
COMMUNICATIONS OF THE ACM November 2007/Vol. 50, No. 11 33

EMPIRICAL STUDIES
TO BUILD A SCIENCE OF
COMPUTER SCIENCE

By Victor R. Basili and
Marvin V. Zelkowitz

Computer science has been slow to adopt an
empirical paradigm, even as practically all other
sciences have done so. Since the time of
Aristotle 2,500 years ago, the “natural sciences”
(such as physics and biology) have observed
nature in order to determine reality. In
computer science this rarely happens [12].
Experimentation generally means the ability to
build a tool or system—more an existence proof
than experiment. While experiments are often
organized around the evaluation of algorithms
(such as performance and workflow), little has
been done that involves humans (such as the
development of high-performance codes and

We learn to
develop software

by building,
testing, and

evolving
models.

34 November 2007/Vol. 50, No. 11 COMMUNICATIONS OF THE ACM

test sets based on specified test criteria). But any
future advances in the computing sciences require
that empiricism takes its place alongside theory for-
mation and tool development.

Here, we explore how to apply an empirical
approach toward understanding important problems
in software development. Understanding a discipline
demands observation, model building, and experi-
mentation. Empirical study is about building models
that express our knowledge of the aspects of the
domain of greatest interest to us (such as those that
cause us the most problems). Learning involves the
encapsulation of knowledge, checking that our
knowledge is correct, and evolving that knowledge
over time. This experimental paradigm is used in
many fields, including physics, medicine, and manu-
facturing. Like other sciences, many disciplines
within computer science (such as software engineer-
ing, artificial intelligence, and database design) like-
wise require an empirical paradigm.

Because software development is a human-based
activity, experimentation must deal with the study of
human activities. Experimentation, in this context,
involves evaluating quantitative and qualitative data
to understand and improve what the development
staff does (such as defining requirements, creating
solutions to problems, and programming).

Experimentation requires real-world laboratories.
Developers must understand how to build systems
better by studying their own environments.
Researchers need laboratories in which to observe and
manipulate development variables, provide models to
predict the cost and quality of the systems, and iden-
tify what processes and techniques are most effective
in building the system under the given conditions to
satisfy a specific set of goals. Research and develop-
ment have a synergistic relationship that requires a
working relationship between industry and academe.

If we take the example of the development of soft-
ware systems, the developer needs evidence of what
does and does not work, as well as when it works. A
software organization must be able to answer ques-
tions like: What is the right combination of technical
and managerial solutions for my problem and envi-
ronment? What is the right set of processes for my
business? How should they be modified? How do we
learn from our successes and failures? And how do we
demonstrate sustained, measurable improvement? All
must be supported by empirical evidence.

For example, a specific development question
might be: When is a peer review more effective than
functional testing? A number of studies [4, 7] suggests
that under specified conditions, peer review is more
effective than functional testing for faults of omission

and incorrect specification and that functional testing
is more effective for faults related to numerical
approximations and control flow. In some situations,
the cost of the review meeting may outweigh the ben-
efits of the meeting [11].

Empirical evidence sometimes supports and some-
times does not support intuition. When it does, one
might feel that empirical evidence is unnecessary.
This is fallacious reasoning since the way we build
knowledge is through studies, first recognizing rela-
tionships (that is, A is more effective than B under the
following conditions), then evolving the relationship
quantitatively (such as A provides a 20% improve-
ment over B). Demonstrating that gravity exists satis-
fies our intuition, but being able to measure it adds
detail to our understanding. When the evidence does
not support our intuition, we must change our men-
tal models and identify hypotheses and conditions for
why it doesn’t.

SOFTWARE ENGINEERING LABORATORY

We write this from the point of view of our personal
experience motivating and encouraging experimen-
tal research in computer science. We start with an
early example of empirical studies—the NASA God-
dard Software Engineering Laboratory (SEL) from
1976 to 2002—where the goal was to observe proj-
ect development as a means to better understand,
control, track, and improve software development
for ground-support systems.

Basic scientific and engineering concepts were
adapted to the software engineering domain. The rel-
evant elements were captured in the quality improve-
ment paradigm (QIP), which functioned as an
evolutionary learning approach for using packaged
knowledge to better understand how to build systems
[3]. The process of building, refining, and testing
models was encapsulated in a model called the Expe-
rience Factory (EF) [2]. Data was collected and inter-
preted via the Goal Question Metric (GQM)
Approach [5]. Product development was monitored
through observation and data collection so adjust-
ments could be made in real time and synthesized
into models. The results were packaged and deployed
in future projects.

The SEL conducted two major classes of study:
controlled experiments and case studies. The con-
trolled experiments were applied to new techniques to
identify key variables, study programming in the
small, check out methods for data collection, and
reduce the risk of applying the new technique on live
projects. Case studies were used for live projects to
check the scalability of the technique and understand
how to adapt, tailor, and integrate the techniques.

The use of QIP, GQM, and EF enabled NASA to
improve its software over the lifetime of the SEL.
Additional studies were carried out in classroom set-
tings or in training studies at NASA. Many processes
were tried, sometimes over several projects, which
were carefully monitored to reduce risk and determine
where optimization was possible.

Some quantitative results (see Figure 1) show a dra-
matic increase in the reuse of source code and decrease
in defects from 1985 to 1995 across many SEL proj-
ects. At the same time, costs decreased 55%, then of
the remaining 45% a further 42% decrease of that.
An independent study in 1993 estimated that from
1976 to 1992, the functionality of these systems
increased fivefold [6]. The SEL was instrumental in
not only demonstrating that
large-scale empirical studies
could be run but in develop-
ing results that showed the
value of cleanrooms, inspec-
tions, Ada, and the reuse of
source code; it also pro-
duced many documents for
managing software develop-
ment and for collecting and
using data useful to the soft-
ware development commu-
nity.

The key point of this
example is that empiricism is needed to build knowl-
edge about a domain and that experimentation
focused on people is possible and necessary. Only
knowledge gained through experimentation can lead
to new opportunities (such as improved software
development). The process is slow, but each study
advances our knowledge.

HIGH-END COMPUTING

While the need for experimentation and data collec-
tion in software engineering is an accepted part of
software engineering culture [1, 10] and experimen-
tation is accepted as an increasingly important
requirement for publication [12], the need for exper-
imentation is not the case for computer science in
general. Experimental concepts can and must be
applied in a variety of computer science environ-
ments. Since 2003, we have been studying high-end
computing (HEC) where multiple processors are used
to achieve computational rates in teraflops (1012 float-
ing point operations per second), and the goal of the
Defense Advanced Research Projects Agency High
Productivity Computing System program (HPCS,
www.highproductivity.org/) is to achieve petaflops
(1015 flops) speed by 2012. Given the need to produce

results, the DARPA-funded theme of HPCS was
“Time to Solution 5 Development Time 1 Execu-
tion Time.” Prior emphasis in the domain was on exe-
cution time, that is, to run benchmark programs that
exercise hardware efficiently, even though most pro-
grams fail to achieve the performance of these highly
tuned benchmarks.

In addition to the hardware question of how fast
these machines are able to execute, the HPCS pro-
gram wants to know if the machines can be pro-
grammed effectively. How does an HEC environment
affect the development of an HEC program? What is
the cost and benefit of applying a particular technol-
ogy (such as MPI, OpenMP, UPC, Co-Array Fortran,
XMTC, and StarP) in the development of HEC pro-

grams? What are the rela-
tionships among the
technologies, work flows,
development cost, defects,
and performance? Can we
build predictive models of
these relationships? And
what trade-offs are possi-
ble and desirable?

Understanding, pre-
dicting, and improving
development time requires
empirical methods to
properly evaluate pro-
grammer, as well as
machine, performance.
We need theories,

hypotheses, and guidelines that allow us to characterize,
evaluate, predict, and improve how an HEC environ-
ment—hardware, software, developer—affects develop-
ment of these high-end computing codes. Running a
variety of studies involving experts and novices collect-
ing empirical data generates experiential knowledge in
the form of predictive models and heuristics useful for
identifying knowledge.

As with the SEL, the approach is to develop knowl-
edge based on empirical studies. But while the SEL
studied a software-development domain involving
professional programmers, within the HPCS program
computer scientists interact mainly with computa-
tional scientists and physicists. They are more inter-
ested in answering science questions with the help of
a computer and less interested in how well the com-
puter programs work. Very different drivers (such as
context variables) compared to the conventional com-
puting domain operate in the HEC domain where
empirical studies are used to try to understand these
drivers.

Our HPCS research model is more complex than

COMMUNICATIONS OF THE ACM November 2007/Vol. 50, No. 11 35

Basili fig 1 rev. (11/07)

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

Reuse rates Relative defect rates

Defects=100%
Cost=100%

Max=35%

Avg=18%

Min=11%

Max=97%

Avg=73%

Cost=55%

Defects=25%

Min=18%

Max=97%

%
re

us
e

/d
ec

re
as

e
in

de
fe

ct
s/

de
cr

ea
se

in
co

st
s

Avg=79%

Min=62%

Cost=42%

Defects=16%

Relative cost

1985–1989 1990–1992 1993–1995

Figure 1. Increases in reuse
rates and decreases in defect rates
and costs in the SEL.

what we used in the SEL (see Figure 2). Pilot studies
involving single-programmer assignments to identify
the important variables expose data-collection prob-
lems, characterize workflows, and debug experimental
designs. We ran studies 2004–2006 to calibrate an
effort model against actual effort using small, limited-
scale assignments (such as array compaction, parallel
sorting, LU decomposition) developed in graduate
courses at a number of uni-
versities.1 Observational
studies simulated the effects
of the treatment variables in a
realistic environment, vali-
dating the data-collection
tools and processes. These
studies led to replicated con-
trolled experiments of single
programmers to increase
confidence in the results and
provide hypotheses about
novice developers (such as
controlled experiments com-
paring the effort required to
develop code in MPI vs.
OpenMP).

Team projects with gradu-
ate students in the participat-
ing universities studied scale-up and multi-developer
workflows. Full-scale applications dealt with nuclear
simulation, climate modeling, and protein folding
developed at the five Advanced Simulation & Com-
puting Centers2 or run at the San Diego Supercom-
puter Center. Compact applications were developed
for bioinformatics, graph theory, and sensor networks
involving combinations of kernels developed by
experts testing key benchmarks. They are used to
understand multiprogrammer development work-
flows.

Mixed throughout these studies are interviews we
conducted with developers and users in a variety of
environments. We collected “folklore,” or unsup-
ported notions, stories, or sayings widely circulated,
from practitioners in government, industry, and aca-
demic research labs. They are used to generate
hypotheses that guide further experiments and case
studies. Formalizing folklore involves four activities:

• Identify the relevant variables and terminology
and simple relationships among variables, looking

for consensus or disagreement;
• Identify the context variables that affect their

validity, using surveys and other mechanisms;
• Develop hypotheses that can be specified and

measured; and
• Verify the hypotheses via experimentation.

The end result of this research was to package our
acquired knowledge by:

• Identifying the rele-
vant variables, con-
text variables,
programmer work-
flows, and mecha-
nisms for identifying
variables and relation-
ships;

• Identifying measures
for the variables that
can be collected accu-
rately or proxies that
can be substituted for
these variables; and

• Identifying the relationships among the variables
and the contexts in which the relationships are true.

Although validity may be threatened by using stu-
dents in classroom experiments, there is support for
the following hypotheses among this (interviewed)
population [9]:

• OpenMP offers greater speedup for novices in a
shorter amount of time when the problem is
more computationally based than communica-
tion based;

• OpenMP saves 35%–75% of effort over MPI on
most problems, UPC/CAF saves approximately
40% of effort over MPI, and XMT-C saves
approximately 50% of effort over MPI;

• The programming model has a greater influence
on performance than on experience with the
problem to be solved; and

• When performance is the goal, experts and stu-
dents spend the same amount of time, but
experts produce significantly better performance.

On the other end of the size spectrum, characteriz-
ing processes based on full-scale applications being
developed at the ASC Centers and run at the San
Diego Supercomputing Center, we identified three
classes of user:

Marquee. Running at very large scale, often using

36 November 2007/Vol. 50, No. 11 COMMUNICATIONS OF THE ACM

Basili fig 2 (11/07)

Si
ng

le
pr

og
ra

m
m

er
Pr

og
ra

m
m

in
g

te
am

s
Identify variables, experimental design

Validate pilot results

Generate confidence and hypotheses

Generalization to multi-developers

Pilot study in classroom setting

Observational study with production programmer

Controlled experiment

Learn projects with graduate students

Scale-up study with professional developers

Figure 2. HPCS
experimentation
research model.

1
University of California, San Diego, University of California, Santa Barbara, Univer-

sity of Hawaii, Iowa State University, University of Maryland, Mississippi State, MIT,
and University of Southern California.
2
California Institute of Technology, University of Chicago, University of Illinois,

Urbana-Champaign, Stanford University, and University of Utah.

the full system and supported by a consultant to
help improve performance;

Normal. Typically using 128 to 512 processors and
less likely to tune their codes; and

Novices. Just learning parallel programming.

Determining inputs to systems can take weeks and
are themselves research projects. Addressing the chal-
lenge of debugging (such as in modules) may work in
isolation but fail when connected together. Programs
may work on 32 processors but break down on 64
processors; it is especially difficult to debug failures on
hundreds of processors. Performance is treated as a
constraint, not a goal to be maximized; that is, per-
formance is important until it is “good enough” for
the developers’ machine allocation. Portability is a
must, as new computers are being developed every
few years; developers can’t commit to technologies
unless they know they will be there on future plat-
forms. Many users prefer not to use performance tools
because they involve complications scaling to large
processors, have difficult-to-use interfaces, involve
steep learning curves, and provide too much detail.
Moreover, codes are multi-language and run on
remote machines. Many software tools simply don’t
work in this environment. There is extensive reuse of
libraries but little or no reuse of frameworks [8].

Developers have much to learn about the develop-
ment of high-end codes. The folklore is often incon-
sistent, because context is assumed rather than made
explicit. What is true for marquee users is not also true
for novices. What is true for one subapplication area
is not necessarily also true for another area. Organiza-
tions and domains have different characteristics, goals,
and cultures, and stakeholders have different needs
and profiles. Computer scientists must understand
when certain relationships hold and when they break
down. Exploring these environments and experiment-
ing with a variety of strategies is the only way to fully
understand these issues.

CONCLUSION

Experimentation is fundamental to any engineering
or science discipline. The interplay between theorists
and experimentalists is the way we learn, building,
testing, and evolving models. It is the most depend-
able way physics, medicine, and manufacturing have
evolved as disciplines. The learning process is con-
tinuous and evolutionary.

Computer science involves people solving problems,
so computer scientists must perform empirical studies
that involve developers and users alike. They must
understand products, processes, and the relationships
among them. They must experiment (human-based

studies), analyze, and synthesize the resulting knowl-
edge. They must package (model) that knowledge for
further development. Empirical studies involve many
individuals and require laboratories to do good experi-
mentation. Interaction among industrial, government,
and academic organizations is essential.

References
1. Arisholm, E., Sjoberg, D., Carelius, G., and Lindsjom, Y. A Web-based

support environment for software engineering experiments. Nordic
Journal of Computing 9, 3 (Sept. 2002), 231–247.

2. Basili, V., Caldiera, G., McGarry, F., Pajersky, R., Page, G., and Walig-
ora, S. The Software Engineering Laboratory: An operational software
experience factory. In Proceedings of the 14th ACM/IEEE International
Conference on Software Engineering (Melbourne, Australia, May 11–15,
1992), 370–381.

3. Basili, V. and Green, S. Software process evolution at the SEL. IEEE
Software 11, 4 (July 1994), 58–66.

4. Basili, V. and Selby, R. Comparing the effectiveness of software testing
strategies. IEEE Transactions on Software Engineering 13, 12 (Dec.
1987), 1278–1296.

5. Basili, V. and Weiss, D. A methodology for collecting valid software
engineering data. IEEE Transactions on Software Engineering 10, 3
(Nov. 1984), 728–738.

6. Basili, V., Zelkowitz, M., McGarry, F., Page, J., Waligora, S., and
Pajerski, R. Special report: SEL’s software process-improvement pro-
gram. IEEE Software 12, 6 (Nov. 1995), 83–87.

7. Boehm, B. Software Engineering Economics. Prentice Hall, Englewood
Cliffs, NJ, 1981.

8. Carver, J., Hochstein, L., Kendall, R., Nakamura, T., Zelkowitz, M.,
Basili, V., and Post, D. Observations about software development for
high-end computing. Cyberinfrastructure Technology Watch Quarterly 2,
4A (Nov. 2006), 33–38.

9. Hochstein, L., Carver, J., Shull, F., Asgari, A., Basili, V.,
Hollingsworth, J., and Zelkowitz, M. Parallel programmer productiv-
ity: A case study of novice HPC programmers. In Proceedings of SC05
(Seattle, Nov. 12–18). ACM Press, New York, 2005, 1–9.

10. Johnson, P., Kou, H., Agustin, J., Zhang, Q., Kagawa, A., and
Yamashita, T. Practical automated process and product metric collec-
tion and analysis in a classroom setting: Lessons learned from Hackys-
tat-UH. In Proceedings of the ACM/IEEE International Symposium on
Empirical Software Engineering (Los Angeles, Aug. 19–29, 2004),
136–144.

11. Porter, A., Siy, H., and Votta, L. A survey of software inspections.
Advances in Computers, Vol. 42, M. Zelkowitz, Ed. Academic Press, San
Diego, 1996, 39–76.

12. Zelkowitz, M. Data-sharing enabling technologies. In Empirical Soft-
ware Engineering Issues: Critical Assessment and Future Directions,
LNCS-4336. Springer-Verlag, Berlin, 2007, 108–110.

Victor Basili (basili@cs.umd.edu) is a professor of computer
science at the University of Maryland, College Park.
Marvin V. Zelkowitz (mvz@cs.umd.edu) is a professor of
computer science at the University of Maryland, College Park.

This research was supported in part by Department of Energy contract DE-FG02-
04ER25633 and Air Force grant FA8750-05-1-0100 to the University of Maryland.

The SEL study team includes Frank McGarry, Rose Pajerski, Jerry Paige, and Sharon
Walagora. The HPCS study team includes Jeff Hollingsworth, Taiga Nakamura, Sima
Asgari, Forrest Shull, Nico Zazworka, Rola Alameh, Daniela Suares Cruzes, Lorin
Hochstein, Jeff Carver, Philip Johnson, Nicole Wolter, and Michael McCracken. Pro-
fessors who allowed us to use their classes include Alan Edelman, John Gilbert, Mary
Hall, Aiichiro Nakano, Jackie Chame, Allan Snavely, Alan Sussman, Uzi Vishkin, Ed
Luke, Henri Casanova, and Glenn Luecke.

© 2007 ACM 0001-0782/07/1100 $5.00

c

COMMUNICATIONS OF THE ACM November 2007/Vol. 50, No. 11 37

