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ABSTRACT

As Web sites move from relatively static displays of simpéges
to rich media applications with heavy client-side intei@tt the
nature of the resulting Web traffic changes as well. Undedstey
this change is necessary in order to improve response tiakj-e
ate caching effectiveness, and design intermediary sgst®mh as
firewalls, security analyzers, and reporting/managemgstems.
Unfortunately, we have little understanding of the undedyna-
ture of today’s Web traffic.

In this paper, we analyze five years (2006-2010) of real Wb tr
fic from a globally-distributed proxy system, which captuitbe
browsing behavior of over 70,000 daily users from 187 caestr
Using this data set, we examine major changes in Web trafiic ch
acteristics that occurred during this period. We also preasew
Web page analysis algorithm that is better suited for motléeb
page interactions by grouping requests into streams ardigng
the structure of the pages. Using this algorithm, we analpze
ious aspects of page-level changes, and characterize mddky
pages. Finally, we investigate the redundancy of this traffs-
ing both traditional object-level caching as well as cotteased
approaches.

Categories and Subject Descriptors
C.2.m [Computer-Communication Networks]: Miscellaneous

General Terms
Measurement, Design, Performance

Keywords
Web Traffic Analysis, Web Caching, Content-based Caching

1. INTRODUCTION

The World Wide Web is one of the most popular Internet appli-
cations, and its traffic volume is increasing and evolving thuthe
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popularity of social networking, file hosting, and videoestming
sites R9. These changes and growth of Web traffic are expected
to continue, not only as the Web becomedeafactofront-end for
many emerging cloud-based servicég|[ but also as applications
get migrated to the Wel34].

Understanding these changes is important for overall sydi
sign. For example, analyzing end-user browsing behaviotezzd
to a Web traffic model, which in turn can be used to generat@a sy
thetic workload for benchmarking or simulation. In additi@na-
lyzing the redundancy and effectiveness of caching cougeithe
design of Web servers, proxies, and browsers to improveonssp
times. In particular, since content-based caching appes=a@8,

49, 50] are a promising alternative to traditional HTTP objecséa
caching, understanding their implications for Web traffic ae-
source requirements (g, cache storage size) could help reduce
bandwidth and improve user experience.

While much research activity occurred a decade ago aimed at
better understanding the nature of Web trafic1, 35, 56, 63],
it subsided just as the Web changed significantly, and we must
therefore update our understanding of today’s Web traffiowH
ever, there are several challenges. First, examining e@saager
time requires large-scale data sets spanning a multi-yed@od)
collected under the same conditions. Second, earlier Wgbk pa
analysis techniques developed for static pages are natseiifor
modern Web traffic that involves dynamic client-side int¢i@ns
(e.g, Ajax [18]). Third, understanding the effectiveness of content-
based caching approaches requires full content data tthtrejust
access logs.

In this paper, we analyze five years (2006-2010) of real Wb tr
fic from a globally-distributed proxy system, which captitbe
browsing behavior of over 70,000 daily users from 187 coesir
Using this data set, we examine major changes in Web traffic ch
acteristics that occurred during this period. We also preagnew
Web page analysis algorithm that is better suited for motléeb
page interactions by grouping requests into streams arldigsp
the structure of the pages. Using this algorithm, we analyze
ious aspects of page-level changes, and characterize mddkdy
pages. Finally, we investigate the redundancy of this traffs-
ing both traditional object-level caching as well as cotteased
approaches.

Our contributions and key findings are the following:

High-Level Characteristics The rise of Ajax and video content
has impacted a number of different traffic measures. Ajax has
caused in increase in the sizes of JavaScript and €% bjects,

and browsers have increased their simultaneous conndafidn

to better support it, resulting in burstier traffic but alseproved
client latency. Flash video (FLV) has grown to dominate wide
traffic, pushing the share of other video formats lower, dad &n-



creasing bandwidth consumption. Ajax and JavaScript aaeilye
used in user tracking and we find that analytics sites arehiiegic
an ever-widening fraction of Web users, with some sitesghabie

to track as much as 65% of our client population, which mayehav
privacy implications. In addition, we observe clear regilodiffer-
ences in client bandwidth, browser popularity, and donticam-
tent types that need to be considered when designing anclyitegpl
systems. Finally, we observe an increase in the number opabm
ers per household over the years in Network Address Tramslat
(NAT) [59] usage, which is likely related to the scarcity of IPv4
addresses.

Page-Level Characteristics We have developed a new Web page
analysis algorithm called StreamStructure, and demdesthat it

is more accurate than previous approaches. Using thisitioor

we find that almost half the traffic now occurs not as a result of
initial page loads, but as a result of client-side inteawiafter the
initial page load. Also, the pages have become increasicmty-

plex in that both the size and number of embedded objects have
increased. Despite this increase, the page loading latnopped

in 2009 and 2010 due to the increased number of simultaneous
connections in browsers and improved caching behavior di We
sites. Furthermore, we quantify the potential reductiorpafe
loading latency from various tuning approaches, such asasing

the number of concurrent connections, and prefetchingingcvia
simulations. Finally, we present a simple characterinatibmod-

ern Web pages.

Redundancy and CachingWe find two interesting trends in URL
popularity: 1) the popular URLs get more popular, and thereef
potentially improves caching, but 2) the long tail of the o is
also growing, and therefore potentially hurts caching.oAige find
that content-based caching yields 1.8-2.5x larger byteatsts than
object-based caching, and much larger caches can be efigcti
exploited using intelligent content-based caching todyietarly
ideal byte hit rates. Most of the additional savings of cotieased
caching are due to partial content overlap — the redundacrosa
different versions of an object as well as redundancy aatiffes-
ent objects. Finally, a small number of aborted reques8s311.%),
mostly video, can negatively impact object-based cacherdop-
mance because of its huge volume (12.4-30.8%). Worse,\tbkeir
ume would comprise a significant portion of all traffic (688:8%)
if they were fully downloaded.

The rest of this paper is organized as follows: in Sectipn
we describe the details of our data set. SecBoexamines the
major changes in high-level characteristics of Web traffRec-
tion 4 presents the detailed page-level analysis with our new Web
page analysis technique, and Sectibanalyzes redundancy and
caching. Finally, we discuss related work in Sectrand con-
clude in Sectiory.

2. DATA SET

Data Collection We use traffic from the CoDeeN content distribu-
tion network (CDN) B2], a semi-open globally distributed proxy
that has been running since 2003, and serves over 30 mikion r
quests per day from more than 500 Planetl4#) fodes. The term
“semi-open” means that while anyone can use CoDeeN by con-
figuring his or her browser, it only allows GET requests frdm t
general public, and limits other methods such as CONNECT, PU
or POST to only university-based users. When needed, thersys
redirects user requests to other proxy nodes based on ttheuhoh
latency. Some requests are cache misses or uncacheableeethd
to be retrieved from the origin Web servers. CoDeeN alsoayspl

Country Year
2006 | 2007 | 2008 | 2009 | 2010
USA | Requests (M)|[ 33.5 40.3| 245| 232 144
Volume (GB) || 391.2 627.2 | 338.2| 316.2| 261.5
# IPs (K) 19.1 21.8| 13.6| 13.3| 129
# Users (K)|| 23.3 270 176| 16.9]| 16.7
China | Requests (M)|[ 22.5 88.8| 29.9| 381 229
Volume (GB) || 394.5| 1,177.8| 405.0 | 409.6 | 278.4
# IPs (K) 49.3 949 | 38.8| 432 334
# Users (K) || 53.9 109.7| 45.1| 51.8| 419
France| Requests (M) 2.2 3.9 3.3 3.6 3.3
Volume (GB) 21.6 458 | 33.6| 429]| 50.5
# IPs (K) 3.6 5.1 3.2 3.7 5.1
# Users (K) 3.9 5.5 3.5 4.3 6.0
Brazil | Requests (M) 15 4.5 2.0 3.9 7.1
\Volume (GB) 16.2 548 22.8| 44.1| 100.2
# IPs (K) 1.4 8.6 3.3 3.1 9.5
# Users (K) 1.6 10.0 3.8 3.6 | 10.9
Total | Requests (M)|| 59.6 1375 59.7| 68.8]| 47.7
Volume (GB) || 823.5| 1,905.6| 799.6 | 812.8 | 690.6
# IPs (K) 73.5 130.4| 589 | 633 61.0
# Users (K) || 82.8 152.2| 70.0| 76.7| 755

Table 1: Summary statistics for captured access logs, sangd
one month (April) per year.

an automatic robot detection mechanism and has rejectesses
from malicious robots since 20084].

Our data set consists of two parts. First, CoDeeN records all
requests not served from the client’s browser cache in andgt
W3C log format with timestamp, service time, request URLthod,
user agent, content type, referer, response code, anchssspize.
We use these access logs for examining any longitudinalggsan
in Section3, 4, and5. In addition, we capture the full content of
the cache-miss traffic between the CoDeeN nodes and the origi
Web servers. Using this full content data, we evaluate bbjeobd-
based and content-based caching approaches, and anatyzdab
transfers in Sectioh.

For this study, we consider the data from the five-year period
from 2006 to 2010. Due to the large volume of requests, we sam-
ple one month (April) of data per year. We only capture thé ful
traffic content in April 2010, and use only traffic logs in ather
years. After discarding non-human traffic, the total traffiddume
ranges from 3.3 to 6.6 TB per month, and it consists of abo0t 28
460 million requests from 240-360 thousand unique cliest TFhe
number of users (unique client IP and browser user-ageingstr
pairs) ranges from 280 to 430 thousand, slightly larger ttien
number of client IPs. The clients IPs originate from 168-&8un-
tries and regions as determined using the MaxMind datalze [
and cover 40-60% of /8 networks, and 7-24% of /16 networke Th
total number of unique origin servers ranges from 820 thodisa
1.2 million.

We focus on the traffic of users from four countries from diffe
ent continents — the United States (US), Brazil (BR), ChiDY),
and France (FR). This essentially generates multiple ¢dsafiom
different client organizations, and analyzing geograalhcdis-
persed client organizations enables us to discover comrhan ¢
acteristics of Web traffic across different regions as welegion-
specific characteristics. Tahleshows summary statistics for these
countries. In general, the United States and China haverlata
sets than France and Brazil, mainly due to their larger thepula-
tion. The yearly fluctuation of traffic volume is due to theigéipn
of the number of available proxy nodes. Overall, our analyfi
four countries covers 48-138 million requests, 691-1906tGB
fic, and 70-152 thousand users per month.
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Figure 1: Average client bandwidth: Client bandwidth gets improved over time.
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Figure 2: NAT usage: Most (83-94%) client IPs have only one & agent. The number gets slightly bigger over time due to an

increase in the number of computers per household.

Users and Content Our large-scale data set spanning many years
is much larger than the sets used in previous Web traffic relsea
and has broader coverage than much previous work, whiclypas t
ically been restricted to users from a particular univgrsitcom-
pany |6, 63]. While some self-selection is unavoidable since we
are measuring users of our own system, we have found that our
user population is quite diverse, covering people who wastef
Web access, unfiltered content, better routing, betteapyivand
other reasons.

As a high-level check on representativeness, we examine the
users of CoDeeN by looking at thdser - Agent field in the ac-
cess log, and find that our global trends and regional variati
in browser and operating system usage are consistent witr ot
studies g0, 61]. Overall, Firefox and Microsoft Internet Explorer
(MSIE) account for more than 86% of the browsers in use over
the course of five years in all of the four countries, and mbeat
83% of the users’ operating systems are Windows. In some-coun
tries, we see a slightly higher share of Firefox than rephiriether
studies, which we attribute to the existence of many Firéfieb
proxy addons that can use CoDedd$][ In most countries, we also
observe a decreasing share of MSIE due to the increasing shar
other browsers, such as Firefox and Chrome, with the e>arepfi
China, which continues to show higher usage of MSIE and Win-
dows.

In addition, we investigate content that the users of CoDeeN
browse by examining the top sites in terms of the number of re-
quests. The results also correspond to other stuBje¥\e observe
that globally-popular Web sites, such as Google, YouTula0d,
and Facebook, are commonly ranked high in all of the four eoun
tries. Furthermore, locally-popular Web sites also apjégin in
the ranking. For example, these sites incladeai gsl i st. org,
go. com andespn. comin the United Statesai du. com qq.
com andsi na. com cn in China,| equi pe. fr, free.fr,
andover - bl og. comin France, andjl obo. com uol . com
br, andor kut . comin Brazil.

3. HIGH-LEVEL CHARACTERISTICS

In this section, we analyze high-level characteristicswof\&eb
traffic data, looking at the properties of clients, objeetsd Web
sites.

Connection SpeedWe estimate the client bandwidth by observ-
ing the download time for objects — from the time when CoDeeN
proxy node receives the request from a client to the time vihen
proxy finishes sending the object to the client. To minimiee éf-
fect of link latency, we consider only those objects thatlarger
than 1 MB. Figurel shows CDFs of average client bandwidth per
aggregated /24 IP address, but similar patterns exist whkamg u
the 95th percentile of download time. Overall, we obsenat th
the client bandwidth is consistently increasing over timespite
no significant change in PlanetLab’s own connectivity int fhex
riod. Geographically, the speed of the United States andderes
faster than Brazil and China. This scarcity of bandwidthastip-
ularly apparent in 2006, when we did not see any clients irziBra
and China with download speeds exceeding 2 Mbps. Integdgtin
there still exist many slow clients with less than 256 Kbpgrein
the developed countries.

NAT Usage We analyze the use of Network Address Translation
(NAT) in Figure2 where we present CDFs of the number of differ-
ent user agents per client IP address. The result shows thilet w
most (83-94%) client IPs have just one user agent, the nugdgisr
slightly bigger over time. We attribute this increase toraréase in
the number of computers per household over the years, witich i
plies the scarcity of IPv4 addresses. The maximum numbesef u
agents per IP we observe is 69 in the United States, 500 inaChin
and 36 in Brazil. Our estimated number of NATs that have two or
more distinct hosts (6-17%) is lower than the numbers froheiot
studies that use client-side measurements or IP TI5Es33, 37],
possibly due to methodology differences or from only somgnef
hosts behind a NAT using the CoDeeN system.
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Figure 3: Maximum number of concurrent connections per user We observe quite a big increase in 2010 due to the browsers
increasing the number of connections.
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Figure 4: Content type distribution changes from 2006 to 20Q: We observe growth of Flash video, JavaScript, CSS, and XML

Images are still dominating request traffic.

Maximum Concurrent Connections Figure 3 shows CDFs of

the maximum number of concurrent connections per user agent
We observe quite a big increase in 2010 — the median number
grows from 4-5 in 2006 and 2008 to 6-7 in 2010. This increase
is mainly because the browsers change the default numbesof m
imum simultaneous connections per server from 4 to 6 inistart

in 2008 M, 51], largely to accommodate Ajax which usually re-
quires many simultaneous connections to reduce latencfactn

the default number specified in HTTP/1.1 is only22][

Content Type We observe a shift from static image-oriented Web
pages to dynamic rich media Web pages in Figurk presents the
content type distribution changes from 2006 to 2010, coteaeloy
arrows. The X axis is the percentage of requests, and thesvigxi
the percentage of bytes, both in log-scale.

First, we observe a sharp increase of JavaScript, CSS, arid XM
primarily due to the popular use of Ajax. We also find a sharp in
crease of Flash video (FLV) traffic, taking about 25% of tdtaf-
fic both in the United States and Brazil in 2010, as it eats ihéo
share of other video formats. In addition, while the bytecpat-
age of octet-stream traffic sees a general decrease, itsnpege
of requests actually increases. This may be related to thi®mu
use of HTTP as a transport protocol for exchanging binarg dat
many applications. Still, image traffic, including all of Bubtypes,
consumes the most bandwidth.

CDFs of JavaScript sizes in France, and we show CDFs of CSS
sizes in China in Figur& (b), from 2006 to 2010. We omit the
similar results of other countries due to space constraifite in-
creased code size of JavaScript and advanced CSS is liketgde

to the increasing popularity of Ajax. In general, other emtypes

do not show consistent size changes over time.

While there seems to be no significant size changes over time i
video objects, we observe FLV objects are bigger than otiteov
in general. Figur& (c) compares the object size (CDF) of differ-
ent video types in the United States for 2010. Some videoctbje
(e.g, ASF) are very small in size and they are container objects
that do not contain actual video content. Once users fetslkitd
of container object, they contact media streaming servesuse
non-HTTP protocols such as RTSE5] or RTP [54] for fetching
the content. The median size of such container objects isaly
less than 1 KB, while that of FLV, WMV, and MPEG is 1743 KB,
265 KB, and 802 KB, respectively.

Finally, while new video streaming technologies that splarge
video file into multiple smaller files for cacheability andrfme-
mance started gaining popularity in late 2009 and 2aA1®,[41],
we do not see its wide deployment in our data set yet. Withethes
new technologies, we expect to observe a decrease in sizéenf v
objects with an increasing number of requests. We plan tlyama
this case with more recent data set in the future.

Despite the growth of embedded images in Web pages, we do notTraffic Share of Web Sites We examine the traffic share of 1)

see a corresponding surge in their numbers in the traffiempeitt
We believe that this is due to the improved caching behavior o
many Web sites that separate the cacheable parts of theamnton
on different servers and use long expiration dates. As dtr@sost

of these images are served from the browser cache afteritta in
visit to the Web site.

Object Size We find that the size of JavaScript and CSS to be in-
creasing steadily over time. As an example, Figbif@) presents

video sites!, and 2) advertising networks and analytics sftés
Figure6. We consider the top 50 sites that dominate these kinds
of traffic. In Figure6 (a), we observe that the advertising net-
work traffic takes 1-12% of the total requests, and it consity
increases over time as the market gro84][ In addition, we
find the volume of video site traffic is consistently increasas

e.g,yout ube. com

2e.g, doubl ecl i ck. comandgoogl e- anal yti cs. com
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Figure 6: Top sites: Ads/video site traffic is increasing. Amgle top site tracks up to 65% of the user population.

shown in Figure6 (b), taking up to 28% in Brazil for 2010. China,
with lower bandwidth, sees more still image traffic than wdEi-
nally, we see that the single top site reaches a growingidract
of all users over time in Figures (c). All of the single top sites
by the number of client IPs during a five-year period are eithe
search enginegogl e. comor bai du. com), or analytics site
(googl e- anal yti cs. con), reaching as high as 65% in Brazil
for 2010, which may have implications for user tracking anid p
vacy.

4. PAGE-LEVEL CHARACTERISTICS

In this section, we analyze our data with Web page-levelildeta
We first provide background on page detection algorithmsexad
plain the problems with previous approaches in Seectiénin Sec-

object of a new Web page. The second approach (type-based) is
to use the content type of the objedf7]. This approach simply
regards every HTML object as a main object, and any non-HTML
object as an embedded object of the previous main object.
Unfortunately, the complex and dynamic nature of the curren
Web traffic blurs the traditional notion of Web pages, andptes
vious approaches do not work well. For example, client-gitkr-
actions €.g, Ajax) that usually have longer idle time would be mis-
classified as separate Web pages by the time-based appi©ach.
the other hand, the type-based approach would misclassifiyefs
in a single Web page as separate independent Web pages. As are
sult, these approaches would generate inaccurate traffielsd
applied to modern Web traffic. Worse, they have already bsed u
in hundreds of studies without validation.

tion 4.2, we present a new page detection algorithm called Stream-4 2  StreamStructure Algorithm

Structure that is better suited for modern Web traffic ang)yand
also demonstrate it is more accurate than previous appeeatts-
ing this algorithm, Sectiod.3 examines the initial page character-
istics, analyzes page loading latency via simulations, @edents
a simple characterization of modern Web pages.

4.1 Previous Page Detection Algorithms

A common approach for empirically modeling Web traffic is to
reconstruct end-user browsing behavior from the accessldte

To overcome the limitations of the previous approaches, eve d
velop a new page detection algorithm called StreamStrectbat
exploits the stream and structure information of Web pa@es.al-
gorithm consists of three steps — grouping streams, detestain
objects, and identifying initial pages. Figuredepicts the defini-
tion of streams, Web pages, initial pages, main/embeddptish
and client-side interactions in our algorithm.

Step 1. Grouping Streamslinstead of treating all the requests in a

in which users repeatedly request Web pages. Once Web pagedlat manner, we first group them into multiple independergasirs

(or main objects) are identified, we can derive relevant rhpde
rameters such as the number of embedded objects, total gage s
total page time, and inter-arrival time. Thus, detectingo\lage
boundaries is crucial to the model accuracy.

Previous approaches for detecting page boundaries falhivd
categories. The first approach (time-based) is to use tediide
between request®] 35, 56]. If the idle time is short enough (less
than a predefined threshold), the request is assumed to beageth
automatically by the browser, and it becomes an embeddeatobj
of the previous Web page. Otherwise, the request is assiorizs t
generated manually by the user’s click, and it becomes thia ma

by exploiting theRef er er field. The referer of a request reveals
the address of an object from which the request came from — a de
pendency between two objects. For example, if an HTML object
includes two embedded objects in it, the referer of thosedme
bedded objects would be the HTML object. Also, if a user diak
link to move to a new Web page, the first request of the new Web
page would have the referer field of an object in the previoe® W
page.

At a high level, each stream is a transitive closure of theresf
relation on the set of requests. Whenever the referer ofusestds
empty, the request becomes the start (or root) of a new striééme
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high precision and recall. It is also robust to the idle time @-
rameter selection.
referer of the subsequent request matches with any of theses)
In case there is more than one matched stream, we chooséebie 1a  the pages. It is a piece of JavaScript code that collect®wai
one. If not found, we also create a new stream with the request  cjient-side information and reports to the analytics sevieen the
this happens because its referer request could be a broasfégc  povcont ent Loaded event fires. Thus, once we see this bea-

hit thus not present in the log. con in the access logs, we can safely assume that the Webspage i
Grouping requests with the referer relation allows isatptogs successfully loaded at that point, and start applying the-based

from multiple browser instances or tabs, since they belongft approach to identify the initial page. Note that our alduritcan

ferent streams. It also helps identifying frames and cli@dé in- also use other ways than the Google Analytics beacon totdétec

teractions, since all the frames from the same Web page &tfiéal  page loading event. For example, one could utilize beacmms f
client-side interactions to the same Web page belong todfres  qther analytics services, or even instrument Web pagesowittom

stream. o _ JavasScript at the proxy.
Even though the referer field is optional, we can safely rely o o )
this information because most current browsers (FirefaXd8IE) Validation We validate the accuracy of StreamStructure and the

enable it by default. In fact, Firefox and MSIE together apto  €Xisting approaches on the manually collected data setsing
for more than 86% of our client population as discussed in Sec (Via CoDeeN) the top 100 sites of Alexa’s i fwith MSIE. We

tion 2. When present, we use the referer field to group requests into Nt Only visit the top-level pages, but also follow approaiely ten
streams. links from those top-level pages for each site, resultin®@7,Web

. ) ) . . pages in total> We also record the URLs of those visited Web
Step 2. Detecting Main ObjectsOnce we finish grouping streams,  pages (or main objects), and compare them with the URLS of the
we detect. a main object fpr each stream. We first generateq)bain Web pages found by each approach. Note that this data dolect
ject candidates by applying the type-based approach. Thisdv s different from actual browsing patterns, but we belidvat it is

find HTML frame objects as main object candidates, butnoMHT  gyfficient to capture the structure of representative Welepand
interactions would be ignored. Among those main object eand hys useful for validation.

dates, we discard those with no embedded object. This iglbase  Figure 8 shows the precision and recall of various approaches.
on the observation that current Web pages are typically 88mp  precision is defined as the number of correct Web pages found d
consisting of many embedded objects. We detect this by oot vided by the total number of Web pages found, and recall is de-

the referer of the next request. If it is not the precedingmodiect fined as the number of correct Web pages found divided by the
candidate, we remove the preceding object from considerati total number of correct Web pages. For comparison, we ajso tr
Next, we apply the time-based approach to finalize the main ob 5 simple combination of time-based and type-based appesach
ject selection. If the idle time is less than a given threghdlis (Time+Type) that does not exploit the stream and structofie-
likely that they belong to the same Web page — overlapping HTM  mation. Multiple data points represent the results of waiale
frame objects with a short idle time would be eliminated fridma time (0.1, 0.2, 0.5, and 1-5 seconds) parameters.
selection. It is noteWOrthy that we consider the idle timéyon The time-based approach performs in general very poorul’ an
among the main object (HTML) candidates. This is because the the pest result achieves only a precision of 0.45 and a retall
interactions in a Web page happen at an arbitrary point, &bl i 55 Also, the performance is very sensitive to the idletaalec-
ases the idle time calculation if included. Now all the remitag tion. The type-based approach shows the highest recalbah88,

objects between two main objects become the embedded ®bject which implies that the main objects of most Web pages are HTML
of its preceding main object. This way, we could include b# t  However, the precision is very low, only about 0.27. StretinS

interactions in a Web page as its embedded objects. ture outperforms all of the previous approaches, achieigt
Step 3. Identifying Initial Pages The final task of our algorithmis ~ Precision and recall above 0.8 simultaneously. Furtheemioris
to identify the initial pages, as the previous grouping stitludes quite robust to the idle time parameter selection. The tiyyee-
client-side interactions in the Web pages. The basic idesapply approach is less accurate, proving the importance of ekmgathe
the time-based approach. However, simply checking theticiie stream and structure information. o

is inaccurate because the DNS look@ ¢r browser processing Finally, we investigate the sensitivity of the idle time paveter

time can vary significantly, especially while processing thain
object before the page is fully loaded. 3Some sites have many Web pages while others do not.
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Figure 9: Initial page characteristics: The Google Analytcs beacon gets increasingly popular, and pages get biggerthan terms of
the size and number of objects. On the other hand, the page lding latency has dropped in 2009 and 2010 because of the inased
number of concurrent connections and reduced object latenc

for identifying initial pages by comparing CDFs of the pagading we observe a consistent increase of the number of objectthand
time, number of objects, and size of the initial pages wiffedént total size in Figure® (b) and (c). For example, the median number
idle time thresholds. Overall, 23.9% of pages have Googlalytn of objects per page in the United States sees an increase6from

ics beacons in our manually collected Alexa data set. Werebse objects in 2006 to 12 objects in 2010, and the median page size
that an idle time of 0.1 seconds is too short and 5 second®is to gets bigger from 69 KB in 2006 to 133 KB in 2010. This increase

long, distorting the distribution significantly. On the etthand, is likely related to the popular use of advertisement/atiedy and
an idle time between 0.5 and 2 seconds generates quite sradble  the object size increase of JavaScript and CSS in Fifeg and
similar results. (b).

While the page loading latency also sees a general increase i
4.3 Analysis Results Figure 9 (d) until 2008, instead we see it decrease in 2009 and

2010. For example in the United States, the median latency in
creases from 5.13 seconds in 2006 to 8.45 seconds in 2008, but
b decreases to 5.98 seconds in 2010This decrease likely stems
from the increased number of concurrent connections inrEigu
Another decreasing factor is the reduced latency of fegchimob-
ject in Figure9 (e), and it also makes the object inter-arrival rate
burstier in Figured (f). As the object size does not get smaller
over time, the decrease of the object latency is likely eglao the
improved client bandwidth in Figuré, as well as the improved
caching behavior of many Web sites.

We apply the StreamStructure algorithm to our CoDeeN access
log data set, and analyze the derived Web pages in varioestasp
We choose the idle time of one second both for identifying We
pages out of streams, and for identifying initial pages duiveb
pages. Among all the users, we ignore those who are activessr
than 30 minutes to reduce potential bias. We first examinetiae
acteristics of initial pages, and analyze the page loaditenty in
detail via simulations. Finally, we provide a simple chaesiza-
tion of modern Web pages including client-side interaction

Initial Page Characteristics We first show the fraction of Web
pages that have a Google Analytics beacon in our data segin Fi

ure9 (a). Itis less than 5% in 2006, but it has become increasingly . biect | dd d oip
popular and accounts for about 40% in 2010. While there ig-a li CONNEctions per server, object latency, and dependencyg

tle variation over time, the volume of the initial page trafoughly jects, we examine the impact of these factors via simulatiéach
accounts for about 40-60% of the entire Web traffic in terrrisooh object is fetched from a central FIFO queue, and we use the mea

requests and bytes. The rest of the traffic is client-sidsraations, sured object Ia_tency in the access logs for the simulateeColy-
which is quite a significant amount. tency. The object dependency is extracted from the refeder r

In Figure 9 (b)-(f), we examine the changes in the number of tiOﬂS.ﬁSinCﬁ the purlpo?jg oflthis simulzra]tionhis to asse;shMah:—l
objects, size, and latency of the initial pages, and thextgtend tors affect the page loading latency rather than to preecattua

inter-arrival time of each individual object in the initiphges. We Iatelr(ul:y, we S'm%“gy the 5|mulat.|on/as foIIovys. F.'rSt’ Wﬁme .nEt'
compare the median values rather than the mean, since oar pag work latency and browser parsing/processing time — thate fet-
detection algorithm is not perfect and the mean is more gtibte “The actual user-perceived latency is smaller than our medsu

to outliers/errors. latency because users recognize pages to be loaded bdfofe al
First of all, the pages have become increasingly complexevhe the embedded objects are completely downloaded.

Page Loading Latency Simulation As the page loading latency
is determined by many factors including the number of comzur
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Figure 10: Page loading latency simulation (US, 2010): In@as-
ing the number of simultaneous connections could further re
duce page load latency by 23%. Removing dependencies be-
tween objects NoDep) would yield at most a 50% reduction.
Reducing per-object latency by 50% Hal f Lat ) would actu-
ally reduce page-load latency by 67% because of the simulten
ous connections. Together, page loading latency can be reckd
by up to 75%.

work idle time during the page loading process. Second, epgi-
dent object is not fetched before its parent object is firdskdich
is less aggressive than current practice, where a browpiatly
starts fetching embedded objects as soon as it finds theisURL
FigurelOpresents the median simulated latency from the United
States in 2010, as a function of the maximum number of concur-
rent connections per server. We omit the results of othen-cou
tries that are very similar to that of the United States. Wieusate
four different scenarios, and the latency is normalizedhey de-
fault latency with one concurrent connection per serverstFive
observe that increasing the number of concurrent conmecper
server would reduce the latency by up to 23% at 8 connectimns,
yond which we see no benefit. Second, we simulate the ideal cas
where there is no object dependentypDep) — all of the object
URLs are known in advance, and it reduces the latency by up to
50%. Given this latency reduction, it is worth exploring way re-
lieve/eliminate the object dependency. Third, if per-abjatency
is reduced by halfHal f Lat ) via better caching/prefetching ap-
proaches, it could actually reduce the page loading latbpap to
61% due to the simultaneous connections. All together, vsenie
that page loading latency could be reduced by up to 75%.

Entire Page Characteristics For a simple characterization of mod-
ern Web pages, we divide all of the Web pages including client
side interactions into three groups based on the total page-t

short (0-25th percentile), medium (25-75th), and long {256th)
pages. We then characterize these pages in terms of the nombe
embedded objects, page size, object inter-arrival time camtent
type distribution. Figurell presents an example characterization
of Web pages from the United States in 2010.

Overall, long pages consume about 55% of total requests, and
medium pages take about 40%. In terms of bytes, long pages tak
even more than 60%. Short pages account for only about 5% in
terms of both requests and bytes. The content type diswiburt
Figurel1l (a) reveals the characteristics of the pages more clearly.
Short pages are mainly HTML-oriented, and search acts/itaild
be typical examples. On the other hand, long pages show athigh
percentage of video and octet-stream bytes than othersjingea
these are mainly video watching activities and large file mtow
loads. Medium pages lie in between, and typical exampleddvou
be browsing news or blogs.

In terms of the number of embedded objects, short pagesynostl
have less than 10 objects, and medium and long pages hagea lar
number of embedded objects, as in Figlide(b) where we show
PDFs. The median is 4, 12, and 30 for short, medium, and long
pages, respectively. Especially, we observe heavy céiglgtinter-
actions in long pages. Note that medium pages will oftenifpec
dozens of embedded images in their HTML but as Web sites im-
prove their cacheability best practices, most of these ached at
the browser, and we observe only a median of 12 fetches fapthe
dated portions of their content. This in part also explaihy page
loading latency is improving despite the increase in pageptex-
ity.

In addition, Figurel 1 (c) shows PDFs of the total page sizes, and
we observe that the median difference is about 3x betweer sho
(40 KB) and medium pages (122 KB), and more than 2x between
medium and long pages (286 KB). Note that long pages have a
very long tail reaching up to 370 MB, while the largest pagee si
is only about 5 MB for short pages and 13 MB for medium pages.
Finally, we observe that short and medium pages are butkaer
long pages as it does not usually involve client-side irt#oas.

The median object inter-arrival time is 90, 89, and 114 msfant,
medium, and long pages, respectively.

5. REDUNDANCY AND CACHING

The last part of our study is to analyze the redundancy in Web
traffic and the impact of caching. For this study, we analyee t
full content of traffic as well as the access logs. Tablshows
the summary of our content data set from April, 2010. We aaptu
cache misses only to account for simple improvements lilkegus
a local proxy cache. Throughout this section, our analysizased
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Figure 13: Uncacheable objects by content types: Overall 918-32.2% of unique URLS, 21.5-28.3% of total requests, anti0.5-14.8%
of total bytes are uncacheable. HTML and JavaScript are dynanically generated and thus less cacheable.

USA | China | France| Brazil the content, often with SHA-1 hash. The next time the systees s
# Requests (K) 8,611 1 12,036 | 2,1291 4,018 the same chunk, it can pass only a reference instead of tji@ari

Table 2- ;/Olume (GB)f 198 af 2"18 45 L he-mi content. This way, content-based caching could find the szaime
al € 2: Summary of captured full content data (cache-misse tent within an object and across different objects, yiajdinuch
only) higher cache hit rates than object-based caching. Furtvert is

protocol independent and effective for uncacheable coaewell.

on logically centralized but physically distributed progystems,

just like CoDeeN. 5.2 URL Popularity

We first provide the details of content-based caching in Sec- We investigate the underlying changes in URL popularityiryr
tion 5.1 Using the access log data, we examine the changes inthe five-year period with our access log data set, which tyrée

URL popularity during the five-year period in Sectiém2. Us- fluences the caching effectiveness. We find two interestemnyps.

ing the full content data, we directly compare the effectass of First, we observe that the popular URLs are getting more lpopu

object-based caching and content-based caching in Séc8cend as in Figurel2 (a) and (b) where we present the request percent-

quantify the origins of redundancy in Sectibrd. We also calculate age of the top 100,000 URLs in the United States and China. The

the actual byte hit rates with practical cache storage siz&zc- request traffic to most popular URL increases from 0.089%.1r2

tion 5.5. Finally, we analyze the characteristics of aborted trenssf 2006 to 0.28-0.41% in 2010, and this concentration wouldeiase

and discuss its caching implications in Sectiof the cache hit rate. The most popular URL in the United States

. for 2010 is a dynamically generated beacon object foarag! e.

5.1 Content-based CaChmg com which is uncacheable, though. At the same time, we also find

At a high level, content-based caching works by splittingphn that the percentage of URLs that are accessed only once is con

ject or file into many smaller chunks, and caching those chunk sistently increasing as in Figufe (c). We see its increase from
instead of an entire object. The chunk boundaries are di&tedm 76.9-83.3% in 2006 to 84.6-87.8% in 2010. Overall, they aoto

based on the content, commonly with Rabin fingerprintéf) |- if for a significant amount of traffic — 30.0-48.8% of total resjise
the fingerprinting value over a sliding window of data ma&hgth and 27.3-63.9% of total bytes. These least popular URLs lare a
low ordern bits of a predefined constat, this region of data con- cache-misses and would decrease the cache hit rate.

stitutes a chunk boundary. The expected average chunkssiZe i While these two trends in URL popularity could affect caclite h
byte assuming a uniform distribution of content values. fevent rate both positively and negatively, we do not observe amgiso

chunks from being too small or large in a pathological case, w tent changes in resulting cache hit rate during the five-pednd.
specify the minimum and maximum size of chunks as well. Unlik  This is because they cancel out each other, and cache hiisrate

fixed-size chunking (e.g., every 1 KB), content-based cmgnis also determined by other factors such as user populatioardier
robust to any insertion/deletion/modification to the cont&@nce it to get an upper bound on object-based cache hit rate withaur a
only affects nearby chunks. cess log data set, we assume every object is cacheable, aothtw

Once chunk boundaries are detected, chunks are named lmased ogjects are identical (cache hit) once their URLs and conemgths
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Figure 14: Ideal cache hit rate with infinite cache storage:
Content-based caching with 128-bytes chunks achieves alsto
2x larger byte hit rate than object-based HTTP caching.

match. The estimated cache hit rate we observe ranges fr@%35

to 54.5%, and the byte hit rate ranges from 15.1% to 49.3%. The
byte hit rate is smaller than the cache hit rate because ¢eishare
biased towards relatively smaller objects. In fact, we oles¢hat

age chunk size from 128 bytes, 1 KB, 8 KB, to 64 KB. Note that
we apply content-based caching on compressed contentuwidke
compressing it, because the volume of compressed contemasu
gzi p ordef | at e is less than 1% in our data set.

In Figure 14, we observe that content-based caching with any
chunk size outperforms object-based caching. The cachathiof
object-level caching ranges from 27.0-37.1% (not showherfig-
ure), but the actual byte hit rate is only 16.8-28.1%, whiclower
than the byte hit rates from a decade ago, but similar to thaiare
recent studies3, 13, 24, 30, 40, 63]. The hit rate of the optimistic
version HTTP- OPT) is only slightly larger. On the other hand,
the lowest byte hit rate of content-based caching is 29.4988
with 64 KB chunks, and the highest byte hit rate is 42.0-50.6%
with 128 byte chunks, 1.8-2.5x larger than object-levelhiag’s
byte hit rate. The small chunk size performs better than dhgel
chunk sizes because of its finer granularity. For exampl@ pj/fes
chunks can detect redundancy at the sentence-level, buBGaK
do only at the document-level.

Impact of Content Types Among many different content types,
we find that text resources such as HTML, JavaScript, XML, and

the mean object size of those URLSs that are accessed only onceCSS have much higher redundancy than binary resources such a

is always larger than the mean object size of those URLs tleat a
accessed more than once over the five years.

5.3 Caching Effectiveness

In this section, we first investigate HTTP cacheability & traf-
fic, and calculate the ideal cache hit rate. We then comparefth
fectiveness of object-based and content-based cachingirofuld
content data, and further examine the impact of contentstype

HTTP Cacheability We examine HTTP cacheability of objects
with our full content data from 2010. We decide if an object is
cacheable or not by looking at i@&che- Cont r ol andPr agna
fields in the response header. Figlf&shows the percentage of
uncacheable objects in terms of the number of unique URLal, to
requests, and total bytes. Overall, 19.8-32.2% of uniquédire
uncacheable, and it accounts for 21.5-28.3% of total requexl
10.5-14.8% of total bytes. Among different content type$ML
and JavaScript are less cacheable than other content iyypging
that they are dynamically generated and updated frequetign
though the low fraction of uncacheable traffic implies sabsal
potential for caching, the actual cache hit rates would berséy
limited due to the growing fraction of URLs that are accesselgt
once.

We also observe a few other interesting points. First, afgignt
portion of XML traffic (over 70%) in China is uncacheable, and
turns out to be due to the popular use of Really Simple Sytidita
(RSS) p2] feeds — two RSS URLs are responsible for 90.8% of
total uncacheable bytes and 64.8% of total uncacheableesezju
Second, Brazil (not shown) shows a higher fraction of uneable
XML and audio traffic than other countries. This is due to tbpp
ular use of real time update of sports games and live strepofin
audio.

Ideal Byte Hit Rate We calculate the ideal bandwidth savings
achievable with a centralized proxy cache having infinitehea
storage by the traditional object-level HTTP caching andtenot-
based caching. For object-level caching, we decide if anabh$
cacheable by respecting cache-control headers. If caleheab
check if the URLs and content lengths match as in Se&ianwe
also calculate a slightly optimistic behavior of objecséd caching
by discarding query strings from URLs in order to accommedat
the case where two URLs with different metadata actuallpiog!
to the same object. For content-based caching, we vary #e av

image, audio, video, and octet-stream. Figleshows the ideal
redundancy by content type. In particular, JavaScript shover
90% of redundancy with the smallest chunk size of 128 bytes. O
the other hand, video exhibits much lower redundancy of 20%,
illustrating the impact of long-tailed popularity in videmntent.
Object-based caching performs very poorly, and its redocyga
elimination for XML is one-eighth that of the gains with 12¢té
chunks in China.

We also find that content-based caching works well regasdies
the content types, while the object-based caching is maifigc-
tive for JavaScript and image traffic only. Figurédepicts the con-
tribution of byte savings, basically showing which cachénfpeme
works best for which content type. In object-based cachihg,
contribution of JavaScript and image is relatively lardent that of
other content types. It should be noted that the contributifobi-
nary resources such as video, audio, and octet-streanré&resty
low, implying that object-based caching is not suitable tfegm.
On the other hand, content-based caching provides morermmif
benefits.

5.4 Origins of Redundancy

In order to understand how content-based caching apprsache
provide more than double the byte hit rate than the objeseta
caching approach, we quantify the contribution of reducgldrom
different sources in Figur&7. We use the average chunk size of
128-bytes for this analysis.

Overall, we observe that about 40.3-58.6% of the total redun
dancy is due to identical objects with the same URLSs, which is
essentially the upper bound of the object-based cachingapp's
byte hit rate ¢bj ect - hi t). The other half of the total redun-
dancy is purely from the content-based caching approaahesye
further break it into the following three sources. Firsgréhexists
redundancy across the content changes of an objattr(a- URL),
and it accounts for about 21.8-32.5% of the total redundaBeg-
ond, some objects with different URLs actually have ideaitton-
tent [32] (al i asi ng), and it represents 6.7-9.8% of the total re-
dundancy. Finally, the rest is due to the redundancy acrifss d
ferent objects that have different URLs and non-identicaitent
(i nter-URL), and it represents 12.8-20.0% of the total redun-
dancy. This analysis result implies that most of the addéicsav-
ings from the content-based caching approaches come feahilt
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Figure 16: Byte saving contribution by content types: Contat-based caching is effective for any content type, but ob-based

caching works well only for JavaScript and image.

ity to detect and eliminate the redundancy in the contenhgbsa
of an object as well as redundancy across different objects.

In terms of content types, we find that HTML and XML gener-
ally show relatively higher intra-URL redundancy than atben-
tent types. It implies that they are frequently updated beirt
content changes slowly. Also, aliasing in general accoforta
small amount of the total redundancy, but we observe a signifi
amount of aliasing in XML and audio content types in Brazihis!
is again because of the popular use of the real time updasgoadk
games (XML) and live streaming of audio in Brazil. These otge
have identical content but with different URLs. Finally, wee
that most of the redundancy in binary resources, espedcialBo,
come from partial content overlaps (intra-URL + inter-UR&dher
than complete object matches (object-hit + aliasing). Tisartly
because they are aborted before they are fully downloaded. W
examine the aborted transfers in more detail in Sedién

5.5 Cache Storage Size

We simulate cache behavior with different cache storagesgiz
determine the required cache storage size for achievirsg ¢tothe
ideal byte hit rate, but also include the metadata overh2ddytes
per chunk) of content-based caching in the byte hit rateutation.

We use a simple LRU cache replacement policy as a first step, an
leave for future work investigating more sophisticatedges [46].

In addition to object-based and content-based caching,lsee a
simulate multi-resolution chunking (MRC), a recently-eped
strategy that simultaneously exploits multiple chunk si28] and
is well-suited for large storage sizes. MRC always favorgda

MRC minimizes the metadata overhead, disk accesses, and mem
ory pressure at the cost of more disk space.

Figure 18 shows our simulation results in the United States and
China, which shows that content-based caching always dotpes
object-based caching regardless of cache storage sizeeudow
due to the significant metadata overhead for fixed 128 bytaskesh
the actual byte hit rate of 128 byte chunks is similar to ttidt KB
chunks. The saturation point of cache size is similar adtusslif-
ferent caching approaches except for MRC. For example,rikyo
100 GB of cache storage, the byte hit rate no longer increases
the United States and China. The saturation point essigritidli-
cates the working set size of the traffic, so increasing thheaize
beyond it gives no further benefits. On the other hand, whilOvI
performs relatively poorly when cache storage is smalbiitinues
to increase the byte hit rate beyond the saturation poitheasul-
tiple chunk sizes reduce metadata overhead. The simulaéisra
few missing data points because of the limitation of main mgm
we have (16 GB) during the simulation. Also, the byte hit maite
MRC with infinite cache size is estimated from the ideal byite h
rate of 128 byte chunks minus 1% overhead.

While increasing cache storage size gives diminishingrmstu
for object-based caching, using large cache storage witlC MR
highly beneficial as it doubles the byte hit rate comparedjfed-
based caching. This option would be especially attractivéevel-
oping regions where the bandwidth is much more expensive tha
disk storage 37]. Since a TB-sized disk costs less than $100, it
makes sense to allocate much more cache storage than wakused
years ago, when disk sizes were in the tens of GB.

In our data set, we need about 800 GB for the United States and
China, 200 GB for France, and 400 GB for Brazil to achieveelos

chunks over small ones, and uses small chunks only when largey, the ideal byte hit rate with MRC. It is roughly four timestbe

chunks are cache misses. It also caches all different chize& fr
the same content redundantly for the future reference. Whis

total traffic size because MRC uses four different chunkssine
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Request (K)| Byte (GB) | GB if fully downloaded
US | 265 (3.1%)| 61 (30.8%) 712 (83.8%)
CN | 377(3.1%)| 27 (12.4%) 444 (69.9%)
FR 38 (1.8%) | 10 (23.6%) 258 (88.8%)
BR 85 (2.1%) | 22 (28.3%) 216 (79.3%)

Table 3: Aborted transfers

our simulation. Note that one might want to reduce the strag
requirement by storing only unique content and metadath asc
offset for different chunk sizes. However, it complicates tache
index management and increases memory pressure, as poitted
by Ihmet al. [28].

5.6 Aborted Transfers

In Table 3, we find a small number of requests (1.8-3.1%) are
aborted before they are fully downloaded, but their volusguiite
significant. These events occur when users cancel ongang-tr
fers by clicking the stop button of the browser, or move totaeo
Web page. We detect the aborted transfer if the downloadegHe
is less than the given content-length in the response headerto-
tal volume of the downloaded bytes until aborted is 12.8%. If
they were fully downloaded, it would take 69.9-88.8% of thére
traffic. The investigation of the content type distributioithese
transfers reveals that most of the bytes are from the videtsters,
presumably previewing the first part of the video clips. Intica-
lar, Flash video comprises roughly 40-70% of all abortedsfers,
and we also observe users canceling file downloads.

The large volume of aborted transfers could negatively thpa
the performance of object-based caching proxies. Suclersgst
have roughly four options to deal with the aborted transfdiise

first option is to discard and do not cache them, but it justesihe
bandwidth and reduces cache hit rate. The second optioritiyto
download and cache them (of course, for those cacheabletsbje
only), but it consumes significant bandwidth for downloadob-
jects that might not be referenced in the future. The thitibodies

in between the first and second, and decides whether to discar
fully download depending on the number of bytes remainsgj. [
The final option is to cache the downloaded portion and do geran
request on a cache hit, but it is effective only for cacheabjects.

In comparison, content-based caching could cache datadnbm
the downloaded content without any configuration, thus aata d
received over network, even uncacheable, is useful. Axacil
content-based caching’s byte hit rate of video traffic is imigher
than object- based caching’s byte hit rate in Figlise

6. RELATED WORK

Our work is related to previous work in the areas of Internebm
itoring, traffic characterization, and caching behavioe déscribe
our relation to this previous work below.

Internet Monitoring There is a great deal of previous work ana-
lyzing traffic behavior. For example, Akamai analyzes dattng
ered from its global server network, and reports the Intepea-
etration rate and connection speeds for each coudtly [Also,
ipoque examines traffic from its customer ISPs and univess29],
and they find the increase of Web traffic as well as the deciafase
P2P traffic due to the popularity of file hosting, social neting,
and video streaming sites. Several other studies commasigree
the same trend of increasing Web and video traffi; B4, 36).

While all of these previous studies primarily focus on thalan



ysis of overall usage of Internet traffic, our focus is to stigate
various aspects of Web traffic changes in great detail. A féngro
studies also have conducted long-term characterizatibned
traffic [14, 2€], but their analyses on the data set from specific or-
ganizations, such as universities or research institatestied to
their host institutes. Instead, our large-scale data smtrspg a
multi-year period covers a world-wide user population.

Web Traffic Characterization A very widely used Web traffic
model was first proposed by Mah, in which he introduces the idl
time based page detection algorithB5]. Since then, this model
has been widely adopted by many researchers for charantgriz
Web traffic P, 56]. Later, Choi and Limb developed a method that
simply regards every HTML object as a Web pa@& [ More re-
cently, several studies have investigated a small numbeodflar
Ajax Web applications such as maps and Web mails, and stngami
services 16, 53].

However, all of the previous studies have limitations irt they
either assume the simple/static Web pages ignoring ciiefet-in-
teractions, or rely on application/site-specific knowledinstead,
our page detection algorithm is able to identify initial pagand
client-side interactions, and also does not require agiptio/site-
specific knowledge. Furthermore, we demonstrate that @o-al
rithm is more accurate than the previous approaches vidutare
validation.

A contemporary work by Butkiewicet al. [12] investigates the
complexity of Web sites with browser-based active measargsn
from four vantage points. While their use of HTTP archiveorec
(HAR) format [25] allows a precise detection of page load events,
their data set consists of only the top-level pages of rarylotro-
sen 2,000 Web sites, also ignoring client-side interastiémalyz-
ing real users’ browsing behaviors with detailed HAR logaulgo
be an interesting future work.

Redundancy and Caching Traditional object-level Web caching
works by storing previously seen objects and serving therallp
for future requests. However, the benefit of object-basetiing

is limited only to the cacheable objects such as static tiecttian-
age files — the typical cache hit rates reported in the previcark
range from 35% to 50% in much earlier work, and have dropped
over time 3, 13, 24, 30, 40, 63]. The byte hit rate is even worse as a
cache hit is biased towards smaller popular objects. Masintty,
Ager et al. examined potential for HTTP caching in various sce-
narios by controlling the strictness of object cacheahjB]. More
advanced object-based caching techniques include detzdeng
that reduces traffic for object updateg9], and duplicate transfer
detection (DTD) that avoids downloading of aliased obj§46.

Spring and Wetherall further extend object-based cacluisglb-
packet granularity, and develop a protocol independentecidn
based caching techniqué7. Since then, it has been adapted in
many applications — network file system4g B2], WAN acceler-
ation [28, 50], Web caching 43, 49], and storage systemg&(].
Recently, Anancet al. analyzed university and enterprise network
traces, and show that 15-60% of the entire traffic is redundan
while the redundancy of Web traffic is only 16-32%j.[

While both the object-based and content-based cachingreshe
have been studied heavily, the focus of our work is to perfarm
head-to-head comparison between them on real Web traffic. Ou
analysis result shows that content-based caching achigteshit
rates of 42-51%, almost twice that of object-based cachihyte
hit rates. Furthermore, we evaluate the effectiveness oENEg),
and find increasing cache storage size is highly beneficiat. |

Anandet al.report (16-32%), and it is partly because we assume a
large disk-based cache while they use in-memory cache only.

7. CONCLUSIONS

For a better understanding of modern Web traffic, we analyze
five years of real Web traffic from a globally distributed pyox
system that captures the browsing behavior of over 70,009 da
users from 187 countries. Among our major findings is thasfrla
video and Ajax traffic is consistently increasing, and sean-
gine/analytics sites are tracking an increasingly largetfon of
users. Our StreamStructure algorithm reveals that alrmed6tihe
traffic now occurs not as a result of initial page loads, bt essult
of client-side interactions after the initial load. Alsohile pages
have grown in terms of both the number of objects and sizes pag
loading latency has dropped due to the increased numbenotico
rent connections and improved caching behavior. Finallyltim
resolution chunking (MRC) with large cache storage praovidk
most twice the byte hit rate of traditional object-basechaag, and
it is also effective for aborted transfers. Most of the addil sav-
ings of content-based caching are due to the partial cootert
laps.
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