
COMMUNICATIONS OF THE ACM November 2007/Vol. 50, No. 11 45

WORKLOADS
(CREATION AND USE)

By Alan Jay Smith

Evaluating the performance of a (computer)
system is meaningful only in the context of a
workload, that is, what the system is being asked
to do. Appropriate workloads vary with the
type of system being considered (such as PC,
workstation, mainframe, and supercomputer)
and with the type of user and application. A
discussion of workloads is also inseparable from
consideration of benchmarks, or standardized
workloads used for comparing the performance
of different systems.

Workloads are
used to estimate

and measure
system performance,

but the results are
only as good as the

workloads and
models being used.

46 November 2007/Vol. 50, No. 11 COMMUNICATIONS OF THE ACM

Workloads are typically used in two main ways: to
evaluate existing systems and to evaluate proposed
designs and design alternatives for new systems.
Workloads are used in many areas of science and engi-
neering; for example, bridges are designed to cope
with the traffic workload and with seismic and aero-
dynamic workloads. The Tacoma Narrows Bridge
collapsed in 1940 from a failure to properly deal with
the aerodynamic workload. The Brooklyn Bridge
(completed in 1883) is
still standing due to a
massive overdesign by
John Roebling, who knew
that his workload knowl-
edge was imprecise and
limited.

Workloads and work-
load studies have always
been recognized as impor-
tant, and a series of annual
conferences was recently
instituted to consider the
subject [5]; the figure out-
lines how workloads are
used. Here, I provide an overview and discussion of
the issues involved in collecting, selecting, analyzing,
and using workloads for the purposes of computer
system analysis, design, and performance evaluation.

WORKLOAD ABSTRACTION

Workloads can be classified along a number of
dimensions [1]. One is the degree of abstraction.
The most abstract is a mathematical model (such as
Poisson process traffic along a communications line,
probabilistic routing in a network, and the LRU
stack model for program behavior). Equivalent
would be a stochastically generated workload (such
as through a complex simulation), based perhaps on
observed parameters but not consisting of real
events. The usefulness of such workload models
depends on two factors: how well a model matches
the observed effect (not behavior) of real workloads;
and whether the model has predictive power.

The former requires that the model affect the rele-
vant system features in the same way the real or

expected workload does or will, not that the model
actually reproduces all aspects of the real workload. (It
is, however, often difficult to estimate how an
unknown future workload will affect a new, not yet
constructed system.) The latter is the test typically
used for physical theories. After a theory is found to
account for all known observations, the next step is to
determine if it predicts things that have not yet been
observed. The LRU stack model for program behav-

ior will not, for example,
show a bursty fault process
but will account pretty
well for the behavior of set
associative cache memo-
ries [3]. Such abstract
models typically have the
advantage of being com-
pact and parameterizable.

Other types of work-
loads include collections

of synthetic jobs and samples of real jobs (both of
which are executable) and live workloads, that is,
unreproducible samples of job streams as they arrive.
In place of samples of complete jobs, an evaluator can
use samples of the job characteristics of interest. For
example, to study memory system behavior (such as
caches and paging), we can use program address
traces. To study I/O, we can use traces of I/O
requests. To study branch target buffers, we can use
program branch traces.

Different types of workloads are generally used for
different purposes. Today, almost all workloads used
for evaluation and research are real, either sample jobs
or traces. To the extent that models are used, they are
almost always derived from observations of real sys-
tems.

WORKLOAD VALIDITY

Workloads are valid to the extent that they allow one
to correctly evaluate system behavior with respect to
the feature(s) of interest. The standard for validity
can thus be as strong as requiring that overall system
behavior be comparable to what is expected in prac-
tice. It can also be as weak as simply requiring that
if under the workload W algorithm A is better (or

Workloads are valid to the extent that they
allow one to CORRECTLY EVALUATE SYSTEM BEHAVIOR with

respect to the feature(s) of interest.

Alan Jay Smith fig 1 (11/07)

Real
or Synthetic
Workload

Performance
Estimate

System Design
Study

Workload
Sample

or Trace

System
Model

Synthetic Workload
or Workload Model
or Existing Workload

or Benchmarks

Roles of workloads and
benchmarks in designing,

measuring, and evaluating
systems and system designs.

specifically Z% better) than algorithm B for aspect X
of the system, the same result would be observed in
practice. For example, if for the sample workload W,
branch predictor A is better than predictor B, then
validity would require the same result in a real sys-
tem with the actual future workload.

A number of factors can cause workloads to be
invalid for their desired purpose:

System design. The workload itself can be affected
by the system design so it becomes difficult or
impossible to evaluate system changes. For exam-
ple, adding a cache to a disk system affects the
I/O response time and thereby the timing of sub-
sequent I/O events [4]. Reportedly, the capacity
of the initial Multics system was overestimated by
a factor of 10 because the workload was assumed
to be similar to that observed for the existing
Compatible Time Sharing System; the actual
workload was very different due to the vastly
increased functionality of Multics relative to
CTSS;

Changing technology. Technology changes (such as
in memory size, cache size, disk size, and CPU
speed) make the workload inappropriate for stud-
ies of future systems. For example, a trace of a
1995 file system can’t possibly yield reliable
absolute miss ratios for a 2007 file system, since
the disks and amount of stored information have
become orders of magnitude larger over that
period. Conversely, prefetching studies based on
old traces may still be quite valid;

Representation. Workloads may simply be unrepre-
sentative, as when a scientific workload is used to
evaluate the design of a system that spends most
of its time running the operating system or servic-
ing database queries;

Adaptation. Systems may adapt to workloads over
time. For example, database systems are continu-
ously optimized to perform well with the latest
version of the Transaction Processing Performance
Council (TPC) benchmarks [2], and compilers
have been tuned to recognize and optimize the
SPEC benchmarks. Thus once systems have been
tuned for these benchmarks, performance esti-
mates based on them are not accurate for the
actual workloads likely to occur, since compilers
are likely to be far less effective on code for which
they are not specifically tuned; and

Lack of adaptation. Conversely, workloads may not
be adapted to their systems, as when “dusty
decks” are used to benchmark supercomputers. In
actual use, programs run on supercomputers are
usually carefully tuned for the system on which

they run, and a benchmark comparison of two
different supercomputers usually requires that
each benchmark program be carefully optimized
(or rewritten) for each system.

Workload characteristics determined by
human behavior generally remain
valid over time and across systems;
people evolve slowly. Conversely,
workload characteristics determined
by technology (such as CPU speed,

memory, and disk size) may quickly become out of
date. But it may be possible to compensate for these
factors (such as scaling) or by collecting relative rather
than absolute measurements. To the extent that the
validity of the estimates is suspect, it is valuable to
confirm assumptions of validity when possible. For
example, if we are estimating the performance of Java
programs on the newest Pentium design by studying
traces of Fortran programs for a VAX, it would be
wise to consider why the results might or might not
be valid and confirm the accuracy of the estimates at
the end of the design process. But there is no reason
to a priori reject such a workload use; programs are
written by people, and there is no reason to think that
the object code will look significantly different. It is
just as fallacious to reject benchmarks that may well
be valid as to accept benchmarks that are obviously
inappropriate.

Sensitivity, or how much a system’s performance
changes with changes in the workload, is an impor-
tant issue. To the extent that estimated performance is
sensitive to changes in the workload, either perfor-
mance estimates will be unreliable or the model or
estimating methodology will be suspect.

SYSTEM MODELS

The primary, if not only, use for workloads is the
estimation of performance, which in turn can be
used for design, tuning, evaluation, and purchase, as
outlined in the figure. For example, the throughput
of a computer system, the miss ratio of a cache, the
delay on a bridge, and the barrier size required for a
flood break are all performance measures as a func-
tion of a workload. The system model and the work-
load should generally be matched to the question at
hand. If the cache design or the branch predictor is
being studied, it is usually unnecessary to model the
full system (such as components like the floating
point unit and the I/O system).

An important aspect of experimental design is to
design system models that allow the experimental

COMMUNICATIONS OF THE ACM November 2007/Vol. 50, No. 11 47

results to be understood. Whenever possible, the
number of parameters that are simultaneously varied
in a system model should be minimized. A one-
dimensional plot is a lot easier to understand than an
N-dimensional plot, and such simple designs make it
much easier to find and recognize anomalies and
identify the effects of validity issues (workload or
model) on the results.

WORKLOAD CHARACTERIZATION

Workloads are often used to directly
evaluate systems, but it is frequently
helpful or satisfactory to character-
ize a workload (in appropriate ways)
and use the characterization itself
for evaluation. Such characteriza-
tion efforts may in and of them-
selves lead to insights into system
design that may be difficult to
obtain through brute-force experi-
mentation. Determining that an
arrival process is (or is not) Poisson,
bursty, or self-similar or contains a
time-varying trend may provide as
much or more insight into a system
design than simply playing a trace
of arrivals against various alternative designs.

Workloads can be characterized either generally or
with a specific goal in mind. For example, in [11],
file-reference patterns were studied to see if they could
be Poisson, which would have specific implications
for file-migration algorithms. However, workload
characterization studies are generally useful and inter-
esting only to the extent that there is a goal in mind;
a “general characterization” without a goal usually
provides a lot of data but little information. (That is
not to say that sometimes a “general characterization”
might serendipitously discover something useful.)
However, workload collection itself is almost always
worthwhile, although undirected workload collection
may fail to collect the data needed for a later study.

Techniques for workload characterization vary
with the type of workload and the issue being studied.
Thus while general techniques (such as “cluster analy-

sis” and “selecting representative samples”) are gener-
ally applicable, their use becomes specific only with
an understanding of the substantive issues under con-
sideration. A mastery of operations research and sta-
tistical techniques is no substitute for genuine
understanding of the actual systems issues.

PROBLEMS AND THEIR WORKLOADS

Workload collection. Data collection
is often the most difficult problem in
any scientific study, whether in com-
puter system performance evaluation,
physics, or psychology. (I cover how
each type of workload could be col-
lected later in my discussion of work-
load types and performance studies.)

CPU benchmarking. CPU perfor-
mance estimates were originally gener-
ated by mainframe computer
manufacturers using internally devel-
oped workloads and published only

after reasonable internal validation, often after
approval by the legal department. With the introduc-
tion of high-performance microprocessors in the
1980s, performance estimates were more often gener-
ated by marketing departments, with little if any val-
idation, reportedly sometimes in direct contradiction
to internal performance estimates. This led to the
establishment of SPEC (originally the System Perfor-
mance Evaluation Cooperative, later Corporation),
which collected and published a set of CPU compu-
tational benchmarks in 1989 and subsequently
revised the set several times, most recently in 2006
(www.spec.org).

Computational benchmarks should be selected to
either be individually representative of specific work-
loads or representative in the aggregate. They also
should be composed of public-domain code, in a
standard programming language compatible with
most or all existing commercial compilers, have no
machine dependencies, preferably do little if any I/O,
and preferably not be optimizable to an unrepresen-
tative extent by optimizing compilers or preproces-
sors. Companies were known to have tuned their

48 November 2007/Vol. 50, No. 11 COMMUNICATIONS OF THE ACM

It is often very difficult to determine whether
a specific type of workload will BEHAVE DIFFERENTLY from

known and previously studied workloads.

Alan Jay Smith table 1 (11/07)

Benchmark

Los Alamos

Baskett

Erasthostenes

Linpack

Livermore

Mandelbrot

NAS Kernels

Shell

Smith

Whetstone

1.616

1.139

0.818

1.611

1.526

1.555

1.765

0.671

1.678

2.841

Relative Performance
Runtime Ratio

Ratio of runtimes for
the benchmarks in

the figure when
each benchmark is

run on two low-end
workstations.

compilers to produce highly optimized code for these
standard benchmarks, which is why SPEC dropped
the Matrix 300 benchmark. Other standard bench-
marks include Dhrystone, Whetstone, Livermore
Loops, and Linpack [7]. To evaluate PCs, PC Maga-
zine (www.pcmag.com, April 10, 2007) used 3D
Mark 06, Company of Heroes (game), Windows
Media Encoder 9, Cinebench, and Photoshop CS2
Action Set.

It is important to appreciate that observed perfor-
mance can be very sensitive to the benchmarks or
workloads used. The table here lists data collected for
(but not included in) [7], showing that the perfor-
mance of two low-end workstations varied by a factor
of more than 4.2 depending on which benchmark was
used.

The issues in selecting workloads for CPU bench-
marking have to do with finding programs that meet
these criteria, whose characteristics are believed to be
understood (suggesting that proprietary benchmarks
not be used), and the behaviors of which span the
anticipated workload.

Memory workloads. Memory system analysis was
originally directed to main memory paging and, once
paging became less important, shifted to cache mem-
ory design. Memory system studies are almost always
conducted using program address traces, or the
sequence of memory addresses referenced by a pro-
gram, usually tagged as instruction fetch, data read,
and data write. Such traces can be generated by a
number of techniques, including: a CPU simulator; a
hardware monitor; instrumented microcode; instru-
mented object code; and a trace trap facility.

The issues in using such traces include:

Memory space. Making sure that the memory space
addressed is large enough to stress the memory
system; this may require tracing very large and
long program executions, then sampling or com-
pressing them into a form that allows for many
simulations to be run in a reasonable amount of
time. Techniques have also been developed to
stitch together sampled segments from long
traces; and

Representative workloads. Selecting programs
believed to be representative of the actual work-
load. Note that different workloads may yield
very different results; for example, for one work-
load considered in [11], the supervisor state miss
ratio was four times higher than the user state
miss ratio.

An important and distinct class of memory work-
load is related to parallel programs run on multi-

processors. The important aspect of parallel work-
loads relates to access patterns to shared data that can’t
be derived or estimated from studies of sequential
workloads. It is increasingly important as multicore
processor chips become common.

Another special type of workload relates to multi-
media. Multimedia workloads involve audio and
video, often running on dedicated and/or embedded
hardware. I distinguish these workloads from other
CPU and memory workloads due to their importance
and because it has been speculated that they are sig-
nificantly different from other workloads. Existing
multimedia workloads are described in [8], which also
presented the Berkeley Multimedia Workload assem-
bled from public-domain real applications. At least
with regard to memory reference behavior, it has been
shown [9] that multimedia workloads do not in fact
differ significantly from other workloads.

Note that it is often, a priori, very difficult to deter-
mine whether a specific type of workload will behave
differently from known and previously studied work-
loads. For example, there is some evidence (see, for
example, [10]) that programs written in different lan-
guages (such as Fortran and Lisp) for different archi-
tectures (such as DEC VAX and IBM 370) and
different applications do not differ significantly in
many of their characteristics, so having the latest
workloads for the target system may not be an impor-
tant issue. (This relates to the comment I made earlier
that code is written by people and that people evolve
slowly.) It has been repeatedly suggested to me that
object-oriented code behaves differently from code
written in earlier programming languages, but I am
aware of no evidence for this. Likewise, many people
still claim that certain real workloads are so poorly
behaved that CPU caches are ineffective, but I find no
evidence for this as well.

CPU benchmarks/workloads. Benchmarks in this
class are used to address questions in pipeline design,
branch prediction, and other aspects of CPU archi-
tecture. The same techniques used for memory
benchmarks can generate CPU architecture bench-
marks (CPUABs), but the constraints are less severe.
Cache benchmarks need to be large enough to fill the
cache, but CPUABs need to be large enough only to
fill a branch target buffer or all of the stages of a
pipeline. Thus, useful workloads can be assembled
from many relatively short segments.

Database workloads. Database systems are typi-
cally evaluated with the TPC series of benchmarks [2,
4], which consist of standard database configurations
and a standard series of artificial queries. Over time,
real systems have become larger and more sophisti-
cated, so it has been necessary to develop larger and

COMMUNICATIONS OF THE ACM November 2007/Vol. 50, No. 11 49

more complex benchmarks. Furthermore, vendors
have sought to optimize their processing of the TPC
benchmarks, and the benchmarks have had to be
revised to stay ahead of this tuning effort.

File and I/O workloads. File and I/O systems can
be studied using traces of I/O activities (such as reads,
writes, opens, closes, and renames). However, they are
often very difficult to collect, since they are often
obtained only by modifying the operating system or
by relying on debug and accounting packages (such as
GTF and SMF on the IBM System 370 and its suc-
cessor systems). (Physical I/O traces can be obtained
through hardware monitors.) Debug and accounting
package records can be unsatisfactory or very difficult
to use because they seldom contain the information
needed for the studies envisioned, and thus massive
amounts of post-processing and/or modifications to
the packages may be needed to make the trace data
usable for the desired purpose.

The effect of looking at real I/O workloads, as
opposed to imagined workloads, is illustrated in [6],
which showed that in contrast to the many published
disk-arm scheduling studies that assumed uniformly
distributed cylinder accesses and long queue lengths,
the disk arm in real systems seldom moves. Other
studies have also showed that queue lengths are sel-
dom longer than one or two requests.

System benchmarks. Somewhat different from the
workloads discussed here are workloads (or bench-
marks) designed to evaluate the overall system. They
need to exercise the CPU, I/O system, network con-
nections, and any other component expected to have
a significant effect on performance. Evaluations of the
overall system are typically part of the system-acquisi-
tion process. The danger of this type of benchmark-
ing is that even though the entire system is
purportedly being measured, one or a small set of bot-
tlenecks may actually be limiting system throughput;
thus an analysis of performance as a function of sys-
tem parameters can be very important. For example,
adding memory may increase the system cost by 2%
and throughput by 20%, something it would be very
important to know. And as in every other case dis-
cussed here, it is important that the benchmarks cho-
sen reliably represent the workload most likely to
actually occur.

Among the other workloads that have been used,
proposed, and/or discussed in the literature are mail
server workloads, Java program workloads, Web
server workloads, e-commerce workloads, network
workloads, power-consumption workloads, and com-
mercial workloads. In general, the need for perfor-
mance estimation requires a suitable workload, and
new workloads continue to be generated as needed.

A very important issue is that with the exception of
overwhelmingly common specialized applications
(such as multimedia), special hardware is seldom con-
structed. So what is important in system design is not
designing to an ever-increasing variety of specialized
workloads but to the common aspects among the var-
ious workloads to be supported by the underlying sys-
tem; the aim is to maximize performance across the
inputs to be expected.

CONCLUSION

Workloads are an essential component of any system
evaluation effort, whether for design, research, or
purchase. Finding or developing valid, appropriate,
manageable workloads is often difficult and time
consuming. That’s why I’ve discussed some of the
issues relating to workloads and provided some
pointers to the literature.

References
1. Ferrari, D. Computer Systems Performance Evaluation. Prentice Hall,

Englewood Cliffs, NJ, 1978.
2. Gray, J., Ed. The Benchmark Handbook, Second Edition. Morgan Kauf-

man, San Mateo, CA, 1993.
3. Hill, M. and Smith, A.J. Evaluating associativity in CPU caches. IEEE

Transactions on Computers 38, 12 (Dec. 1989), 1612–1630.
4. Hsu, W. and Smith, A.J. The performance effect of I/O optimizations

and disk improvements. IBM Journal of Research and Development 48,
2 (Mar. 2004), 255–289.

5. IEEE International Symposium on Workload Characterization (San
Jose, CA, Oct.). IEEE Press, 2006.

6. Lynch, W. Do disk arms move? Performance Evaluation Review 1, 4
(Dec. 1972), 3–16.

7. Saavedra-Barrera, R., Smith, A.J., and Miya, E. Machine characteriza-
tion based on an abstract high-level language machine. IEEE Transac-
tions on Computers 38, 12 (Dec. 1989), 1659–1679.

8. Slingerland, N. and Smith, A.J. Design and characterization of the
Berkeley multimedia workload. ACM Multimedia Systems Journal 8, 4
(2002), 315–327.

9. Slingerland, N. and Smith, A.J. Cache performance for multimedia
applications. In Proceedings of the International Conference on Super-
computing (Sorrento, Italy, June 17–21, 2001), 204–217.

10. Smith, A.J. Cache evaluation and the impact of workload choice. In
Proceedings of the 12th International Symposium on Computer Architec-
ture (Boston, June 17–19, 1985), 64–75.

11. Smith, A.J. Cache memories. Computing Surveys 14, 3 (Sept. 1982),
473–530.

12. Smith, A.J. Analysis of long-term file reference patterns for application
to file migration algorithms. IEEE Transactions on Software Engineering
SE-7, 4 (July 1981), 403–417.

Alan Jay Smith (smith at eecs.berkeley.edu) is a professor in
the computer science division of the Department of Electrical
Engineering and Computer Sciences at the University of California,
Berkeley.

The research discussed here is partially supported by NXP and Philips Semiconduc-
tors, Toshiba Corporation, and the State of California MICROProgram.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 2007 ACM 0001-0782/07/1100 $5.00

c

50 November 2007/Vol. 50, No. 11 COMMUNICATIONS OF THE ACM

