



and an alternate algorithm that makes use of our workloadage by applying a prefetch algorithm to each chain indepen
characterization. dently. Given the length of a chain in bytes, as well as the sta
a) Fixed: The baseline algorithm has been previouslgnd end times of the chain duration, we simulate the timing
used to service an HTTP streaming video workload [29] arahd size of the prefetch operations that would be required
uses a single fixed prefetch size. It requires no worklodad service each chain. We maintain a global record, divided
information. into 60 second intervals over the elapsed time of the logs, th
b) First-Grow: This algorithm makes use of workloadaggregates resource usage from individual chains to digterm
chain characteristics in two ways. The algorithm uses omgtal utilization over time. After processing all chainsg find
of three specifically-determined prefetch sizes for fhst the maximum system memory consumption and the maximum
prefetch in a chain, depending on the type of chain andilization of a hard drive that occurs during an interval.
its starting offset in the file. Second, grows the size of  To determine the consumption of system memory, we
subsequent prefetches by a multiplier, based on the p@wer-lcalculate the amount of prefetched data and the time that
relationship we derived from the chain lengths in Sectio®lV it is resident in memory. Notionally, when a chain starts, a
until the prefetch size reaches a maximum. memory buffer equal to the first prefetch size is allocated,
The First-Grow algorithm uses a relatively small prefetchwhich is reused and potentially resized for any subsequent
size at the start of chains because the majority of chains iefetches. The prefetch buffer is freed 40 seconds after th
short. Using a relatively small first prefetch size will reéu chain ends. This 40 second interval matches our criteria for
the amount of content that is prefetched but not subsequeriirming chains, so this delay in deallocating a prefetcHesuf
requested by clients for short chains. Additionally, csaimat represents the actions of a memory management algorithtm tha
start from an offset of zero (where the segment offset tablekeeps prefetched data in memory until a chain is known to end.
stored) are very short, as shown in Figure 5. We divide chaig make the simplifying assumptions that prefetched daita wi
into three categories with substantially different chandth not be evicted prematurely, and also that there is sufficient
distributions: chains of open-ended requests that statr@, system memory for prefetch buffers, to avoid simulating a
chains of chunk requests that start at zero, and the rengainiflemory management algorithm.
chains. We perform a separate cost-benefit analysis for eaclrg track hard drive utilization, we consider two separate
category and determine the best first prefetch sizes. Fsr tBperations: transferring data from disk and repositiortimey
analysis, the benefit is the amount of data that is requesigk head between prefetch operations. We calculate hard
by clients at the start of each chain, up to the prefetch sizgjye utilization as a fraction of maximum capacity. Givée t
The cost has two components: prefetching data that will ngfaximum transfer ratg,, . and the maximum seek rate, ..,
be requested because the chain is shorter than the prefgighcompute transfer utilization @gt,,., and seek utilization
size, and performing seeks for the chains that are longer thgs 5 /5, ... We add these utilization fractions together (since
the prefetch size. The prefetch sizes that provide the Ibweshard drive cannot seek and transfer data at the same time) to
cost-benefit ratios are listed in Table V and they vary widelgetermine total disk utilization. If the calculated utition of

reflecting the different chain length distributions. a hard drive is more than 100%, then the prefetch algorithm
Offset of Chain Starf| Request Type Prefeich Size (KB) is infeasible because it would overload a hard drive.
Starts at zero Open-Ended 1,025 To obtain values fors,,,q, and t,,.., we use benchmark
Starts at zero Chunk 128 results for a Hitachi Deskstar 5K3000, which has been used
Starts later than zerq Either Type 2,867 by Netflix in the past [22]. We found measured transfer rates
TABLE V for two benchmarks: 125.5 MB/s for 2 MB sequential transfer

SIZE FORFIRST PREFETCH IN A CHAIN reads and 48.4 MB/s for 2 MB random transfer reads [27], so

tmaee = 125.5 MB/s and we calculate,,,,, = 39.4 seeks/s.

The First-Grow algorithm also gradually increases the
prefetch size to take advantage of the characteristicsngfdo C. Results
chains derived in Section IV-C. The multiplier used to irage ] ] ]
the prefetch size is calculated to provide a 45% surviva,rat Figure 12 shows our results using two different curves:
based on Equation 3. We tried a range of different survivile Percentage utilization of the highest-loaded hardedriv
rates between 5% and 95% (with a starting prefetch size ¢fbelled Util and using the left axis), and the maximum
1 MB and a maximum size of 32 MB) and determined th&g°nsumption of system memory (labellbtemand using the
45% provided the lowest disk utilization for the workload"ght axis). Each data point is the result of analyzing onthef
Therefore, we used the 45% value with the different maximuRfefetch algorithms using a prefetch size parameter shawn o

size limits. the x-axis. The parameters have different meanings for each
_ algorithm. For theFixed algorithm, the parameter is the single
B. Evaluation Methodology size used for prefetching. For th@rst-Grow algorithm, it is

For our analysis, we track the usage of two importatiie maximum prefetch size.
resources: the hard drives that store content, and thensyste For the Fixed algorithm, the best prefetch size is 7 MB
memory that holds prefetched content. We determine resouvgith a maximum hard drive utilization of 57% and maximum



150 Other researchers have used abstractions that are similar

1
v \L @ to chains [16], [17], [31], and are used in algorithms that
S 80 F & o 120 3 re_cognize sequential accesses frpm_multiple concur_rhmrttsl
5wl e g 2 0 2 Li, et al. [15] survey dlffgrent definitions of sequentmlt_hat
§ i ’“H—H—:'—E"' g have been used, and discuss three features of algorithms for
Z 40 .m-'”"m““ 60 = Qetect|ng _sequentyahty in workloads: 1) whether stndedegxs
% - E is recognized or if requests must be strictly consecutiye, 2
A 20 g ¥ 30 £ how many interleaved sequences of requests can be recog-
mﬂ“ ‘ s nized, and 3) whether there is a limit on the inter-arrivaldi
0 0 5 10 15 200 of requests. Our algorithm extends this work by recognizing
Prefetch Size Parameter (MB) sequential access when multiple concurrent TCP connextion
Fixed Util —&8— Fixed Mem & are used by the same client, resulting in out-of-order retgue
First-Grow Utl First-Grow Mem The most closely related work on prefetching is our inves-
Fig. 12. Comparison of Chain-Length-Based Algorithms tigation of aggressive prefetching using the fixed algonith

defined in Section VI-A, for a streaming video benchmark
without rate adaptation [30]. We have also performed experi
memory consumption of 47 GB. By comparison, thiest- ments to determine that the best prefetch size depends on man
Grow algorithm reduces hard drive utilization and consumesifferent workload characteristics and developed a method
less system memory because the prefetch sizes that are uggthmically and automatically adjusting to a suitable @it
are smaller, on average. Usifigrst-Grow, a maximum 50% size [29]. Our work in this paper demonstrates that aggressi
hard drive utilization can be achieved with a prefetch pararprefetching should provide benefits even for workloads that
eter of 14 MB (or larger), which is a 13% reduction fromnclude rate adaptation.
Fixed but requires 60 GB of system memory. Using the same
47 GB of system memory a&ixed, First-Grow reduces hard VIII. CONCLUSIONS
drive utilization by 8%. Alternatelyfirst-Grow can equal the  Consumers are increasingly “cutting the cord” by canceling
57% hard drive utilization oFixed while consuming 30% less their subscriptions to conventional sources of TV shows and
system memory. Movies in favour of HTTP streaming video services such
as Netflix which supply high quality content to a variety of
VIl. RELATED WORK devices, anywhere at anytime. In this paper, we analyze an
anonymized web server log file to characterize the workload
There are studies of services that stream TV shows agfla Netflix streaming video server.
Movies other than Netflix: PowerlInfo [32], Tencent Video,[6] The Netflix workload consists of complex and varied pat-
and TV4 [2]. These studies are not directly comparable tgrns of requests caused by a large number of different rate-
ours because we characterize the workload at a single serggfapting clients. We organize and characterize the resjuest
while existing studies aggregate the demand for many éifer ysing chains and phases. We demonstrate the utility of our
servers. One of these studies aggregates informationctedle workload characterization by developing and analyzing a
from all clients of a service [6], and the other two aggregajgefetch algorithm that utilizes workload-specific chaesis-
information collected from multiple servers [2], [32]. tics to reduce hard drive utilization and system memory con-
There are many studies that characterize the requestslisssigmption. This approach can likely be adapted for analyzing
from HTTP streaming video clients, and these are generaiyher streaming video workloads that are similar to Netflix.
helpful for understanding phases. Martin et al. [20] and Bao  Netflix is currently studying these findings and is consider-
al. [25] study Netflix clients, but they measure only bandwid ing adopting some of the strategies we have devised into thei
consumption and not detailed characteristics of requésts. ngi nx web servers. Specifically, Netflix is investigating: 1)
et al. [18] perform a detailed investigation of TCP connatti the use of larger prefetch sizes, 2) the use of differenigpehf
use and determine that content is often downloaded reggatedizes for different bit rates, and 3) the use of information
and they provide a client-side solution to reduce redundasiout the client's progress to potentially moderate agives

requests for data. Adhikari et al. [1] provide some detafls @refetching when clients are in a transient phase.  In the
Netflix bandwidth use, but they investigate CDNs, rathenthduture, we plan to create a Netflix-like benchmark for eval-
individual servers. uating video servers, using a more complete charactesizati

There are other workload studies that have characterizefdthe Netflix workload, including characteristics of tiland
spatial locality in some manner. Many studies characterizessions [28].
session duration [7], [10], [32]. Some researchers extend
this and quantify the effect of skips and pauses on spatial
locality [5], [9]. We have not found a study that considers Brecht and Eager would like to thank the Natural Sciences
the effect of rate adaptation on the spatial locality of HTTBnd Engineering Research Council (NSERC) of Canada for
streaming video workloads. partial support for this project through Discovery Grants.
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