
USENIX Association

Proceedings of the FREENIX Track:
2004 USENIX Annual Technical Conference

Boston, MA, USA
June 27–July 2, 2004

© 2004 by The USENIX Association All Rights Reserved For more information about the USENIX Association:
Phone: 1 510 528 8649 FAX: 1 510 548 5738 Email: office@usenix.org WWW: http://www.usenix.org

Rights to individual papers remain with the author or the author's employer.
 Permission is granted for noncommercial reproduction of the work for educational or research purposes.

This copyright notice must be included in the reproduced paper. USENIX acknowledges all trademarks herein.

Xen and the Art of Repeated Research

Bryan Clark, Todd Deshane, Eli Dow, Stephen Evanchik, Matthew Finlayson, Jason Herne,
Jeanna Neefe Matthews

Clarkson University
{clarkbw, deshantm, dowem, evanchsa, finlayms, hernejj, jnm}@clarkson.edu

Abstract

Xen is an x86 virtual machine monitor produced by the University of Cambridge Computer Laboratory and released
under the GNU General Public License. Performance results comparing XenoLinux (Linux running in a Xen virtual
machine) to native Linux as well as to other virtualization tools such as User Mode Linux (UML) were recently pub-
lished in the paper “Xen and the Art of Virtualization” at the Symposium on Operating Systems Principles (October
2003). In this study, we repeat this performance analysis of Xen. We also extend the analysis in several ways, includ-
ing comparing XenoLinux on x86 to an IBM zServer. We use this study as an example of repeated research. We
argue that this model of research, which is enabled by open source software, is an important step in transferring the
results of computer science research into production environments.

1. Introduction

Repeated research is a well-respected model of investi-
gation in many sciences. Independent tests of published
research are valued because they document the general
applicability of results. In addition, repeated research
often sheds new light on aspects of a work not fully
explored in the original publication.

In computer science, however, it is most common for
researchers to report results from testing the software
that they themselves have implemented. There are many
reasons for this, including the wide variety of hardware
and software platforms and the difficulty transferring
fragile research software to a new environment. How-
ever, without independent trials, it is difficult to estab-
lish reported experience as repeatable fact.

Computer systems researchers often note with dismay
the number of great ideas that are not incorporated into
production computer systems. We argue that encourag-
ing repeated research is an important step towards this
transfer of technology. Researchers who release their
code to the open source community make a valuable
step towards encouraging repeated research in computer
science.

In this paper, we present results that repeat and extend
experiments described in the paper “Xen and Art of
Virtualization” by Barham et al. from SOSP-03.
[Xen03]. Xen is an x86 virtual machine monitor pro-
duced by the University of Cambridge Computer Labo-
ratory in conjunction with Microsoft Research and Intel
Research. Xen has been released under the GNU Gen-

eral Public License at xen.sourceforge.net.

In [Xen03], Barham et al. explore the performance of
XenoLinux – Linux running in Xen. They compare per-
formance to native Linux as well as to other virtualiza-
tion tools such as User Mode Linux (UML) and
VMWare Workstation. They also examine how the
performance of Xen scales as additional guest operating
systems are created.

In this paper, we first report the results of repeating
measurements of native Linux, Xenolinux and User
Mode Linux on hardware almost identical to that used
in the Xen paper. Second, we present results comparing
Xen to native Linux on a less powerful PC. Third, we
evaluate Xen as a platform for virtual web hosting.
Fourth, we compare the performance of benchmarks
running in XenoLinux to the same benchmarks running
in Linux on an IBM zServer that we won as a prize in
the 2001 IBM Linux Scholar Challenge competition.
Finally, we discuss our general experiences with re-
peated research.

We structure the rest of our paper around a set of ques-
tions and their answers.

• Can we reproduce the results from the SOSP-
03 Xen paper?

• Could we realistically use Xen for virtual web
hosting?

• Do you need a $2500 Dell Xeon Server to run
Xen effectively, or will a 3 year old x86 do the
job?

• How does a virtual machine monitor on com-
modity PCs compare to a virtual machine
monitor on a mainframe specifically designed
to support virtualization?

• What have we learned about repeated re-
search?

2. Repeat the SOSP-03 Performance Analy-
sis of Xen

Our first task was to convince ourselves that we could
successfully reproduce the results presented in [Xen03].
The paper itself contained clear details on their test ma-
chine – a Dell 2650 dual processor 2.4GHz Xeon server
with 2 GB RAM, a Broadcom Tigon 3 Gigabit Ethernet
NIC and a single Hitachi DK32EJ 146 GB 10K RPM
SCSI disk.

We had little trouble acquiring a matching system. We
ordered a machine matching their specifications from
Dell for approximately $2000. If we had been repeating
older research, reproducing an acceptable hardware
platform might have been a significant challenge.

The only significant difference in our system was the
SCSI controller. Their controller had been a 160
MB/sec DELL PERC RAID 3Di and ours was a 320
MB/sec Adaptec 29320 aic79xx. Thus our first hurdle
was the need to port the driver for our SCSI controller
to Xen. The Xen team was extremely helpful in this
process and in the end we contributed this driver (and
several others) back into the Xen source base.

Our second hurdle was assembling and running all of
the benchmarks used in the Xen paper including OSDB,
dbench, lmbench, ttcp, SPEC INT CPU 2000 and
SPECweb99. (The Xen team was quite helpful in pro-
viding details on the parameters they used for each test
and even providing some of their testing scripts.) We
generalized and extended their scripts into a test suite
that would help save others this step in the future.

In our test suite, we replaced SPEC INT and SPECweb
as the details of the test are not made public and they
are only available for a fee from SPEC [SPECWEB]
[SPECINT]. (Open benchmarks are nearly as important

SOSP03 Xen Results

0
0.2
0.4
0.6
0.8

1
1.2
1.4

SPEC INT2000
(score)

Linux build time
(s)

OSDB-IR (tups/s) OSDB-OLTP
(tup/s)

dbench (score) SPEC WEB99
(score)

R
el

at
iv

e
sc

o
re

 t
o

 L
in

u
x

L
X

U

Figure 1a Relative Performance of Native Linux (L), XenoLinux (X) and User-Mode Linux (U). This data
is from Figure 3 of [Xen03].

Repeated Results

0
0.2
0.4
0.6
0.8

1
1.2
1.4

CPU Intens ive
(s , real)

Linux build time
(s)

OSDB-IR
(tups/s)

OSDB-OLTP
(tup/s)

dbench (score) Web server (%
successful
requests)

R
el

at
iv

e
sc

o
re

 t
o

 L
in

u
x

L

X

U

Figure 1b Repeated Results, Relative Performance of Native Linux (L), XenoLinux (X) and User Mode

as open source!) Instead of CPU-intensive SPECINT
2000, we chose FourInARow, an integer intensive pro-
gram from freebench.org [FourInARow]. We wrote our
own replacement for the web server benchmark,
SPECweb99, using Apache JMeter. We discuss our web
benchmark in more detail in Section 3.

Our final hurdle was that our initial measurements
showed much lower performance for native Linux than
[Xen03]. In comparing the details of our configuration
with the Xen team, we discovered that performance is
much higher with SMP support disabled.

With those hurdles behind us, we successfully repro-
duced measurements from [Xen03] comparing the per-
formance of XenoLinux and UML to native Linux. In
Figure 1, we show the results from Figure 3 of [Xen03]
and our results. In Figure 1a, we show data from Figure
3 of [Xen03] (minus the data on VMWare workstation).
In Figure 1b, we show our results from performing simi-
lar experiments. The native Linux results are with SMP
disabled in all tests.

We add error bars to illustrate standard deviation where
we ran at least 5 tests of each benchmark. OSDB on
UML gave errors in the majority of runs. We received
only one score for OSDB-IR and no scores for OSBD-
OLTP from all our tests. We are missing some meas-
urements for UML. We investigated further, but were
unable to determine a cause.

Reporting standard deviation adds important informa-
tion about the reliability of a reported score. The stan-
dard deviation of most benchmarks is less than 1%.
Dbench has a standard deviation of 14% and 18% for
native Linux and XenoLinux respectively.

In our tests, the relative performance of XenoLinux and
UML compared to native Linux is nearly identical to
the performance reported in [Xen03] as shown in Fig-
ures 1a and 1b. Our CPU-intensive and web server
benchmarks are not directly comparable to SPEC INT
and SPECweb99, but accomplish a similar purpose and
demonstrate similar relative performance.

In Table 1, we extract only the Xen bars from Figure 1
for the benchmarks that are directly comparable: Linux
build time, dbench, OSDB-IR and OSDB-OLTP. Our
tests show Xen to be slightly slower relative to native
Linux on three of the four repeated tests. In each case
the difference is less than 5%, but it is also outside the
standard deviation that we measured. Because the dif-
ference is so small in this case, we don’t see a problem
with the results in [Xen03]. However, it is a good illus-
tration of the value of repeated results in validating pub-

lished numbers.

Our web server benchmark shows Xen to be better than
native Linux with SMP disabled. However, if we com-
pare to Linux with SMP enabled, Xen and native Linux
are nearly matched as shown in [Xen03] Figure 2. This
is one frustration we had with the results in [Xen03]:
some results are reported with SMP enabled and some
with SMP disabled. The authors gave native Linux as
much advantage as possible relative to Xen each time.
This is certainly honorable, but it made repeating the
results more difficult.

Finally, we are ready to answer our first question: Can
we reproduce the results from the SOSP-03 Xen paper?
We have mentioned a few caveats, but overall the an-
swer is yes. We can reproduce the comparison of Xeno-
Linux and native Linux to within a few percent on
nearly identical hardware.

Performance
Relative to
Native
Linux

Xen
Repeated

(std deviation)

Xen
 SOSP-03

Linux Build 0.943 (0.003) 0.970
OSDB-IR 0.892 (0.024) 0.919
OSDP-
OLTP

0.905 (0.020) 0.953

dbench 0.962 (0.182) 0.957

Table 1 Comparing the Relative Performance of
XenoLinux to native Linux in our repeated experi-
ments to the results in the [Xen03]. Numbers repre-
sent the percentage of the original Linux perform-
ance retained in XenoLinux. Numbers in parenthe-
ses are the standard deviation.

Web Server Benchmark

0

0.2

0.4

0.6

0.8

1

1.2

L (SMP) L (UP) X

%
 s

u
cc

es
sf

ul
 r

eq
u

es
ts

Figure 2 Comparing Xen to native Linux with SMP
enabled to native Linux with SMP disabled for our
web server benchmark.

3. Xen and Virtual Web Hosting

One of the stated goals of Xen is to enable applications
such as server consolidation. In comparing Xen to
Denali, [Xen03] page 2 states “Denali is designed to
support thousands of virtual machines running network
services which are small-scale and unpopular. In con-
trast, Xen is intended to scale to approximately 100
virtual machines running industry standard applications
and services.”

We set out to evaluate the suitability of Xen for virtual
web hosting. Specifically, we wanted to determine how
many usable guests could be supported for the purpose
of hosting a web server.

[Xen03] includes a figure showing the performance of
128 guests each running CPU Intensive SPEC
INT2000. We hoped to begin by showing the perform-
ance of 128 guests each running a web server bench-
mark. However, when we went to configure our Dell
Xeon server for this test, we ran into certain resource
limitations. First, as they state in the paper, the hypervi-
sor does not support paging among guests to enforce
resource isolation. Therefore each guest must have a
dedicated region of memory. For the 128 guest SPEC
INT test, they used 15 MB for each guest reserving 80
MB for the hypervisor and domain0 [Pratt03]. This is
not sufficient for an industry standard web server. Sec-
ond, they used raw disk partitions for each of the 128
guests. The Linux kernel supports only 15 total parti-
tions per SCSI disk. Getting around this limit requires
patching the kernel (as the Xen team did) or using a
virtualized disk subsystem. We tried the virtualized disk
subsystem in the Xen 1.0 source tree without success.
We plan to evaluate the 1.1 source tree.

If we were to increase the memory allocated per guest
from 15 MB to a more typical memory size of 128 MB,
we could accommodate only 15 guests plus domain0.
To support 100 guests at 128 MB per guest would re-
quire over 12 GB of memory. At 64 MB per guest, 100
guests would require over 6 GB of memory. In our
Xeon server, the most memory we can support is 4 GB.

We also wished to re-evaluate the performance of mul-
tiple guests running concurrent web servers under load.
Figure 4 of [Xen03] compares 1-16 concurrent web
servers running as separate processes on native Linux to
the same number running in their own Xen guest. The
results indicate little degradation even at 16 concurrent
servers.

Instead of using SPECweb99 to measure web server
performance as in [Xen03], we wrote a replacement for
it using Apache JMeter. JMeter is a flexible framework
for testing functionality and performance of Web appli-
cations under load. More information including our
JMeter test plans and documentation is available at
http://www.clarkson.edu/class/cs644/xen.

Table 2 shows the type and distribution of requests sent
to the Web servers under test in SPECweb99 [SPEC-
WEB]. They base this distribution on an analysis of
typical web server logs. We instrumented JMeter to
follow the same distribution of requests and placed the
proper static and dynamic content on each server.

SPECweb99 reports the number of simultaneous con-
nections that meet a minimum set of error rate and
bandwidth requirements [SPECWEB]. If a connection
does not conform to the requirements, it does not con-
tribute at all to the score. For our tests, we sent requests
from JMeter engines on four remote clients. We do not
factor out requests from “non-conforming” clients, nor
do we limit the request rate from these machines. The
tests complete after a specified number of requests have
been issued. This number scales directly with the num-
ber of servers under test. We measured how many of the
requests were returned correctly within 300 ms. We
chose this value as a reasonable packet response time
over a fast private LAN.

Due to the difference in reporting, we cannot compare
SPECweb99 results directly to the results from our web
server tests. Figure 3 reports our results for 1 to 16
concurrent servers. We report results for native Linux
both with SMP enabled and disabled. For Xen, we allo-
cated 98 MB for each guest in addition to domain0.

Our results show that native Linux with SMP enabled
retains high performance even with 16 concurrent web
server processes under high load significantly higher
than SPECweb99. XenoLinux drops off steadily as
more guests are added. Linux with SMP disabled is
shown for completeness.

Thus, we are ready to answer our second question:
Could we realistically use Xen for virtual web hosting?
We have found Xen to be quite stable and could easily
imagine using it for 16 moderately loaded servers.
However, we would not expect to be able to support
100 guests running industry standard applications.

 70% Static Content
 35% Less than 1KB

class
 9 files evenly
distributed in
the range

 50% 1-to-10-KB
class

9 files evenly
distributed in
the range

 14% 10-to-100-KB
class

9 files evenly
distributed in
the range

 1% 100KB-to-
1MB class

9 files evenly
distributed in
the range

 30% Dynamic Content
 16% POSTs to

simulate user
registration
forms

Generic user
registration
form written.

 41.5% GETs to simu-
late ad banner
rotation

Number of
banner files in
SPECweb99
unknown; We
used 3 files
468x60 pixels.

 42% GETs with
cookies

Set a single
cookie < 1K.

 0.5% CGI GETs for
CGI web pages

Simple HTML
page < 1K
generated.

Table 2 Type and Distribution of Web Requests

Web server performance

0
0.2
0.4
0.6
0.8

1
1.2

1 2 4 8 16

Concurrent Apache Servers

%
 s

uc
ce

ss
fu

l r
eq

ue
st

s

L (SMP)

L (UP)

X

Figure 3 Web server performance for native Linux
with SMP enabled, native Linux with SMP enabled
and XenoLinux.

4. Comparing XenoLinux to Native Linux
on Older PC Hardware

After reading [Xen03], we wondered how Xen would
perform on an older PC rather than a new Xeon Server.
So in addition to running on a 2.4 GHz dual processor
server, we ran our tests on a P3 1 GHz processor with
512 MB of PC133 memory with 10/100 3COM
(3c905C-TX/TX-M Ethernet card) and a 40 GB West-
ern Digital WDC WD400BB-75AUA1 hard drive.

In Figure 4a, we first show the performance of Xen and
native Linux on this older PC platform relative to native
Linux on the Xeon server. Clearly raw performance is
less on the older PC. In Figure 4b, we show the relative
performance of Xen to native Linux on the older plat-
form to the relative performance of Xen to native Linux
on the faster platform. On average, Xen is only 3.5%
slower relative to native Linux on the older PC.

Although the relative overhead is nearly the same on
both systems, one disadvantage of the older PC is that
we will be able to create fewer guests. For example,
while we are able to create 16 guests with 128 MB of
memory each on the Xeon server, we can create only 3
such guests plus domain0 on the older PC.

Thus, we are ready to answer our third question: Do you
need $2500 Dell Xeon Server to run Xen effectively or
will by 3 year old x86 do the job? No, an older PC can
be used to efficiently use Xen, but only with a small
number of guests.

5. Xen on x86 vs IBM zServer

Virtualization for the x86 might be relatively new
[Denali02, VMWare], but it has been around for over
30 years on IBM mainframes [VM370]. After reading
[Xen03], it is natural to question how multiple Linux
guests with Xen on x86 compare to multiple Linux
guests on an IBM mainframe designed specifically to
support virtualization. This is especially relevant given
the following posting from Keir Fraser of the Xen team
to the Linux Kernel Mailing List: "In fact, one of our
main aims is to provide zseries-style virtualization on
x86 hardware!" [LKML03]

In 2001, some of the authors won the top prize in the
IBM Linux Challenge competition, a zServer. Specifi-
cally, we have an IBM eServer z800 model 2066-0LF
with 1 processor and 8 GB of memory. It is connected
to an ESS800 Enterprise Storage System via Ficon with
2 channel paths from 1 Ficon card. This machine was
valued at over $200,000.

Our zServer is an entry-level model. The single CPU
executes a dummy instruction every other cycle; a soft-
ware upgrade is required to remove this feature. It

could be configured to have up to 4 CPUs and up to 32
GB of memory. In addition, we could get up to 8 times
the I/O bandwidth with additional FICON controllers

In Figure 5, we compare performance on the zServer to
native Linux and Xen on both the new Xeon server and
the old PC. On the zServer, we ran Linux guests with
the 2.4.21 kernel just as in our x86 native Linux and
Xen tests. For the zServer, it is specifically 2.4.21-
1.1931.2.399.ent #1 SMP. We found that Xen on the
Xeon server significantly outperforms the zServer on
these benchmarks.

At first, we were surprised by these results. However,
results presented by IBM in “Linux on zSeries Perform-
ance Update” by Thoss show comparable performance
for a modern z900 with 1 CPU [ZPERF]. In Figure 6,
we present a graph similar to one in [ZPERF, p14]
showing the performance of dbench on our zServer, our
Xeon server and our older x86. As in [ZPERF],
throughput for a one CPU zServer does not rise above
150 MB/sec. However, we show a more significant deg-
radation for more than 15 concurrent clients.

Score R elative To N ative Linux on Xeon Server

0

0.25

0.5

0.75

1

1.25

CPU Intensive
(s,real)

Linux build t ime
(s)

OSDB-IR (tups/s) OSDB-OLTP
(tup/s)

dbench (score)R
el

at
iv

e
sc

o
re

 to
 L

in
u

x
o

n
X

eo
n

 s
er

ve
r

L

X
L (old machine)

X (old machine)

Figure 4a Relative Performance of native Linux and Xen on new Xeon server.

Xen Relative to Native Linux On the Same Platform

0

0.25

0.5

0.75

1

1.25

CPU Intensive
(s,real)

Linux build time (s) OSDB-IR (tups/s) OSDB-OLTP
(tup/s)

dbench (score)

R
el

at
iv

e
sc

or
e

to
 L

in
ux

 o
n

th
e

sa
m

e
pl

at
fo

rm

X

X (old machine)

Figure 4b Relative Performance of Xen to native Linux on the same platform.

This comparison of our results to [ZPERF] leads us to
believe that no simple software configuration enhance-
ments will improve performance on our zServer, and
that our figures although generated on an older model
are comparable to more recent offerings from IBM.
[ZPERF] also gives dbench scores for zServers with 4,
8 and 16 processors. Their results indicate that perform-
ance would be significantly better for a zServer with
multiple processors. For example, [ZPERF] page 14
reports around 1000 MB/sec for a 16 CPU z900. We
are also not testing all the features of the zSeries ma-
chines including high-availabilty, upgradability and
manageability.

In Figure 7, we add measurements using our web server
benchmark of the zServer with 1 to 16 Linux guests to
the data presented in Figure 3. Xen on the Xeon server
and the zServer perform similarly with the zServer per-
forming better than Xen at 2, 4 and 16 guests, but worse
at 1 and 8.

Thus, we are ready to answer our fourth question: How
does a virtual machine monitor on commodity PCs
compare to a virtual machine monitor on a mainframe?
At least on our low-end zServer, Xen on x86 performs
better for most workloads we examined. For a $2500
machine to do so well compared to a machine valued at
over $200,000 is impressive!

Median Dbench Throughput

0

100

200

300

400

1 3 5 9 15 21 30

Concurrent clients

Th
ro

ug
hp

ut
 (M

B
.s

ec
)

L (UP); Xeon
server

L(UP); P3

zServer

Figure 6 Throughput reported by dbench for 1 to 24
concurrent clients for native Linux on a Xeon
server, native Linux on an older PC and Linux on
the zServer.

zServer eServer z800 vs x86

0

0.25

0.5

0.75

1

1.25

CPU Intensive
(s,real)

Linux build time
(s)

OSDB-IR (tups/s) OSDB-OLTP
(tup/s)

dbench (score)

R
el

at
iv

e
sc

o
re

 to
 L

in
ux

 o
n

Xe
o

n
S

er
ve

r
L

X
L (old machine)
X (old machine)
Z

Figure 5 Performance on the zServer shown relative to native Linux on the Xeon server; Xen on the
Xeon server as well as native Linux and Xen on the older PC also shown for comparison.

Web server performance

0

0.2

0.4

0.6

0.8

1

1.2

1 2 4 8 16

Concurrent Apache Servers

%
 S

uc
ce

ss
fu

l R
eq

ue
st

s

L (SMP)

L (UP)

X

Z

Figure 7 Web server performance on the zServer
compared to native Linux with SMP enabled, native
Linux with SMP enabled and XenoLinux on a Xeon
server.

6. Experience With Related Research

The Xen team did a great job of facilitating repetition of
their results, including releasing the code open source,
producing a trial CD and responding happily to ques-
tions. Still, we were surprised to find how difficult it
was to reproduce these results! It took a lot of investi-
gation to assemble a comparable test platform and to
reproduce the tests as run in [Xen03]. In the process, we
ported three device drivers, wrote over a dozen testing
scripts, wrote our own web server benchmark and ran
hundreds of trials of each benchmark.

We make three main conclusions about repeated re-
search. First, it is difficult enough that it should not be
left as an exercise to the reader. Having another group
repeat the initial results and polish some of the rough
edges is important to the process of technology transfer.
Second, it provides important validation of published
results and can add additional insight beyond the origi-
nal results. An independent third party is needed to ver-
ify the reliability of results reported, to question which
tests are run, and to highlight some of the “spit and bail-
ing wire” still present in the system. Finally, it is a great
way to gain experience with research. This paper was a
class project for an Advanced Operating Systems class
at Clarkson University. This experience gave us a better
appreciation for research in computer science than sim-
ply reading the other 30+ research papers in the class.

7. Conclusions

We were able to repeat the performance measurements
of Xen published in “Xen and the Art of Virtualization”
from SOSP-03. We find that Xen lives up to its claim of
high performance virtualization of the x86 platform. We
find that Xen can easily support 16 moderately loaded
servers on a relatively inexpensive server class machine,
but falls short of the 100 guest target they set. Xen per-
forms well in tests on an older PC, although only a
small number of guests could be supported on this plat-
form. We find that Xen on x86 compares surprisingly
well to an entry model zServer machine designed spe-
cifically for virtualization. We use this study as an ex-
ample of repeated research and argue that this model of
research, which is enabled by open source software, is
an important step in transferring the results of computer
science research into production environments.

8. Acknowledgements

We would like to thank the Xen group for releasing Xen
as open source software. We would especially like to
thank Ian Pratt, Keir Fraser and Steve Hand for answer-
ing our many emails. We’d also like to thank James
Scott for help to port the driver for our SCSI controller.
Thanks also to the Apache Foundation for JMeter.
Thank you to our shepherd, Bart Massey for all of his
detailed comments.

Many thanks to the members of the Clarkson Open
Source Institute (COSI) and the Clarkson Internet
Teaching Laboratory (ITL) for their patience as we tore
apart lab machines to conduct our tests. Thanks also to
Clarkson University and especially the Division of
Mathematics and Computer Science for their support of
the labs.

9. References

[AS3AP] C. Turbyfill, C. Orji, and D. Bitton. An ANSI
SQL Standard Scalable and Portable Benchmark for
Relational Database Systems. The Benchmark Hand-
book for Database and Transaction Processing, Chapter
4, pp 167-206.

[Denali02] A. Whitaker, M. Shaw, S. Gribble. Scale
and Performance in the Denali Isolation Kernel. In Pro-
ceedings of the 5th Symposium on Operating Systems
Design and Implementation (OSDI 2002), ACM Oper-
ating Systems Review, Winter 2002 Special Issue,
pages 195-210, Boston, MA, USA, December 2002.

[Disco97] E. Bugnion, S. Devine, K. Govil, M. Rosen-
blum. Disco: Running Commodity Operating Systems
on Scalable Multiprocessors. ACM Transactions on
Computer Systems, Vol. 15, No. 4, 1997, pp. 412-447.

[FourInARow] Freebench.org Project. URL
http://www.freebench.org accessed December 2003.

[Google03] S. Ghemawat, H. Gobioff, S. Leung. The
Google File System. Proceedings of the 19th ACM
Symposium on Operating Systems Principles, 2003.

[JMETER] The Apache Jakarta Project. Jmeter. URL
http://jakarta.apache.org/jmeter/index.html accessed
December 2003.

[JMETER2] A. Bommarito, Regression Testing With
JMeter.. URL
http://www.phpbuilder.com/columns/bommarito200306
10.php3 accessed December 2003.

[JMETER3] B. Kurniawan. Using JMeter. URL
http://www.onjava.com/pub/a/onjava/2003/01/15/jmeter
.html accessed December 2003.

[JMETER4] K. Hansen. Load Testing your Applica-
tions with Apache JMeter. URL
http://javaboutique.internet.com/tutorials/JMeter ac-
cessed December 2003.

[LKML03] K. Fraser. Post to Linux Kernel Mailing
List, October 3 2003, URL
http://www.ussg.iu.edu/hypermail/linux/kernel/0310.0/0
550.html accessed December 2003.

[LMBENCH] lmbench, URL
http://www.bitmover.com/lmbench accessed December
2003.

[OSDB] Open source database benchmark system. URL
http://osdb.sourceforge.net accessed December 2003.

[POSTGRES] M. Stonebraker. The Design Of The
Postgres Storage System. Proceedings of the 13th Con-
ference on Very Large Databases, Morgan Kaufman
Publishers. (Los Altos CA), Brighton UK. 1987.

[POSTGRES2] PostgreSQL Global Development
Group. URL http://www.postgresql.org accessed De-
cember 2003.

[Pratt03] Ian Pratt. Personal Communication. Novem-
ber 2003.

 [SPECINT] CPU 2000, URL
http://www.specbench.org/cpu2000 accessed December
2003.

[SPECWEB] SPECWEB99, URL
http://www.spec.org/web99 accessed December 2003.

[UML01] Dike, Jeff. User-mode Linux. Proceedings of
the 5th Annual Linux Showcase & Conference, Oakland
CA (ALS 2001). pp 3-14, 2001.

[UML00] Dike, Jeff. A User-mode Port of the Linux
Kernel. Proceedings of the 4 Annual Linux Showcase &
Conference (ALS 2000), page 63, 2000.

[VM370] R. Creasy IBM Journal of Research and De-
velopment. Vol. 25, Number 5. Page 483. Published
1981. The Origin of the VM/370 Time-Sharing System.

[VMWARE] Vmware, URL http://www.vmware.com
accessed December 2003.

[Voxel] Voxel Dot Net, URL http://www.voxel.net ac-
cessed December 2003.

[Xen99] D. Reed, I. Pratt, P. Menage, S. Early, and N.
Stratford. Xenoservers: Accounted Execution of Un-
trusted Code. Proceedings of the 7th Workshop on Hot
Topics in Operating Systems, 1999.

 [Xen03] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, R. Neugebauer, I. Pratt and A. War-
field. Xen and the Art of Virtualization. Proceedings of
the nineteenth ACM symposium on Operating systems
principles, pp 164-177, Bolton Landing, NY, USA,
2003

[Xen03a] P. Barham, B. Dragovic, K. Fraser, S. Hand,
T. Harris, A. Ho, E. Kotsovinos, A. Madhavapeddy, R.
Neugebauer, I. Pratt and A. Warfield. Xen 2002. Tech-
nical Report UCAM-CL-TR-553, January 2003.

[Xen03b] K. Fraser, S. Hand, T. Harris, I. Leslie, and I.
Pratt. The Xenoserver Computing Infrastructure. Tech-
nical Report UCAM-CL-TR-552, University ofCam-
bridge, Computer Laboratory, Jan. 2003.

[Xen03c] S. Hand, T. Harris, E. Kotsovinos, and I.
Pratt. Controlling the XenoServer Open Platform, April
2003.

[Z800] IBM z800 Information, URL http://www-
1.ibm.com/servers/eserver/zseries/800.html accessed
December 2003.

[ZPERF] S. Thoss, Linux on zSeries Performance Up-
date Session 9390. URL
http://linuxvm.org/present/SHARE101/S9390a.pdf ac-
cessed December 2003.

