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Benchmarking is critical when evaluating performance, but is especially difficult for file and stor-
age systems. Complex interactions between I/O devices, caches, kernel daemons, and other OS
components result in behavior that is rather difficult to analyze. Moreover, systems have differ-
ent features and optimizations, so no single benchmark is always suitable. The large variety of
workloads that these systems experience in the real world also adds to this difficulty.

In this article we survey 415 file system and storage benchmarks from 106 recent papers. We
found that most popular benchmarks are flawed and many research papers do not provide a clear
indication of true performance. We provide guidelines that we hope will improve future performance
evaluations. To show how some widely used benchmarks can conceal or overemphasize overheads,
we conducted a set of experiments. As a specific example, slowing down read operations on ext2 by
a factor of 32 resulted in only a 2–5% wall-clock slowdown in a popular compile benchmark. Finally,
we discuss future work to improve file system and storage benchmarking.
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1. INTRODUCTION

Benchmarks are most often used to provide an idea of how fast some piece of
software or hardware runs. The results can significantly add to, or detract from,
the value of a product (be it monetary or otherwise). For example, they may be
used by potential consumers in purchasing decisions, or by researchers to help
determine a system’s worth.

When a performance evaluation of a system is presented, the results and
implications must be clear to the reader. This includes accurate depictions of
behavior under realistic workloads and in worst-case scenarios, as well as ex-
plaining the reasoning behind benchmarking methodologies. In addition, the
reader should be able to verify the benchmark results, and compare the per-
formance of one system with that of another. To accomplish these goals, much
thought must go into choosing suitable benchmarks and configurations, and
accurate results must be conveyed.

Ideally, users could test performance in their own settings using real work-
loads. This transfers the responsibility of benchmarking from author to user.
However, this is usually impractical because testing multiple systems is time
consuming, especially in that exposing the system to real workloads implies
learning how to configure the system properly, possibly migrating data and
other settings to the new systems, as well as dealing with their respective bugs.
In addition, many systems developed for research purposes are not released to
the public. Although rare, we have seen performance measured using actual
workloads when they are created for in-house use [Ghemawat et al. 2003] or
are made by a company to be deployed [Schmuck and Haskin 2002; Eisler et al.
2007]. Hence, the next best alternative is for some party (usually the authors)
to run workloads that are representative of real-world use on commodity hard-
ware. These workloads come in the form of synthetic benchmarks, executing
real programs, or using traces of some activity. Simulating workloads raises
concerns about how accurately these benchmarks portray the end-user’s work-
load. Thus, benchmarks must be well understood so as to not have unknown
side-effects, and should provide a good approximation of how the program would
perform under different loads.

Benchmarking file and storage systems requires extra care, which exacer-
bates the situation. Even though these systems share the goal of providing
access to data via a uniform API, they differ in many ways, such as type of un-
derlying media (e.g., magnetic disk, network storage, CD-ROM, volatile RAM,
flash RAM, etc.), storage environment (e.g., RAID, LVM, virtualization, etc.),
the workloads for which the system is optimized, and in their features (e.g.,
journals, encryption, etc.).

In addition, complex interactions exist between file systems, I/O devices, spe-
cialized caches (e.g, buffer cache, disk cache), kernel daemons (e.g., kflushd),
and other OS components. Some operations may be performed asynchronously,
and this activity is not always captured in benchmark results. Because of this
complexity, many factors must be taken into account when performing bench-
marks and analyzing the results.

In this article we concentrate on file and storage system benchmarks in the
research community. Specifically, we comment on how to choose and create
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benchmarks, how to run them, and how to analyze and report the results. We
have surveyed a selection of recent file and storage system papers and have
found several poor benchmarking practices, as well as some good ones. We
classify the benchmarks into three categories and discuss them in turn. The
categories are as follows.

—Macrobenchmarks. The performance is tested against a particular workload
that is meant to represent some real-world workload.

—Trace Replays. A program replays operations which were recorded in a real
scenario, with the hope that it is representative of real-world workloads.

—Microbenchmarks. A few (typically one or two) operations are tested to isolate
their specific overheads within the system.

The rest of this article is organized as follows. In Section 2 we describe the
criteria for selecting publications for our survey and list the papers we ana-
lyze. Section 3 provides suggested guidelines to use when benchmarking and
Section 4 discusses how well the surveyed papers have followed those sugges-
tions. In Section 5 we give an overview of related research. We describe the
system configuration- and benchmarking procedures that were used in our ex-
periments in Section 6.

Section 7 reviews the pros and cons of the macrobenchmarks used in the
surveyed papers; we also include a few other notable benchmarks for complete-
ness. In Section 8 we examine how the papers that we surveyed used traces, and
we describe four main problems that arise when using traces for performance
analysis. Section 9 describes the widely used microbenchmarks, and Section 10
discusses some of the more popular workload generators.

Section 11 describes a suite of tools for benchmarking automation. Section 12
shows the benchmarks that we performed. We conclude in Section 13, summa-
rizing our suggestions for choosing the proper benchmark, and offering our
ideas for the future of file and storage system benchmarking.

2. SURVEYED PAPERS

Research papers have used a variety of benchmarks to analyze the performance
of file and storage systems. This article surveys the benchmarks and bench-
marking practices from a selection of the following recent conferences.

—the Symposium on Operating Systems Principles (SOSP 1999, 2001, 2003,
and 2005);

—the Symposium on Operating Systems Design and Implementation (OSDI
2000, 2002, 2004, and 2006);

—the USENIX Conference on File and Storage Technologies (FAST 2002, 2003,
2004, 2005, and 2007); and

—the USENIX Annual Technical Conference (USENIX 1999, 2000, 2001, 2002,
2003, 2004, 2005, and 2006).

Research papers relating to file systems and storage often appear in the pro-
ceedings of these conferences, which are considered to be of high quality. We
decided to consider only full-length papers from conferences that have run for
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at least five years. In addition, we consider only file systems and storage papers
that have evaluated their implementations (no simulations), and from those,
only papers whose benchmarks are used to measure performance in terms of
latency or throughput. For example, precluded from our work are those papers
whose benchmarks were used to verify correctness or report on the amount of
disk space used. Studies similar to ours have been performed in the past [Small
et al. 1997; Mogul 1999], and so we believe that this cross-section of conference
papers is adequate to make some generalizations. We surveyed 106 papers in
total, 8 of which are our own. The surveyed papers are marked with asterisks
in the References section.

3. RECOMMENDED BENCHMARKING GUIDELINES

We now present a list of guidelines to consider when evaluating the performance
of a file or storage system. A Web-version summary of this document can be
found at www.fsl.cs.sunysb.edu/project-fsbench.html.

The two underlying themes of these guidelines are the following.

(1) Explain What Was Done in as Much Detail as Possible. For example, if one
decides to create one’s own benchmark, the paper should detail what was
done. If replaying traces, one should describe where they came from, how
they were captured, and how they were replayed (what tool? what speed?).
This can help others understand and validate the results.

(2) In Addition to Saying What Was Done, Say Why It Was Done That Way. For
example, while it is important to note that one is using ext2 as a baseline
for the analysis, it is just as important (or perhaps even moreso) to discuss
why it is a fair comparison. Similarly, it is useful for readers to know why
one ran that random-read benchmark so that they know what conclusions
to draw from the results.

3.1 Choosing The Benchmark Configurations

The first step of evaluating a system is to pose questions that will reveal the per-
formance characteristics of the system, such as “how does my system compare
to current similar systems?”, “how does my system behave under its expected
workload?”, and “what are the causes of my performance improvements or over-
heads?” Once these questions are formulated, one must decide on what baseline
systems, system configurations, and benchmarks should be used to best answer
them. This will produce a set of 〈system, configuration, benchmark〉 tuples that
will need to be run. It is desirable for the researcher to have a rough idea of
the possible expected results for each configuration at this point; if the actual
results differ from these expectations, then the causes of the deviations should
be investigated.

Since a system’s performance is generally more meaningful when compared
to the performance of existing technology, one should find existing systems
that provide fair and interesting comparisons. For example, for benchmarking
an encryption storage device, it would be useful to compare its performance to
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those of other encrypted storage devices, a traditional device, and perhaps some
alternate implementations (user-space, file system, etc.).

The system under test may have several configurations that will need to be
evaluated in turn. In addition, one may create artificial configurations where a
component of the system is removed to determine its overhead. For example, in
an encryption file or storage system, one can use a null cipher (copy data only),
rather than encryption, to isolate the overhead of encryption. Determining the
cause of overheads may also be done using profiling techniques. Showing this
incremental breakdown of performance numbers helps the reader to better
understand a system’s behavior.

There are three main types of benchmark that one can choose from: mac-
robenchmarks, trace replaying, and microbenchmarks.

—Macrobenchmarks. These exercise multiple file system operations, and are
usually good for an overall view of the system’s performance, though the
workload may not be realistic. These benchmarks are described further in
Section 7.

—Trace-Based. Replaying traces can also provide an overall view of the sys-
tem’s performance. Traces are usually meant to exercise the system with
a representative real-world workload, which can help to better understand
how a system would behave under normal use. However, one should ensure
that the trace is in fact representative of that workload (e.g., the trace should
capture a large enough sample), and that the method used to replay the trace
preserves the characteristics of the workload. Section 8 provides more infor-
mation about trace-based benchmarking.

—Microbenchmarks. These exercise few (usually one or two) operations. These
are useful if one is measuring a very small change to better understand
the results of a macrobenchmark, to isolate the effects of specific parts of
the system, or to show worst-case behavior. In general, these benchmarks
are more meaningful when presented together with other benchmarks. See
Section 9 for more information.

Useful file system benchmarks should highlight the high-level as well as low-
level performance. Therefore, we recommend using at least one macrobench-
mark or trace to show a high-level view of performance, along with several mi-
crobenchmarks to highlight more focused views. In addition, there are several
workload properties that might be considered. We describe here five which we
believe are important. First, benchmarks may be characterized by how CPU or
I/O bound they are. File and storage system benchmarks should generally be I/O
bound, but a CPU-bound benchmark may also be run for systems that exercise
the CPU. Second, if the benchmark records its own timings, it should use accu-
rate measurements. Third, the benchmark should be scalable, meaning that it
exercises each machine the same amount, independent of hardware or software
speed. Fourth, multithreaded workloads may provide more realistic scenarios,
and may help to saturate the system with requests. Fifth, the workloads should
be well understood. Although the code of synthetic benchmarks can be read and
traces analyzed, it is more difficult to understand some application workloads.
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For example, compile benchmarks can behave rather differently depending on
the testbed’s architecture, installed software, and the version of software being
compiled. The source-code for ad hoc benchmarks should be publicly released,
as it is the only truly complete description of the benchmark that would allow
others to reproduce it (including any bugs or unexpected behavior).

3.2 Choosing The Benchmarking Environment

The state of the system during the benchmark’s runs can have a significant
effect on results. After determining an appropriate state, it should be created
accurately and reported along with the results. Some major factors that can
affect results are cache state, ZCAV effects, file system aging, and nonessential
processes running during the benchmark.

The state of the system’s caches can affect the code paths that are tested
and thus affect benchmark results. It is not always clear whether benchmarks
should be run with “warm” or “cold” caches. On one hand, real systems do not
generally run with completely cold caches. On the other hand, a benchmark
that accesses too much cached data may be unrealistic as well. Because re-
quests are mainly serviced from memory, the file or storage system will not
be adequately exercised. Further, not bringing the cache back to a consistent
state between runs can cause timing inconsistencies. If cold-cache results are
desired, caches should be cleared before each run. This can be done by allocat-
ing and freeing large amounts of memory, remounting the file system, reloading
the storage driver, or rebooting. We have found that rebooting is more effective
than the other methods [Wright et al. 2005]. When working in an environment
with multiple machines, the caches on all necessary machines must be cleared.
This helps create identical runs, thus ensuring more stable results. If, however,
warm-cache results are desired, this can be achieved by running the experiment
N+1 times, and discarding the first run’s result.

Most modern disks use zoned constant angular velocity (ZCAV) to store data.
In this design, the cylinders are divided into zones where the number of sectors
in a cylinder increases with the distance from the center of the disk. There-
fore the transfer rate varies from zone to zone [Van Meter 1997]. It has been
recommended to minimize ZCAV effects by creating a partition of the smallest
possible size on the outside of the disk [Ellard and Seltzer 2003b]. However, this
makes the results less realistic and may not be appropriate for all benchmarks
(e.g., long seeks may be necessary to show the effectiveness of the system). We
recommend simply specifying the location of the test partition in the paper, so
as to help reproducibility.

Most file system and storage benchmarks are run on an empty system, which
could make the results different than in a real-world setting. A system may
be aged by running a workload based on system snapshots [Smith and Seltzer
1997]. However, aging a 1GB file system by seven months using this method re-
quired writing 87.3GB of data. The amount of time required to age a file system
would make this impractical for larger systems. TBBT has a faster, configurable
aging technique but is somewhat less realistic, as it is purely synthetic [Zhu
et al. 2005a]. Other methods to age a system before running a benchmark are
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to run a long-term workload, copy an existing raw image, or to replay a trace
before running the benchmark. It should be noted that for some systems and
benchmarks, aging is not a concern. For example, aging will not have any effect
when replaying a block-level trace on a traditional storage device, since the
benchmark will behave identically regardless of the disk’s contents.

To ensure reproducibility of the results, all nonessential services and pro-
cesses should be stopped before running the benchmark. These processes can
cause anomalous results (outliers) or higher-than-normal standard deviations
for a set of runs. However, processes such as cron will coexist with the system
when used in the real world, and so it must be understood that these results are
measured in a sterile environment. Ideally, we would be able to demonstrate
performance with the interactions of other processes present; however, this is
difficult because the set of processes is specific to a machine’s configuration.
Instead, we recommend using multithreaded workloads because they more ac-
curately depict a real system, which normally has several active processes. In
addition, we recommend to ensure that no users log into the test machines
during a benchmark run, and to also ensure that no other traffic is consuming
one’s network bandwidth while running benchmarks that involve the network.

3.3 Running The Benchmarks

We recommend four important guidelines to running benchmarks properly.
First, one should ensure that every benchmark run is identical. Second, each
test should be run several times to ensure accuracy, and standard deviations
or confidence levels should be computed to determine the appropriate number
of runs. Third, tests should be run for a period of time sufficient for the system
to reach steady state for the majority of the run. Fourth, the benchmarking
process should preferably be automated using scripts or available tools such
as Auto-pilot [Wright et al. 2005] to minimize the mistakes associated with
manual repetitive tasks. This is discussed further in Section 11.

3.4 Presenting The Results

Once results are obtained, they should be presented appropriately so that accu-
rate conclusions may be derived. Aside from the presented data, the benchmark
the configurations and environment should be accurately described. Proper
graphs should be displayed, with error bars, where applicable.

We recommend using confidence intervals rather than standard deviation to
present results. The standard deviation is a measure of the amount of variation
between runs. The half-width of the confidence interval describes how far the
true value may be from the captured mean with a given degree of confidence
(e.g., 95%). This provides a better sense of the true mean. In addition, as more
benchmark runs are performed, the standard deviation may not decrease, but
the width of confidence intervals generally will.

For experiments with fewer than 30 runs, one should be careful not to use
the normal distribution for calculating confidence intervals. This is because
the central-limit theorem no longer holds with a small sample size. Instead,
one should use the student’s t-distribution. This distribution may also be used
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for experiments with at least 30 runs, since in this case it is similar to the
normal distribution.

Large confidence-interval widths or nonnormal distributions may indicate a
software bug or benchmarking error. For example, the half-widths of confidence
intervals are recommended to be less than 5% of the mean. If the results are
not stable, then either there is a bug in the code or the instability should be
explained. Anomalous results (e.g., outliers) should never be discarded. If they
are due to programming or benchmarking errors, the problem should be fixed
and the benchmarks rerun to gather new and more stable results.

3.5 Validating Results

Other researchers may wish to benchmark one’s software for two main reasons:
(1) to reproduce or confirm the results, or (2) to compare their system to one’s
own.

First, it is considered good scientific practice to provide enough information
for others to validate the results. This includes detailed hardware and software
specifications about the testbeds. Although it is usually not practical to include
such large amounts of information in a conference paper, these details can be
published in an online appendix. Although it can be difficult for a researcher
to accurately validate another’s results without the exact testbed, it is still
possible to see whether the results generally correlate.

Second, there may be a case where a researcher creates a system with similar
properties to one’s own (e.g., they are both encryption file systems), and it would
be logical for the researcher to compare the two systems. However, if one’s own
paper showed an X% overhead over ext2 and the new file system has a Y%
overhead over ext2 no claim can be made about which of the two file systems
is better because the benchmarking environment is different. The researcher
should benchmark both research file systems using a setup as similar as pos-
sible to that of the original benchmark. This way, both file systems are tested
under the same conditions. Moreover, since they are running the benchmark in
the same way as one’s own paper did, no claim can be made that they chose a
specific case in which their file system might perform better.

To help solve these two issues, enough information should be made available
about one’s testbed (both hardware and any relevant software) so that an out-
side researcher can validate the results. If possible, one’s software should be
made available to other researchers so that they can compare their system to
one’s own. Releasing the source is preferred, but a binary release can also be
helpful if there are legal issues preventing the release of source-code. Members
of the SOSP 2007 program committee attempted to improve this situation by
asking authors in the submission form if they will make the source-code and
raw data for their system and experiments available so that others can repro-
duce the results more easily. If enough authors agree to this sharing and other
conferences follow suit, it may in the future become easier to compare similar
systems and reproduce results. Similarly, any benchmarks written and traces
collected should be made available to others.
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Fig. 1. (a) Cumulative distribution function (CDF) for the number of runs performed in the sur-
veyed benchmarks; (b) CDF of the same data categorized by conference. A value of –1 was used for
benchmarks where the number of runs was not specified.

4. COMPLIANCE WITH THE GUIDELINES

We now examine how well the surveyed papers followed the benchmarking
practices that were discussed in Section 3. We cannot expect past papers to
comply with guidelines that had not yet been published. However, before setting
new guidelines for the future, it is important to see how far we are from them at
the present. We also feel that a certain degree of scientific rigor in benchmarking
should be a goal in one’s research, even with no guidelines present.

Number of runs. Running benchmarks multiple times is important for en-
suring accuracy and presenting the range of possible results. Reporting the
number of runs allows the reader to determine the benchmarking rigor. We
now examine the number of runs performed in each surveyed experiment. To
ensure accuracy, we did not include experiments where one operation was exe-
cuted many times and the per-operation latency was reported, because it was
not clear whether to count the number of runs as the number of times the
operation was executed, or as the number of times the entire benchmark was
run. Figure 1 shows the results from the 388 benchmarks that were counted.
We found that two papers [Wang et al. 2002; Wright et al. 2003b] ran their
benchmarks more than once (since they included error bars or confidence in-
tervals), but did not specify the number of runs. These are shown as two runs.
The figure shows that the number of runs was not specified for the majority
of benchmarks. Assuming that papers not specifying the number of runs ran
their experiments once, we can break down the data by conference, as shown
in Table I.

The per-conference values are presented for informational value and we feel
they may of interest to the reader. However, we caution the reader against
drawing conclusions based on these statistics, as benchmarking rigor alone
does not determine the quality of a conference, and the number of runs alone
does not determine benchmarking rigor.

Statistical dispersion. After performing a certain number of runs, it is im-
portant to inform the reader about the statistical dispersion of the results.
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Table I. Percentage of Papers that Discussed Standard
Deviations or Confidence Intervals (classified by conference)

FAST OSDI SOSP USENIX

Number of papers 12 21 51 23
Standard deviations 8.3% 28.6% 27.5% 69.6%
Confidence intervals 16.7% 19.1% 7.8% 8.7%
Total 25.0% 47.6% 35.3% 78.3%

Conference Mean Standard Deviation Median

SOSP 2.1 2.4 1

FAST 3.6 3.6 1

OSDI 3.8 4.3 2

USENIX 4.7 6.2 3

34.6% of the surveyed papers included at least a general discussion of standard
deviation, and 11.2% included confidence intervals. The percentage of papers
discussing either of these aspects varied between 35.7% and 83.3% per year,
but there was no upward or downward trend over time. Interestingly, we did
notice significant differences between conferences, shown in Table I, but we
do not suggest that this is indicative of the overall quality of any particular
conference. In addition to informing the reader about the overall deviations or
intervals for the paper, it is important to show statistical dispersion for each
result. This can be done with error bars in graphs, by augmenting tables, or
by mentioning it in the text. From all of the surveyed benchmarks, only 21.5%
included this information.

Benchmark runtimes. To achieve stable results, benchmarks must run for
a long enough time to reach steady state and exercise the system. This is espe-
cially important as benchmarks must scale with increasingly faster hardware.
We looked at the runtimes of the 198 experiments that specified the elapsed
time of the benchmark. Most benchmarks that reported only per-operation la-
tency or throughput did not specify their runtime. For each experiment, we
took the longest elapsed time of all configurations, and rounded them up to the
nearest minute. For benchmarks with multiple phases, times were added to
create a total time. The results are summarized in Figure 2. We can see in the
figure that 28.6% of benchmarks ran for less than one min., 58.3% ran for less
than five, and 70.9% ran for less than ten.

Number of benchmarks. The number of benchmarks used for performance
evaluations in each paper is shown in Figure 3. We can see that 37.7% of the
papers used only one or two benchmarks, which in most cases is not sufficient
for a reader to fully understand the performance of a system.

System descriptions. To gain some idea of the testbed specifications pub-
lished in the surveyed papers, we now present the number of parameters that
were listed. It must be noted that not all parameters are equally important,
and that some parameters are actually a subset of others. For example, a disk’s
speed is counted as one parameter, but a disk’s model number is counted as
one parameter as well, even though the disk’s speed and several other disk
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Fig. 2. CDF of the number of benchmarks run in the surveyed papers with a given elapsed time.
Note the log scale on the x-axis.

Fig. 3. CDF of the number of benchmarks run in the surveyed papers.

parameters can be found from the model specifications. Since it is not clear
how to weigh each parameter, we will instead caution that these results should
be used only as rough estimates. An average of 7.3 system parameters were
reported per paper, with a standard deviation of 3.3. The median was 7. While
this is not a small number, it is not sufficient for reproducing results. In addi-
tion, only 35.9% of the papers specified the cache state during the benchmark
runs. We specify the testbed used in this article in Section 6, which we believe
should be sufficient to reproduce our results.

5. RELATED WORK

A similar survey was conducted in 1997, covering more general systems pa-
pers [Small et al. 1997]. The survey included ten conference proceedings from
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the early to mid ‘90’s. The main goals of that survey were to determine how
reproducible and comparable the benchmarks were, as well as to discuss statis-
tical rigor. We do not discuss statistical rigor in more detail in this article, since
there is a good discussion presented there. The aforementioned paper went
on to advise on how to build good benchmarks and report them with proper
statistical rigor. Some results from its survey are that over 90% of file system
benchmarks run were ad hoc, and two-thirds of the experiments presented a
single number as a result, without any statistical information.

In 1999, Mogul presented a similar survey of general OS research papers and
commented on the lack of standardization of benchmarks and metrics [Mogul
1999]. He conducted a small survey of two conference proceedings and came to
the conclusion that the operating system community is in need of good stan-
dardized benchmarks. Of the eight file system papers he surveyed, no two used
the same benchmark to analyze performance.

Chen and Patterson concentrated on developing an I/O benchmark that can
shed light on the causes for the results, that scales well, has results that are
comparable across machines, is general enough that it can be used by a wide
range of applications, and is tightly specified so that everyone follows the same
rules [Chen and Patterson 1993]. This benchmark does not perform metadata
operations, and is designed to benchmark drivers and I/O devices. The authors
go on to discuss how they made a self-scaling benchmark with five parameters:
data size, average size of an I/O request, fraction of read operations (the fraction
of write operations is 1 minus this value), fraction of sequential accesses (the
fraction of random accesses is 1 minus this value), and the number of processes
issuing I/O requests. Their benchmark keeps four of these parameters constant
while varying the fifth, producing five graphs. Because self-scaling will produce
different workloads on different machines, the paper discusses how to predict
performance so that results can be compared, and shows reasonable ability to
perform the predictions.

A paper by Tang and Seltzer from the same research group, entitled “Lies,
Damned Lies, and File System Benchmarks” [Tang and Seltzer 1994], was one
source for some of our observations about the Andrew (Section 7.3), LADDIS
(Section 7.5), and Bonnie (Section 9.1) benchmarks, as well as serving as an
inspiration for this larger study.

Tang later expanded on the ideas of that paper, and introduced a benchmark
called dtangbm [Tang 1995]. This benchmark consists of a suite of microbench-
marks called fsbench and a workload characterizer. Fsbench has the four phases
next described.

(1) It measures disk performance so that it can be known whether improve-
ments are due to the disk or the file system.

(2) It estimates the size of the buffer cache, attribute cache, and name transla-
tion cache. This information is used by the next two phases to ensure proper
benchmark scaling.

(3) It runs the microbenchmarks, whose results are reported. The benchmark
takes various measurements within each microbenchmark, providing much
information about the file system’s behavior. The reported metric is in
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KB/sec. The first two microbenchmarks in this phase test block allocation
to a single file for sequential- and random-access patterns. The third mi-
crobenchmark tests how blocks are allocated to files that are in the same
directory. The fourth microbenchmark measures the performance of com-
mon metadata operations (create, delete, mkdir, rmdir, and stat).

(4) It performs several tests to help file system designers to pinpoint perfor-
mance problems. It isolates latencies for attribute (inode) creation, directory
creation, attribute accesses, and name lookups by timing different metadata
operations and performing some calculations on the results. It also uses a
variety of read patterns to find cases where read-ahead harms performance.
Finally, it tests how well the file system handles concurrent requests.

The second component of dtangbm, namely the workload characterizer, takes
a trace as input and prints statistics about the operation mix, sequential versus
random accesses, and the average number of open files. This information could
theoretically be used in conjunction with the output from fsbench to estimate
the file system’s performance for any workload, although the authors of dtangbm
were not able to accurately do so in that work.

Another paper from Seltzer’s group [Seltzer et al. 1999] suggests that not
only are the currently used benchmarks poor, but the types of benchmarks run
do not provide much useful information. The current metrics do not provide a
clear answer as to which system would perform better for a given workload.
The common and simple workloads are not adequate, and so they discuss three
approaches to application-specific benchmarking. In the first, system properties
are represented in one vector and the workload properties are placed in another.
Combining the two vectors can produce a relevant performance metric. The
second approach involves using traces to develop profiles that can stochastically
generate similar loads. The third uses a combination of both methods.

According to Ruwart, not only are the current benchmarks ill suited for test-
ing today’s systems, they will fare even worse in the future because of the
systems’ growing complexities (e.g., clustered, distributed, and shared file sys-
tems) [Ruwart 2001]. He discusses an approach to measuring file system perfor-
mance in a large-scale, clustered supercomputer environment, while describing
why current techniques are insufficient.

Finally, Ellard and Seltzer describe some problems they experienced while
benchmarking a change to an NFS server [Ellard and Seltzer 2003b]. First, they
describe ZCAV effects, which were previously documented only in papers that
discuss file system layouts [Van Meter 1997] (not in performance evaluations).
Since the inner tracks on a disk have fewer sectors than the outer tracks, the
amount of data read in a single revolution can vary greatly. Most papers do not
deal with this property. Aside from ZCAV effects, they also describe other factors
that can affect performance, such as SCSI command queuing, disk scheduling
algorithms, and differences between transport protocols (i.e., TCP and UDP).

6. BENCHMARKING METHODOLOGY

In this section, we present the testbed and benchmarking procedures that we
used for conducting the experiments considered throughout the remainder of
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this article. Next, we describe the hardware and software configuration of the
test machine as well as our benchmarking procedure.

System configuration. We conducted all our experiments on a machine with
a 1.7 GHz Pentium 4 CPU, 8KB of L1 cache, and 256KB of L2 cache. The moth-
erboard was an Intel Desktop Board D850GB with a 400 MHz system bus. The
machine contained 1GB of PC800 RAM. The system disk was a 7200 RPM WD
Caviar (WD200BB) with 20GB capacity. The benchmark disk was a Maxtor
Atlas (Maxtor-8C018J0) 15,000 RPM, 18.4GB, Ultra320 SCSI disk. The SCSI
controller was an Adaptec AIC-7892A U160.

The operating system was Fedora Core 6, with patches as of March 07, 2007.
The system was running a vanilla 2.6.20 kernel and the file system was ext2 un-
less otherwise specified. Some relevant program versions, obtained by passing
the --version flag on the command line, along with the Fedora Core pack-
age and version are GCC 4.1.1 (gcc.i386 4.1.1-51.fc6), GNU ld 2.17.50.0.6-2.fc6
(binutils 2.17.50.0.6-2.fc6), GNU autoconf 2.59 (autoconf.noarch 2.59-12), GNU
automake 1.9.6 (automake.noarch 1.9.6-2.1), GNU make 3.81 (make 1:3.81-1.1),
and GNU tar 1.15.1 (tar 2:1.15.1-24.fc6).

The kernel configuration file and full package listing are available at
www.fsl.cs.sunysb.edu/project-fsbench.html.

Benchmarking procedure. We used the Autopilot v.2.0 [Wright et al. 2005]
benchmarking suite to automate the benchmarking procedure. We configured
Auto-pilot to run all tests at least ten times, and compute 95% confidence inter-
vals for the mean elapsed, system, and user times using the student-t distribu-
tion. In each case, the half-width of the interval was less than 5% of the mean.
We report the mean of each set of runs. In addition, we define “wait time” to be
the time that the process was not using the CPU (mostly due to I/O).

Auto-pilot rebooted the test machine before each new sequence of runs to
minimize the influence of different experiments on each other. Auto-pilot au-
tomatically disabled all unrelated system services to prevent them from influ-
encing the results. Compilers and executables were located on the machine’s
system disk, so the first run of each set of tests was discarded to ensure that the
cache states were consistent. We configured Auto-pilot to unmount, recreate,
and then remount all tested file systems before each benchmark run. To mini-
mize ZCAV effects, all benchmarks were run on a partition located toward the
outside of the disk, and this partition was just large enough to accommodate
the test data [Ellard and Seltzer 2003b]. However, the partition size was big
enough to avoid the file system’s space-saving mode of file system operation. In
the space-saving mode, file systems optimize their operation to save disk space
and thus have different performance characteristics [Van Meter 1997].

7. MACROBENCHMARKS

In this section we describe the macro-, or general purpose, benchmarks that
were used in the surveyed research papers. We point out the strengths and
weaknesses in each. For completeness, we also discuss several benchmarks that
were not used. Macrobenchmark workloads consist of a variety of operations
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and aim to simulate some real-world workload. The disadvantage of mac-
robenchmarks is that this workload may not be representative of the workload
that the reader is interested in, and it is very difficult to extrapolate from the
performance of one macrobenchmark to a different workload.

Additionally, there is no agreed-upon file system benchmark that everyone
can use. Some computer science fields have organizations that create bench-
marks and keep them up to date (e.g., TPC in the database community). There
is no such organization specifically for the file system community, although
the Standard Performance Evaluation Corporation (SPEC) has one benchmark
targeted for a specific network file system protocol; see Section 7.5. For stor-
age, the Storage Performance Council [SPC 2007] has created two standardized
benchmarks which we describe in Section 7.6. We have observed that many re-
searchers use the same benchmarks, but they often neither explain the reasons
for using them nor elucidate what the benchmarks show about the systems
they are testing. From the 148 macrobenchmark experiments performed in the
surveyed papers, 20 reported having used a benchmark because it was popular
or standard, and 28 provided no reason at all. Others described what real-world
workload the given benchmark was mimicking, but did not say why it was im-
portant to show these results. In total, inadequate reasoning was given for at
least 32.4% of the macrobenchmark experiments performed. This leads us to
believe that many researchers use the benchmarks that they are used to and
that are commonly used, regardless of suitability.

In this section we describe the Postmark, various compile, Andrew, TPC,
SPEC, SPC, NetNews, and other macrobenchmarks.

7.1 Postmark

Postmark [Katcher 1997; VERITAS Software 1999], created in 1997, is a single-
threaded synthetic benchmark that aims at measuring file system perfor-
mance over a workload composed of many short-lived, relatively small files.
Such a workload is typical of electronic mail, NetNews, and Web-based com-
merce transactions as seen by ISPs. The workload includes a mix of data- and
metadata-intensive operations. However, the benchmark only approximates file
system activity; it does not perform any application processing, and so the CPU
utilization is less than that of an actual application.

The benchmark begins by creating a pool of random text files with uniformly
distributed sizes within a specified range. After creating the files, a sequence of
“transactions” is performed (in this context a transaction is a Postmark term,
and unrelated to the database concept). The number of files, number of subdi-
rectories, file-size range, and number of transactions are all configurable. Each
Postmark transaction has two parts: a file creation or deletion, operation, paired
with a file read or append. The ratios of reads-to-appends and creates-to-deletes
are configurable. A file creation operation creates and writes random text to a
file. A file deletion operation removes a randomly chosen file from the active
set. A file read operation reads a random file in its entirety and a file write
operation appends a random amount of data to a randomly chosen file. It is
also possible to choose whether or not to use buffered I/O.
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Table II. Postmark Configuration Details

Parameter Default Value Number Disclosed (out of 30)

File sizes 500–10,000 bytes 21
Number of files 500 28
Number of transactions 500 25
Number of subdirectories 0 11
Read/write block size 512 bytes 7
Operation ratios equal 16
Buffered I/O yes 6
Postmark version - 7

The default Postmark v1.5 configuration and the number of research papers that disclosed each

piece of information (from the 30 papers that used Postmark in the papers we surveyed).

One drawback of using Postmark is that it does not scale well with the work-
load. Its default workload, shown in Table II, does not exercise the file sys-
tem enough. This makes it no longer relevant to today’s systems, and as a
result researchers use their own configurations. On the machine described in
Section 6, the default Postmark configuration takes less than a tenth of one
sec. to run, and barely performs any I/O. One paper [Nightingale et al. 2005]
used the default configuration over NFS rather than updating it for current
hardware, and the benchmark completed in under seven sec. It is unlikely
that any accurate results can be gathered from such short benchmark runs. In
Section 12.2, we show how other Postmark configurations behave very differ-
ently from each other. Rather than having the number of transactions to be
performed as a parameter, it would be more beneficial to run for a specified
amount of time and report the peak transaction rate achieved. Benchmarks
such as Spec SFS and AIM7 employ a similar methodology.

Having outdated default parameters creates two problems. First, there is
no standard configuration, and since different workloads exercise the system
differently, the results across research papers are not comparable. Second, not
all research papers precisely describe the parameters used, and so results are
not reproducible.

Few research papers specify all the parameters necessary for reproducing a
Postmark benchmark. From the 106 research papers that we surveyed, 29 used
Postmark as one of their methods for performance evaluation [Ng et al. 2002;
Sarkar et al. 2003; Sivathanu et al. 2006, 2004a, 2004b; Radkov et al. 2004;
Tan et al. 2005; Anderson et al. 2002; Nightingale et al. 2006, 2005; Wang et al.
2002; Seltzer et al. 2000; MacCormick et al. 2004; Abd-El-Malek et al. 2005;
Thereska et al. 2004; Magoutis et al. 2002; Aranya et al. 2004; Muniswamy-
Reddy et al. 2004; Zhang and Ghose 2003; Wright et al. 2003b; Strunk et al.
2000; Prabhakaran et al. 2005a; Stein et al. 2001; Soules et al. 2003; Denehy
et al. 2005; Weddle et al. 2007; Schindler et al. 2002; Magoutis et al. 2003; Wang
and Merchant 2007]. Table II shows how many of these papers disclosed each
piece of information. Papers that use configurable benchmarks should include
all the parameters to make results meaningful; only 5 did so. These 5 papers
specified that any parameters not mentioned were the defaults (Table II gives
them credit for specifying all parameters).
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In addition to failing to specify parameters, Table II shows that only 5 out
of 30 research papers mentioned the version of Postmark used. This is espe-
cially crucial with Postmark due to its major revisions that make results from
different versions incomparable. The biggest changes were made in version
1.5, where the benchmark’s pseudorandom number generator was overhauled.
Having a generator in the program itself is a good idea, as it makes the bench-
marks across various platforms more comparable. There were two key bugs
with the previous pseudorandom number generator. First, it did not provide
numbers that were random enough. Second, and more importantly, it did not
generate sufficiently large numbers, so the files created were not as large as the
parameter specified, causing results to be inaccurate at best. Having a built-in
pseudorandom number generator is an example of a more general rule: Library
routines should be avoided unless the goal of the benchmark is to measure the
libraries because this introduces more dependencies on the machine setup (OS,
architecture, and libraries).

Another lesson that Postmark teaches us is to make an effort to keep bench-
marking algorithms scalable. The algorithm that Postmark uses to randomly
choose files is O(N ) on the number of files, which does not scale well with the
workload. It would be trivial to modify Postmark to fix this, but would make the
results incomparable with others. While high levels of computation are not nec-
essarily a bad quality, they should be avoided for benchmarks that are meant
to be I/O bound.

An essential feature for a benchmark is accurate timing. Postmark uses the
time(2) system call internally, which has a granularity of one sec. There are bet-
ter timing functions available (e.g., gettimeofday) that have much finer gran-
ularity and therefore provide more meaningful and accurate results.

One of the future directions considered for Postmark is allowing different
numbers of readers and writers, instead of just one process that does both.
Four of the surveyed papers [Aranya et al. 2004; Anderson et al. 2004, 2002;
Wang and Merchant 2007] ran concurrent Postmark processes. Seeing how
multiple processes affect results is useful for benchmarking most file systems,
as this reflects real-world workloads more closely. However, since Postmark is
not being maintained (no updates have been made to Postmark since 2001),
this will probably not be done.

One research paper introduces Filemark [Bryant et al. 2002], which is a
modified version of Postmark 1.5. It differs from its predecessor in five respects.
First, it adds multithreading so that it can produce a heavier and more realistic
workload. Second, it uses gettimeofday instead of time, so that timing is more
accurate. Third, it uses the same set of files for multiple transaction phases.
This makes the runtime faster, but culminates in fewer writes, and extra care
must be taken to ensure that data is not cached if this is not desired. Fourth, it
allows the read-write and create-delete ratios to be specified to the nearest 1%,
instead of 10% as with Postmark. Fifth, it adds an option to omit performance
of the delete phase, a phase which the Filemark authors claim as having a
high variation and being almost meaningless. We suggest instead that if some
operation has a high variation, it should be further investigated and explained
rather than discarded.
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Postmark puts file systems under heavy stress when the configuration is
large enough, and is a fairly good benchmark. It has good qualities such as a
built-in pseudorandom number generator, but also has some deficiencies. It is
important to keep in mind its positive and negative qualities when running
the benchmark and analyzing results. In sum, we suggest that Postmark be
improved to have a scalable workload, more accurate timing, and to allow for
multithreaded workloads.

7.2 Compile Benchmarks

Of the papers we surveyed, 36 timed the compiling of some code to benchmark
their projects. These papers are broken down as follows.

—Ten compiled SSH [Soules et al. 2003; Ng et al. 2002; Schindler et al. 2002;
Denehy et al. 2005; Strunk et al. 2000; Prabhakaran et al. 2005a; Seltzer
et al. 2000; Kroeger and Long 2001; Stein et al. 2001; Weil et al. 2006].

—Eight compiled an OS kernel [Zhang and Ghose 2003; Mazières et al. 1999;
Tolia et al. 2004; Gulati et al. 2007; Radkov et al. 2004; Sivathanu et al. 2006;
Papathanasiou and Scott 2004; Muniswamy-Reddy et al. 2006].

—Six papers (all from our research group) compiled Am-utils [Aranya et al.
2004; Muniswamy-Reddy et al. 2004; Zadok and Nieh 2000; Zadok et al.
2001, 1999; Wright et al. 2003b].

—Five compiled Emacs [Gulati et al. 2007; Li et al. 2004; Fu et al. 2000;
Maziéres 2001; Muthitacharoen et al. 2001].

—Three compiled Apache [Peek and Flinn 2006; Nightingale et al. 2006, 2005].

—Five compiled other packages [Gulati et al. 2007; Sobti et al. 2002; Abd-El-
Malek et al. 2005; Gniady et al. 2004; Lee et al. 1999].

—Two did not specify the source-code being compiled [Kroeger and Long 2001;
Kim et al. 2000].

The main problem with compile benchmarks is that because they are CPU
intensive, they can hide the overheads in many file systems. This issue is dis-
cussed further in Section 12.2. However, a CPU-intensive benchmark may be
a reasonable choice for a file system that already has a significant CPU com-
ponent (such as an encryption or compression file system). Even so, a more
I/O-intensive benchmark should be run as well. Other issues relating to com-
pile benchmarks affect the ability of readers to compare, fully understand, and
reproduce benchmark results. These are presented next.

(1) Different machines may have different compiler tool chains. Specifically:
—Different architectures produce different code.
—Different compilers utilize different optimizations.
—The source-code may not compile on all architectures, and older packages

often cannot compile on newer systems, so the workload becomes obsolete.

(2) Different machines are configured differently (with regard to both hard-
ware and software), so the configuration phase will not be the same on all
machines, and the resulting code will be different as well.
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Table III. SSH 2.1.0, Am-Utils 6.1b3, and Linux Kernel 2.4.20
Characteristics

SSH Am-Utils Linux Kernel

Directories 54 25 608
Files 637 430 11,352
Lines of Code 170,239 61,513 4,490,349
Code Size (Bytes) 5,313,257 1,691,153 126,735,431
Total Size (Bytes) 9,068,544 8,441,856 174,755,840

The total size refers to the precompiled package, since the total size after

compiling is system dependent.

(3) Some compilations (such as kernels) have different configuration options,
resulting in a different configuration phase and different resulting code.
Although default configuration files are sometimes included, using them
can result in compilation errors, as we have experienced when compiling
some versions of the Linux kernel.

(4) The operation mixes can change depending on which program is being com-
piled, and even on its version.

(5) The compile process is perpetually growing more complex and there is much
variation between programs. Most require explicit configuration phases,
and some require phases that resolve dependencies. The amount of time
spent in each phase can also vary significantly [Zadok 2002].

To allow a benchmark to be accurately reproduced, all parameters that could
affect the benchmark must be reported. This is particularly difficult with a
compile benchmark. From the 33 papers that used compile benchmarks, only
1 specified the compiler and linker versions, and 1 specified compiler options.
Moreover, 8 failed to specify the version of the code being compiled, and 19 failed
to specify the compilation steps being measured. Although it is easy to report
the source-code version, it is more difficult to specify the relevant programs
and patches that were installed. For example, Emacs has dependencies on the
graphical environment, which may include dozens of libraries and their asso-
ciated header files. However, this specification is feasible if a package manager
has been used that can provide information about all of the installed program
versions. Because of the amount of information that needs to be presented, we
recommend creating an online appendix with the detailed testbed setup.

There is a common belief that file systems see similar loads, independent of
the software being compiled. Using OSprof [Joukov et al. 2006], we profiled the
build process of three packages commonly used as compile benchmarks: (1) SSH
2.1.0; (2) Am-utils 6.1b3; and (3) the Linux 2.4.20 kernel with the default config-
uration. Table III shows the general characteristics of the packages. The build
process of these packages consists of a configuration phase and a compilation
phase. The configuration phase consists of running GNU configure scripts for
SSH and Am-utils, and running “make defconfig dep” for the Linux kernel.
We analyzed the configuration- and compilation phases both separately as well
as together. Before the configuration- and compilation phases, we remounted
the ext2 file system on which the benchmark was run, to reduce caching effects.
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Figure 4 shows the distribution of the total number of invocations of all ext2
VFS operations used during the build processes. Note that each of the three
graphs uses different scales for the number of operations ( y-axis).

Figures 4(a) and 4(b) show that even though the SSH and Am-utils build
process sequences, source-file structures, and total sizes appear to be similar,
their operation mixes are quite different; moreover, the fact that SSH has nearly
three times the lines of code of Am-utils is also not apparent from analyzing the
figures. In particular, the configuration phase dominates in the case of Am-utils,
whereas the compilation phase dominates the SSH build. More importantly,
the read-write ratio for the Am-utils build was 0.75:1, whereas it was 1.28:1
for the SSH build. This can result in significant performance differences for
read- versus write-oriented systems. Not surprisingly, the kernel-build process
profile differs from both SSH and Am-utils. As can be seen in Figure 4(c), both of
the kernel-build phases are strongly read biased. In addition, the kernel-build
process is more intensive in file-open and file-release operations. As we can see,
even seemingly similar compile benchmarks exercise the test file systems with
largely different operation mixes.

Now let us consider compilation of the same software with slightly different
versions. In the paper “Opportunistic Use of Content Addressable Storage for
Distributed File Systems,” by Tolia et al. [2003], the authors show the com-
monality found between versions of the Linux 2.4 kernel source-code (from
2.4.0 to 2.4.20) and between several nightly snapshots of Mozilla binaries from
March 16th, 2003 to March 25th, 2003. The commonality for both examples
is measured as the percentage of identical blocks. The commonality between
one version of the Linux source-code and the next ranges from approximately
72% to almost 100%, and version 2.4.20 has only about 26% in common with
2.4.0. The Mozilla binaries show us how much a normal user application can
change over the course of one day: Subsequent versions had approximately 42
to 71% in common, and only about 30% of the binary remained unchanged over
the course of ten days. This illustrates the point that even when performing
a compile benchmark on the same program, its version can greatly affect the
results.

Not only do the source-code and resulting binaries change, but the operation
mixes change as well. To illustrate this point, we compiled three different, but
recent, versions of SSH on our reference machine, using the same testbed and
methodology described in Section 6. We used SSH because it is the most com-
mon application that was compiled in the papers we surveyed, and specifically
OpenSSH because it compiles on modern systems.

Each test consisted of unpacking, configuring, and compiling the source-code,
and then deleting it. The first and last steps are less relevant to our discussion,
hence we do not discuss them further. The results for the configure- and com-
pile phases are shown in Figure 5. Although the elapsed times for the configure
phase of versions 3.5 and 3.7 are indistinguishable, there is a much larger dif-
ference between versions 3.7 and 3.9 (42.3% more elapsed time, 55.6% more
system time, and 25.1% more user time for the latter). There are differences
between all three versions for the compile phase, with increases ranging from
6.0% to 8.4% between subsequent versions for all time components. We can see
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Fig. 4. Operation mixes during three compile benchmarks as seen by the ext2 file system. Note
that each plot uses a different scale on the y-axis.
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Fig. 5. Time taken to configure and compile OpenSSH versions 3.5, 3.7, and 3.9 on ext2. Note that
error bars are shown, but are small and difficult to see.

that versions of the same program that closely resemble each other are yet very
different, and we can therefore infer that the difference will be greater between
versions that are spread further apart, and moreso for different programs. Fi-
nally, we see how small are the effects of I/O operations on the benchmark
results.

7.3 The Andrew File System Benchmark

The Andrew benchmark was created in 1988 to evaluate the performance of the
Andrew file system [Howard et al. 1988]. The benchmark script operates on a di-
rectory subtree containing the source-code for a program. The operations chosen
for the benchmark were intended to be representative of an average user work-
load [Howard et al. 1988], although this was not shown statistically accurate.
Eight papers that we surveyed used this benchmark for performance analy-
sis [Adya et al. 2002; Grönvall et al. 1999; Rhea et al. 2003; Gopal and Manber
1999; Tolia et al. 2003; Kim et al. 2002; Aguilera et al. 2003; Saito et al. 2002].

The Andrew benchmark has the five phases next presented.

(1) MakeDir: constructs directories in a target subtree identical to the structure
of the original subtree.

(2) Copy: copies all files from source subtree to target subtree.

(3) ScanDir: performs a stat operation on each file of the target subtree.

(4) ReadAll: reads every byte of every file in the target subtree once.

(5) Make: compiles and links all files in the target subtree.

This benchmark has two major problems. First, the final phase of the bench-
mark (i.e., compilation) dominates the benchmark’s runtime, thus introducing
all of the drawbacks of compile benchmarks (see Section 7.2). Second, the bench-
mark does not scale. The default dataset will fit into the buffer cache of most
systems today, so all read requests after the copy phase are satisfied without
going to disk. Therefore, this does not provide an accurate picture of how the
file system would behave under workloads where data is not cached. In order
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to resolve the issue of scalability, four of the research papers used a source
program larger than that which comes with the benchmark. This, however,
causes results to be incomparable between papers.

Several research papers use a modified version of the Andrew benchmark
(MAB) [Ousterhout 1990] from 1990. The modified benchmark uses the same
compiler so as to make the results more comparable between machines. This
solves one of the issues we described when examining compile benchmarks in
Section 7.2. Although using a standard compiler for all systems is a good solu-
tion, it has a drawback: The tool chain is for a machine that does not exist, and
it is therefore not readily available and not maintained. This could affect us-
ability in future machines. Seven of the research papers that we surveyed used
this benchmark [Mazières et al. 1999; Muthitacharoen et al. 2002; Padioleau
and Ridoux 2003; Santry et al. 1999; Nightingale and Flinn 2004; Cipar et al.
2007; Sobti et al. 2002].

One of the papers [Sobti et al. 2002] further modified the benchmark by
removing the make phase and increasing the number of files and directories.
Although this removes the complications associated with a compile benchmark
and takes care of scalability, data can still be cached depending on the package
size. Another paper [Nightingale and Flinn 2004] used Apache for the source
files, and measured the time to extract the files from the archive, configure and
compile the package, and remove the files. These two papers reported using a
“modified Andrew benchmark,” but since the term “modified” is rather ambigu-
ous, we could not determine whether they had used the MAB compiler, or if the
benchmark was called “modified” because it used a different package or had
different phases.

The Andrew benchmark basically combines a compile benchmark and a
microbenchmark. We suggest using separate compile benchmarks and mi-
crobenchmarks as deemed appropriate (see Sections 7.2 and 9 for extensive
discussions on each, respectively).

Notable quotables. We believe some quotations from those papers that used
the Andrew benchmark can provide some insight into the reasons for running
it, and into the type of workload that it performs. Six of the fifteen papers
that used the Andrew benchmark (or some variant) stated that it was because
Andrew was popular or standard. One paper states that “primarily because it
is customary to do so, we also ran a version of the Andrew benchmark” [Adya
et al. 2002]. Six others gave no explicit reason for running the benchmark.
The remaining three papers claimed the reason as being that its workload was
representative of a user- or software developer workload.

Running a benchmark because it is popular or a standard can help readers
compare results across papers. Unfortunately, this benchmark has several defi-
ciencies. One paper states that “such Andrew benchmark results do not reflect
a realistic workload” [Adya et al. 2002]. Another comments that because of the
lack of I/O performed, the benchmark “will tend to understate the difference
between alternatives” [Kim et al. 2002]. The authors of one paper describe that
they “modified the benchmark because the 1990 benchmark does not gener-
ate much I/O activity by today standard” [Sobti et al. 2002]. Finally, one paper
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describes the use of the Andrew benchmark and how most read requests are
satisfied from the cache.

The Andrew Benchmark has been criticized for being old benchmark, with
results that are not meaningful to modern systems. It is argued that the work-
load being tested is not realistic for most users. Furthermore, original Andrew
[b]enchmark used a source tree which is too small to produce meaningful re-
sults on modern systems [citation removed]. However, as we stated above, the
[b]enchmark’s emphasis on small file performance is still relevant to modern
systems. We modified the Andrew [b]enchmark to use a Linux 2.6.14 source
tree [. . . ]. Unfortunately, even with this larger source tree, most of the data
by the benchmark can be kept in the OS’s page cache. The only phase where
file system performance has a significant impact is the copy phase [Cipar et al.
2007].

It seems that researchers are aware of the benchmark’s drawbacks, but still use
it because it has become a “standard,” because its what they are accustomed
to, or because it is something that other researchers are accustomed to. It is
unfortunate that an inadequate benchmark has achieved this status, and we
hope that a better option will soon take its place.

7.4 TPC

The Transaction Processing Performance Council (TPC) is “a no[np]rofit cor-
poration founded to define transaction processing and database benchmarks
and to disseminate objective, verifiable TPC performance data to the indus-
try” [TPC 2005]. The organization has strict guidelines about how benchmarks
are run, requires submission of the full results and configurations, and audits
the results to validate them. To certify benchmark results, companies must
have auditors who are accredited by the TPC board to stand by throughout
the experiments. Whereas this sort of requirement is desirable in a commer-
cial environment, it is not practical for writing academic papers. Therefore, the
benchmarks are used without the accompanying strict TPC guidelines. There
are four TPC benchmarks currently in use by the database community: TPC-
App, TPC-C, TPC-E, and TPC-H. Here we only describe those that were used
in the surveyed papers: TPC-B, TPC-C, TPC-D, TPC-H, and TPC-W.

TPC-B. This benchmark has been obsolete since 1995 because it was
deemed too simplistic, but was used in one of the surveyed papers in
2005 [Prabhakaran et al. 2005a]. Another paper [Denehy et al. 2005] created a
benchmark modeled after this workload. The benchmark is designed to stress-
test the core of a database system by having several benchmark programs si-
multaneously submiting transactions of a single type as fast as possible. The
metric reported is in transactions per sec.

TPC-C. Created in 1992, this benchmark and adds some complexity that
was lacking in the older TPC benchmarks TPC-A and TPC-B. It is a data-
intensive benchmark, portraying the activity of a wholesale supplier where a
population of users executes transactions against a database. The supplier has
a number of warehouses with stock, and deals with orders and payments. Five
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different transaction types are used, which are either executed immediately
or set to be deferred. The database contains nine types of tables with various
record and population sizes. The performance metric reported is transactions
per min. for TPC-C (tpmC).

TPC-C was used in eight of the surveyed papers [Zhou et al. 2001; Sarkar
et al. 2003; Radkov et al. 2004; Huang and Chiueh 2001; Thereska et al. 2004;
Ng et al. 2002; Abd-El-Malek et al. 2005; Wachs et al. 2007]. In addition, one
paper [Nightingale et al. 2006] used an implementation of TPC-C created by
the Open-Source Development Lab (OSDL, which was merged into the Linux
Foundation in January 2007). The OSDL has developed implementations of
several TPC benchmarks [OSDL 2007]. TPC-C is being replaced by TPC-E,
which is designed to be representative of current workloads and hardware, is
less expensive to run because of its more practical storage requirements, and
has results that are less dependent on hardware- and software configurations.

TPC-D. This benchmark was the precursor to TPC-H (explained next), and
has been obsolete since 1999. This is because TPC-D was benchmarking both
ad hoc queries as well as business support and reporting, and could not do both
adequately at the same time. TPC-D was split into TPC-H (ad hoc queries) and
TPC-R (business support and reporting).

TPC-H. The workload for this benchmark consists of executing ad hoc
queries against a database and performing concurrent data modifications.
Rather than being only data intensive like TPC-C, this benchmark exercises
a larger portion of a database system. It uses queries and data relevant to
the database community. The benchmark examines large volumes of data, ex-
ecutes queries with a high degree of complexity, and uses the data to give an-
swers to critical business questions (dealing with issues such as supply and
demand, profit and revenue, and customer satisfaction). The performance met-
ric reported is called the TPC-H composite query-per-hour performance metric
(QphH@Size), and reflects multiple aspects of the capability of the system to
process queries, including database size, query processing power, and through-
put. This benchmark was used in three of the surveyed papers [Wachs et al.
2007; Radkov et al. 2004; Gniady et al. 2004].

TPC-W. This benchmark was meant to recreate the workload seen in an
Internet commerce environment. It provides little insight because it is overly
complex, difficult to analyze, and does not recreate the behavior of specific ap-
plications [Schmidt et al. 2001]. TPC-W was used in one of the surveyed pa-
pers [Huang et al. 2005], but had been declared obsolete by TPC approximately
six months earlier (in April 2005).

Using a benchmark that is highly regarded and monitored by a council of
professionals from the database community certainly adds to its credibility.
The benchmarks are kept up-to-date with new version releases, and when
serious problems are found with a benchmark, it is declared obsolete. How-
ever, none of the papers that used the benchmark had its results audited, and
most, if not all, did not run the benchmark according to the specifications.
A drawback of using TPC benchmarks for performance analysis is that they
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utilize a database system, which introduces extra complexity. This makes the
results less comparable between papers and makes the benchmark more diffi-
cult to set-up. Several papers opted to use traces of the workload instead (see
Section 8), and one paper [Lumb et al. 2002] used a synthetic benchmark whose
workload was shown to be similar to the disk traces of a Microsoft SQL server
running TPC-C. Additionally, while most papers specified the database used
for the experiment, barely any tuning parameters were specified, and none
specified the database table layout, which can have dramatic effects on TPC
benchmark performance. Although databases are known to have many tuning
parameters, one paper specified only two, while others specified only one or
even none. Some authors may have used the default settings since they may be
less familiar with database systems than with file or storage systems, but one
paper [Sarkar et al. 2003] specified that the “database settings were fine-tuned
for performance” without indicating the exact settings.

7.5 SPEC

The Standard Performance Evaluation Corporation (SPEC) was founded in
1988 by a small number of workstation vendors, with the aim of creating
realistic, standardized performance tests. SPEC has grown to become a suc-
cessful performance standardization body with more than 60 member compa-
nies [SPEC 2005a].

SFS. The SPEC SFS benchmark [SPEC 2001; Robinson 1999] measures
the performance of NFSv2 and v3 servers. It is the official benchmark for mea-
suring NFS server throughput and response time. One of the surveyed pa-
pers [Spadavecchia and Zadok 2002] used a precursor to this benchmark called
NFSSTONE [Shein et al. 1989], created in 1989 (not created by SPEC). NF-
SSTONE performs a series of 45,522 file system operations, mostly executing
system calls, to measure how many operations per sec. an NFS server can sus-
tain. The benchmark performs a mix of operations intended to show typical NFS
access patterns [Sandberg et al. 1985]: 53% lookups, 32% reads, 7.5% readlinks
(symlink traversal), 3.2% writes, 2.3% getattrs, and 1.4% creates. This bench-
mark performs these operations as fast as it can and then reports the average
number of operations performed per sec., or NFSSTONES. The problems with
this benchmark are that it only uses one client so that the server is not always
saturated, it relies on the client’s NFS implementation, and the file- and block
sizes are not realistic.

Another benchmark called nhfsstone was developed in 1989 by Legato Sys-
tems, Inc. It was similar to NFSSTONE except that instead of the clients exe-
cuting system calls to communicate with the server, they used packets created
by the user-space program. This reduces the dependency on the client, but does
not eliminate it because the client’s behavior still depends on the kernel of the
machine on which it runs.

LADDIS [Watson and Nelson 1992; Wittle and Keith 1993] was created in
1992 by a group of engineers from various companies, and was further devel-
oped when SPEC took the project over (this updated version was called SFS 1.0).
LADDIS solved some of the deficiencies in earlier benchmarks by implementing
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the NFS protocol in user space, improving the operation mix, allowing multi-
ple clients to generate load on the server simultaneously, providing a consis-
tent method for running the benchmark, and porting the benchmark to several
systems. Like the previous benchmarks, given a requested load (measured in
operations/sec.), LADDIS generates an increasing load of operations and mea-
sures the response time until the server is saturated. This is the maximum
sustained load that the server can handle under this requested load. As the
requested load increases, response time diminishes. The peak throughput is
reported.

LADDIS used an outdated workload, and only supported NFSv2 over UDP
(no support for NFSv3 or TCP). SFS 2.0 fixed these shortcomings, but several
algorithms dealing with request-rate regulation, I/O access, and the file set were
found defective. SPEC SFS 3.0 fixed the latter, and updated some important
features such as the time measurement.

The SFS 3.0 benchmark is run by starting the script on all clients (one will be
the main client and direct the others). The number of load-generating processes,
the requested load for each run, and the amount of read-ahead and write-behind
are specified. For each requested load, SFS reports the average response time.
The report is a graph with at least 10 requested loads on the x-axis, and their
corresponding response times on the y-axis.

SPEC SFS was used by two of the surveyed papers, one of which ran in
compliance with SPEC standards [Eisler et al. 2007], and one in which the
matter of compliance was not clear [Anderson et al. 2000]. In addition, one paper
used a variant of SFS [Patterson et al. 2002], but did not specify how it varied.
One issue with SFS is that the number of systems that can be tested is limited
to those that speak the NFSv2 and NFSv3 protocols. SFS cannot test changes to
NFS clients, and cannot be used to compare an NFS system with a system that
speaks another protocol. Whereas this benchmark is very useful for companies
that sell filers, its use is limited in the research community. This limitation,
combined with the fact that the benchmark is not free (it currently costs $900,
or $450 for nonprofit or educational institutions), has probably impeded its
widespread use in the surveyed papers.

It is of interest to note that the operation mix for the benchmark is fixed.
This is good because it more greatly, standardizes the results but is also bad
because the operation mix can become outdated and may not be appropriate for
all settings. Some have claimed that SFS does not resemble any NFS workload
they have observed, and that each NFS trace that they examined had unique
characteristics, raising the question of whether one can construct a standard
workload [Zhu et al. 2005a]. One can change the operations mix for SFS, so
in some sense it can be used as a workload generator. However, the default,
standard operations mix must be used to report any standard results that can
be compared with other systems. It seems this may be the end for the SFS
benchmark because NFSv4 is already being deployed, and SPEC has not stated
any plans to release a new version of SFS. In addition, Spencer Shepler, one
of the chairs of the NFSv4 IETF working group, has stated that SPEC SFS is
“unlikely to be extended to support NFSv4,” and that FileBench (see Section 10)
will probably be used instead [Shepler 2005].
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SDM. The SPEC SDM benchmarking suite [SPEC 2004] was made in 1991
and produces a workload that simulates a software development environment
with a large number of users. It contains two subbenchmarks, 057.SDET and
061.Kenbus1, both of which feed randomly ordered scripts to the shell with
commands like make, cp, diff, grep, man, mkdir, spell, etc. Both use a large
number of concurrent processes to generate significant file system activity.

The measured metric consists of the number of scripts completed per hour.
One script is generated for each “user” before the timing begins, and each con-
tains separate subtasks executed in a random order. Each user is then given a
home directory that is populated with the appropriate directory tree and files.
A shell is started for each user that uses its own execution script. The timer is
stopped when all scripts have completed execution.

There are two main differences between these two benchmarks. First,
Kenbus simulates users typing at a rate of three characters per sec., as op-
posed to SDET which reads as fast as possible. Second, the command set used
in SDET is a lot richer and many of the commands do a lot more work than in
Kenbus.

The SDET benchmark was used in two surveyed papers [Ng et al. 2002;
Seltzer et al. 2000] to measure file system performance, but not all commands
executed by the benchmark exercise the file system. The benchmark is meant
to measure the performance of the system as a whole, and not any particular
subsystem. In addition, the benchmark description states that it exercises the
tmp directories heavily, which means that either the benchmark needs to be
changed or the file system being tested must be mounted as the system disk.
However, the benchmark does give a reasonable idea of how a file system would
affect everyday workloads. This benchmark is currently being updated and
is being called SMT (system multitasking) [SPEC 2003], with the main goal
of ensuring that all systems perform the same amount of work regardless of
configuration. However, the SMT description has not been updated since 2003,
so it is unknown as to whether it will be deployed.

Viewperf. The SPECviewperf benchmark [SPEC 2007] is designed to mea-
sure the performance of a graphics subsystem, and was used in one of the
surveyed research papers [Gniady et al. 2004]. However, we will not delve into
this benchmark’s details because it is inappropriate to use it as a file system
benchmark, as it exercises many parts of the OS other than the file system.

Web99. The SPECweb99 benchmark [SPEC 2005b], replaced by
SPECweb2005 in 2005, is used for evaluating the performance of Web
servers. One of the surveyed research papers [Nightingale et al. 2006] used it.
Its workload is comprised of dynamic and static GET operations, as well as POST

operations. We omit further discussion because it is a Web server benchmark,
and was used by the authors of the surveyed paper to specifically measure
their file system using a network-intensive workload.

7.6 SPC

The Storage Performance Council (SPC) [SPC 2007] develops benchmarks
focusing on storage subsystems. Its goal is to have more vendors use
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industry-standard benchmarks and to publish their results in a standard way.
The council consists of several major vendors in the storage industry, as well as
some academic institutions. The SPC currently has two benchmarks available
to its members: SPC-1 and SPC-2. Neither were used in the surveyed papers,
but both are clearly noteworthy.

SPC-1. This benchmark’s workload is designed to perform typical functions
of business-critical applications. The workload is comprised of predominately
random I/O operations, and performs both queries and update operations. This
type of workload is typical of online transaction processing (OLTP) systems,
database systems, or mail server applications. SPC-1 is designed to accurately
measure performance and price/performance on both direct attach- or network
storage subsystems. It includes three tests.

The first test phase, called “Primary Metrics,” has three phases. In the first,
throughput sustainability is tested for three hours at steady state. The second
phase lasts for ten min. and tests the maximum attainable throughput in I/Os
per sec. The third phase lasts fifty min. and maps the relationship between
response time and throughput by measuring latencies at various load levels,
defined as percentages of the throughput achieved in the previous phase. The
third phase also determines the optimal average response time of a lightly
loaded storage configuration.

The second test was designed to prove that the maximum I/O request
throughput results determined in the first test are repeatable and reproducible.
It does so by running similar but shorter workloads than those of the first test
to collect the same metrics. In the third and final test, SPC-1 demonstrates
that the system provides nonvolatile and persistent data storage. It does so by
writing random data to random locations over the total capacity of the storage
system for at least ten min. The writes are recorded in a log. The system is
shut-down, and caches that employ battery backup are flushed or emptied. The
system is then restarted, and the written data verified.

SPC-2. This benchmark is characterized by a predominantly sequential
workload (in contrast to SPC-1’s random one). The workload is intended to
demonstrate the performance of business-critical applications that require
large-scale, sequential data transfers. Such applications include large file pro-
cessing (scientific computing, large-scale financial processing), large database
queries (data mining, business intelligence), and on-demand video. SPC-2 in-
cludes four tests and it measures the throughput.

The first test checks data persistence, similar to the third test of SPC-1. The
second test measures large file processing. It has three phases (write-only, read-
write, read-only), each consisting of two run sequences, and each of these run
sequences are composed of five runs (thirty runs in total). Each run consists
of a certain-sized transfer with a certain number of streams. The third test is
the large database query test, which has two phases (1,024KiB transfer size
and 64KiB transfer size). Each phase consists of two run sequences (the first
sequence consisting of four outstanding requests and the second of one out-
standing request), and each sequence consists of five runs where the number
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of streams is varied (ten runs total). The fourth and final test is the video-on-
demand delivery test, in which several streams of data are transferred.

Since the Storage Performance Council has many prominent storage vendors
as members, it is likely that its benchmarks will be widely used in industry.
However, their popularity in academia is yet to be seen, as the benchmarks are
currently only available to SPC members, or for a cost of $500 for nonmember
academic institutions. Of course, academic institutions will probably not follow
all of the strict benchmark guidelines and pay the expensive result filing fees,
but the benchmarks would still allow for good comparisons.

7.7 NetNews

The NetNews benchmark [Swartz 1996], created in 1996, is a shell script that
performs a small-file workload comparable to that which is seen on a USENET
NetNews server. It performs some setup work, and then executes the following
three phases multiple times.

(1) Unbatch: measures the receiving and storing of new articles. Enough
data is used to ensure that all caches are flushed.

(2) Batch: measures the sending of backlogged articles to other sites. Ar-
ticles are batched on every third pass so as to reduce the runtime of the
benchmark, but should be large enough such that they will not be cached
when reused.

(3) Expire: measures the removal of “expired” articles. Since article times-
tamps are not relevant in a benchmark setting, the number of history en-
tries is recorded after each unbatch phase. This information is used to delete
expired articles from more than some number of previous passes. The list
of articles to be deleted is written to one file, while the modified history file
is written to another.

One of the surveyed papers [Seltzer et al. 2000] used this benchmark without
the batch phase to analyze performance. It is a good benchmark in the sense
that it is metadata intensive, and stresses the file system (given a large enough
workload). However, while the data size used in the surveyed paper was con-
sidered by the authors to be large (270MB for the unbatch phase, and 250MB
for the expire phase), it is much smaller than sizes seen in the real world. The
paper states that “two years ago, a full news feed could exceed 2.5GB of data,
or 750,000 articles per day. Anecdotal evidence suggests that a full news feed
today is 15–20GB per day.” This shows how a static workload from 1996 is no
longer realistic just four years later. In addition to the unrealistic workload
size, a USENET NetNews server workload is not very common these days, and
it may be difficult to extrapolate results from this benchmark to applications
that more people use.

7.8 Other Macrobenchmarks

This section describes two infrequently used macrobenchmarks that appeared
in the surveyed research papers.
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NetBench and Dbench. NetBench [VeriTest 2002] is a benchmark used to
measure the performance of file servers. It uses a network of PCs to generate
file I/O requests to a file server. According to the dbench README file [Tridgell
1999], NetBench’s main drawback is that properly running it requires a lab with
60–150 PCs running Windows, connected with switched fast Ethernet and a
high-end server. The dbench README file also states that since the benchmark
is “very fussy,” the machines should be personally monitored. Because of these
factors, this benchmark is rarely used outside of the corporate world.

Dbench is an open-source program that runs on Linux machines and pro-
duces the same file system load as NetBench would on a Samba server, but
without making any networking calls. It was used in one surveyed paper to
measure performance [Schmuck and Haskin 2002]. The metrics reported by
dbench are true throughput and the throughput expected on a Win9X machine.

Because there is no source-code or documentation available for NetBench,
we were limited to analyzing the dbench source-code. The dbench program is
run with one parameter: the number of clients to simulate. It begins by creat-
ing a child process for each client. There is a file that uses commands from a
Windows trace of NetBench, and which each child process reads one line at-a-
time. The benchmark executes the Linux equivalent of each Windows command
from the trace, and the file is processed repeatedly for ten min. The main pro-
cess is signaled every sec. to calculate and print the throughput up to that
point, and to signal to the child processes to stop when the benchmark is over.
The first two min. of the run is a warm-up period, and the statistics collected
during this time are kept separate from those collected during the remainder of
the run.

The main question with dbench is how closely it approximates NetBench.
There are three problems we have discovered. First, there is no one-to-one
correspondence between Windows and Linux operations, and the file systems
natively found on each of these OSs are quite different, so it is unknown how
accurate the translations. Second, NetBench has each client running on a sepa-
rate machine, while Linux has the main process and all child processes running
on the same machine. The added computation needed for all of the process man-
agement plus the activities of each process may affect the results. In addition,
if there are many concurrent processes, the benchmark may be analyzing the
performance of other subsystems (e.g., the scheduler) more than the file sys-
tem. Third, dbench processes the trace file repeatedly and does not consider
timings. The source of the trace file is not clear, and so it is unknown how well
the operations in the trace reflect the NetBench workload. Caching of the trace
file may also affect the results, since it is processed multiple times by several
clients on the same machine.

8. REPLAYING TRACES

Traces are logs of operations that are collected and later replayed to gener-
ate the same workload (if done correctly). They have the same goal as mac-
robenchmarks have (see Section 7): to produce a workload which represents a
real-world environment. However, although it may be uncertain as to whether
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a macrobenchmark succeeds at this, a trace will definitely recreate the work-
load that was traced if it is captured and played back correctly. One must en-
sure, however, that the captured workload is representative of the system’s
intended real-world environment. Of the surveyed papers, 19 used traces as
part of their performance analysis [Adya et al. 2002; Sivathanu et al. 2004a,
2004b; Nightingale and Flinn 2004; Weil et al. 2006; Rowstron and Druschel
2001; Arpaci-Dusseau et al. 2003; Zhang et al. 2002; Lu et al. 2002; Lumb et al.
2003; Dimitrijevic et al. 2003; Flinn et al. 2003; Schindler et al. 2004; Tolia
et al. 2004, 2003; Weddle et al. 2007; Peterson et al. 2007; Tian et al. 2007;
Prabhakaran et al. 2005b].

Some use traces of machines running macrobenchmarks such as TPC-
C [Dimitrijevic et al. 2003; Zhang et al. 2002], TPC-H [Schindler et al. 2004],
or compile benchmarks [Weil et al. 2006]. These traces differ from the norm in
that they are traces of a synthetic workload rather than a real-world environ-
ment. It is unclear why a trace of a compile benchmark was used, rather than
running the compile benchmark itself. However, since the actual TPC bench-
marks require a database system and have rather complicated setups, authors
may opt to use traces of the TPC benchmark instead. However, it is important
to replay the trace in an environment similar to where the trace was gathered.
For example, one paper [Dimitrijevic et al. 2003] used a trace of a TPC run that
used a file-system-based database, but the authors replayed it in an environ-
ment that bypassed the file system to access the block device directly. For more
information on TPC benchmarks, see Section 7.4.

There are four problem areas with traces today, as described next in detail:
the capture method, the replay method, trace realism, and trace availability.

Capture method. There is no accepted way to capture traces, and this lack
can be a source of confusion. Traces can be captured at system call-, VFS-,
networking-, and driver levels.

The most popular way is to capture traces at the system-call level, primar-
ily because it is easy and the system call API is portable [Akkerman 2002;
Mummert and Satyanarayanan 1994; Ousterhout et al. 1985]. One benefit of
capturing at the system-call level is that this method does not differentiate be-
tween requests that are satisfied from the cache and those that are not. This
allows one to test changes in caching policies. An important drawback of cap-
turing at the system-call level is that memory-mapped operations cannot be
captured. Traces captured at the VFS level contain cached and noncached re-
quests, as well as memory-mapped requests. However, VFS tracer portability is
limited even between different versions of the same OS. Existing VFS tracers
are available for Linux [Aranya et al. 2004] and Windows NT [Vogels 1999;
Roselli et al. 2000].

Network-level traces contain only those requests that were not satisfied
from the cache. Network-level capturing is only suitable for network file sys-
tems. Network packet traces can be collected using specialized devices, or soft-
ware tools like tcpdump. Specialized tools can capture and preprocess only the
network-file-systems-related packets [Ellard and Seltzer 2003a; Blaze 1992].
Driver-level traces contain only noncached requests and cannot correlate the
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requests with the associated metadata without being provided with or inferring
additional information. For example, read requests to file metadata and data-
read requests cannot be easily distinguished [Ruemmler and Wilkes 1993].

The process by which the trace is captured must be explained, and should be
distributed along with the trace if others will be using it. In five of the surveyed
papers, the authors captured their own traces, but four of them did not specify
how this was done.

When collecting file system traces for studies, many papers use tracing tools
that are customized for a single study. These systems are either built in an
ad hoc manner [Ousterhout et al. 1985; Roselli et al. 2000], modify standard
tools [Roselli et al. 2000; Ellard et al. 2003], or are not well documented in
research texts. Their emphasis is on studying the characteristics of file sys-
tem operations and not on developing a systematic or reusable infrastructure
for tracing. Often, the traces used excluded useful information for others con-
ducting new studies; information excluded could concern the initial state of
the machines or hardware on which the traces were collected, some file system
operations and their arguments, pathnames, and more.

Replay method. Replaying a file system trace correctly is not as easy as
it may appear. Before one can start replaying, the trace itself may need to be
modified. Any missing operations have to be guessed so that operations that
originally succeeded do not fail (and those that failed should not succeed) [Zhu
et al. 2005a]. For example, files must be created before they are accessed. In
addition, the trace may be scaled spatially or temporally [Zhu et al. 2005a]. For
parallel applications, finding internode dependencies and inter-I/O compute
times in the trace improves replay correctness [Mesnier et al. 2007]. Once the
trace is ready, the target file system must be prepared. Files assumed to exist in
the trace must exist on the file system with at least the size of the largest offset
accessed in it. This will ensure that the trace can be replayed, but the resulting
file system will have no fragmentation and will only include those files that
were accessed in the trace, which is not realistic. The solution here is to age the
file system. Of course, the aging method should be described because the replay
will then differ from the original run, as well as from replays that aged the file
system differently. There are fewer issues with preparing block-level traces for
replay on traditional storage devices, since block accesses generally do not have
associated context. In this case, missing operations cannot be known and aging
the storage system will not affect the behavior of the benchmark, since the
blocks specified by the trace will be accessed regardless of the storage system’s
previous state.

It is natural to replay traces at the level at which the traces were captured.
However, replaying file system traces at the system-call level makes it impos-
sible to replay high I/O-rate traces with the same speed as they were captured
on the same hardware. This is because replaying adds overheads associated
with system calls (context switches, verifying arguments, copies between user
space and kernel space [Anderson et al. 2004]). VFS-level replaying requires
kernel-mode development, but can use the time normally spent on execut-
ing system calls to prefetch and schedule future events [Joukov et al. 2005].
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Network-level replaying is popular because it can be done entirely from the
user level. Unfortunately, it is only applicable to network file systems. Driver-
level replaying allows one to control the physical data position on the disk, and
is often done from user level.

Replay speed is an important consideration, and is subject to some debate.
Some believe that the trace should be replayed with the original timings, al-
though none of the surveyed papers specified having done so. There are re-
playing tools such as Buttress [Anderson et al. 2004] that have been shown to
follow timings accurately. However, with the advent of faster machines, it would
be unreasonable to replay an older trace with the same timings. On the other
hand, if the source of the trace was a faster machine, it may not be possible to
use the same timings.

There is another school of thought that believes that the trace should be
played as fast as possible, ignoring the timings. Five of the surveyed papers
did so [Flinn et al. 2003; Tolia et al. 2004; Peterson et al. 2007; Nightingale
and Flinn 2004; Prabhakaran et al. 2005b]. Any trace replay speed will mea-
sure something slightly different than the original system’s behavior when the
trace was being captured. However, replaying a trace as fast as possible changes
the behavior more than other speeds do, due to factors such as caching, read-
ahead, and interactions with page write-back and other asynchronous events
in the OS. It assumes an I/O bottleneck, and ignores operation dependencies.

A compromise between using the original timings and ignoring them is
to play back the trace with some speedup factor. Three of the surveyed pa-
pers [Zhang et al. 2002; Sivathanu et al. 2004b; Weddle et al. 2007] replayed
with both the original timings as well as at increased speeds. By doing so they
were able to observe the effects of increasing the pressure on the system. Al-
though this is better than replaying at only one speed, it is not clear what
scaling factors to choose.

We believe that currently the best option is to replay the trace as fast as
possible and report the average operations per sec. However, it is crucial to
respect dependencies in file system traces, and not simply run one operation
after the other. For example, TBBT [Zhu et al. 2005a] has one replay mode
called “conservative order” which sends out a request only after all previous
operations have completed, and another called “FS dependency order” which
applies some file system orderings to the operations (e.g., it will not write to a
file before receiving a reply that the file was created).

An ideal way of recreating a traced workload would be to first normalize the
think times using both the hardware- and software (e.g., OS, libraries, relevant
programs) specifications of the system that produced the trace, and then to
calibrate it using specifications of the machine being used to replay the trace.
How to do this accurately is still an open question, and the best we can do right
now is take the results with a degree of skepticism.

However replaying is done, the method should be clearly stated along with
the results. Of the 19 surveyed papers that utilized tracing for performance
analysis, we found that 15 did not specify the tool used to replay and 11 did
not specify the speed. Not specifying the replay tool hinders the reader from
judging the accuracy of the replay. For those that did not specify the speed, one
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can guess that traces were replayed as fast as possible since this is common
and easy, but it is still possible that other timings were used.

Trace availability. Researchers may collect traces themselves, request them
directly from other researchers, or obtain them from some third party that
makes traces publicly available. Reusing traces, where appropriate, can encour-
age comparisons between papers and allow results to be reproduced. However,
traces can become unavailable for several reasons, some of which are discussed
here. One surveyed paper [Rowstron and Druschel 2001] used traces that are
available via FTP, but the company that captures and hosts the traces states
that they remove traces after seven days. In some cases, those who captured
the traces have moved on and are unavailable. Additionally, since trace files
are usually very large (traces from HP Labs, which are commonly used, can
be up to 9GB), researchers may not save them for future use. Some traces are
even larger (approximately 1TB, compressed 20–30:1), so even if the authors
still have the trace, they may insist on transferring it by shipping a physical
disk. To resolve these types of issues, traces should be stored in centralized,
authoritative repositories of traces for all to use. In 2003, the Storage Network
Industry Association (SNIA) created a technical working group called IOTTA
(I/O traces, tools and analysis) to attack this problem. They have established a
worldwide trace repository, with several traces in compatible formats and with
all of the necessary tools [SNIA 2007]. There are also two smaller repositories
hosted by universities [LASS 2006; PEL 2001].

Privacy and anonymization is a concern when collecting and distributing
traces, but it should be done while not harming the usability of the traces. For
example, one could encrypt sensitive fields, each with a different encryption key.
Different mappings for each field remove the possibility of correlation between
related fields. For example, UID = 0 and GID = 0 usually occur together in
traces, but this cannot be easily inferred from anonymized traces in which the
two fields have been encrypted using different keys. Keys could be given out in
private to decrypt certain fields if desired [Aranya et al. 2004]. Although this
does not hide all the important information, such as the number of users on the
system, it should provide enough privacy for most scenarios.

Realism. Whether a trace accurately portrays the intended real-world en-
vironment is an important issue to consider. One aspect of this problem is that
of traces becoming stale. For traces whose age we could determine, the aver-
age age was 5.7 years, with some as old as 11 years. Studies have shown that
characteristics such as file sizes, access patterns, file system size, file types,
and directory size distribution have changed over the years [Roselli et al. 2000;
Agrawal et al. 2007]. While it is acceptable to use older traces for comparisons
between papers, we recommend that researchers include results that use new
traces as well. We hope that new traces will be continuously collected and made
available to the public via trace repositories.

Additionally, the trace should ideally be of many users executing similar
workloads (preferably unaware that the trace is being collected so that their
behavior is not biased). For example, one of the surveyed papers [Adya et al.
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2002] used a one-hour-long trace of one developer as the backbone of their eval-
uation. Such a small sample may not accurately represent a whole population.

9. MICROBENCHMARKS

In this section we describe the microbenchmarks used in the surveyed research
papers, and reflect on their positive qualities, drawbacks, and how appropriate
they were in the context of the papers in which they appeared.

In contrast to the macrobenchmarks described in Section 7, microbenchmark
workloads usually consist of a small number of types of operations and serve
to highlight some specific aspect of the file system.

We discuss Bonnie and Bonnie++, the Sprite benchmarks, ad hoc microbench-
marks, as well as using system utilities to create workloads.

9.1 Bonnie and Bonnie++

Bonnie, developed in 1990, performs a series of tests on a single file which is
100KB by default [Bray 1996]. For each test, Bonnie reports the number of
bytes processed per elapsed sec. the number of bytes processed per CPU sec.
and the percentage of CPU usage (user and system). The tests are as follows.

—Sequential Output. The file is created one character at-a-time, and then
recreated one 8KB chunk at-a-time. Each chunk is then read, dirtied, and
rewritten.

—Sequential Input. The file is read once one character at-a-time, and then
again one chunk at-a-time.

—Random Seeks. A number of processes seek to random locations in the file
and read a chunk of data. The chunk is modified and rewritten 10% of the
time. The documentation states that the default number of processes is four,
but we have checked the source-code and only three are created (this shows
the benefit of having open-source benchmarks). The default number of seeks
for each process is 4,000 and is one of several hard-coded values.

Even though this is a fairly well-known benchmark [Bryant et al. 2001], of all
the papers that we surveyed, only one [Zadok et al. 2001] used it. Care must be
taken to ensure that the working file size is larger than the amount of memory
on the system so that not all read requests are satisfied from the page cache.
The Bonnie documentation recommends using a file size that is at least 4 times
bigger than the amount of available memory. However, the biggest file size that
was used in the surveyed research paper was equal to the amount of memory
on the machine. The small number of papers using Bonnie may be due to the
three drawbacks it has, explained next.

First, unlike Postmark (see Section 7.1), Bonnie does not use a single pseu-
dorandom number generator for all OSs. This injects some variance between
benchmarks run on different OSs, and results may not be comparable.

Second, the options are not parameterized [Bryant et al. 2001]. Of all of the
values mentioned before, only file size is configurable from the command line;
the rest of the values are hard-coded in the program. In addition, Bonnie does
not allow the workload to be fully customized. A mix of sequential and random
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access is not possible, and the number of writes can never exceed the number
of reads (because a write is done only after a chunk is read and modified).

Third, reading and writing one character at-a-time tests the library call
throughput more than the file system because the function that Bonnie calls
(getc) uses buffering.

Bonnie++ [Coker 2001] was created in 2000 and used in one of the surveyed
papers [Peterson et al. 2005]. It differs from Bonnie in three ways. First, it is
written in C++ rather than C. Second, it uses multiple files to allow accessing
datasets larger than 2GB. Third, it adds several new tests that benchmark the
performance of create, stat, and unlink. Although it adds some useful features
to Bonnie, Bonnie++ still suffers from the same three drawbacks of Bonnie.

9.2 Sprite LFS

Two microbenchmarks from the 1992 Sprite LFS file system [Rosenblum 1992]
are sometimes used in research papers for performance analysis: the large-file
benchmark and the small-file benchmark.

Sprite LFS Large-File Benchmark. Three papers [Mazières et al. 1999;
Wang et al. 2002, 1999] included this benchmark in their performance eval-
uation. The benchmark has five phases.

(1) creates a 100MB file using sequential writes;

(2) reads the file sequentially;

(3) writes 100MB randomly to the existing file;

(4) reads 100MB randomly from the file; and

(5) reads the file sequentially.

The most apparent fault with this benchmark is that it uses a fixed-size
file and therefore does not scale. It also uses the random library routine rather
than having a built-in pseudorandom number generator (as Postmark does;
see Section 7.1), which may make results incomparable across machines with
different implementations.

Another of its faults is that the caches are not cleaned between each phase,
and so some number of operations in a given phase may be serviced from the
cache (the amount would actually depend on the pseudorandom number gener-
ator for phases 3 and 4, further emphasizing the need for a common generator).
However, two of the papers did specify that caches were cleaned after each write
phase. It should be noted that for the random-read phase, the benchmark ends
up reading the entire file, and so the latency of this phase depends on the file
system’s read-ahead algorithm (and the pseudorandom number generator).

One of the good points of the benchmark is that each stage is timed separately
with a high level of accuracy, and only relevant portions of the code are timed.
For example, when performing random writes, it first generates the random
order (though it uses a poorly designed algorithm which is O(N 2) in the worst
case), and then starts timing the writes.
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Fig. 6. Time taken to execute various versions of the Sprite LFS small-file benchmark. Note that
error bars are shown, but are small and difficult to see.

Sprite LFS Small-File Benchmark. This benchmark was used in six pa-
pers [Wang et al. 2002, 1999; Denehy et al. 2005; Mazières et al. 1999; Kaminsky
et al. 2003; Li et al. 2004]. It has three phases:

(1) creating 10,000 1KB files by creating and opening a file, writing 1KB of
data, and closing the file;

(2) reading the files; and

(3) deleting the files.

Some papers varied the number of files and their sizes, and two specified that
the caches were flushed after the write phase. We could not obtain the source-
code for this benchmark, so it seems that each author may rewrite it because
it is so simple. This would make it difficult to compare results across papers
because the source-code may be different. To show this, we have developed the
following five versions of the code.

—LFS-SH1. This is a bash script that creates the files by coping data from
/dev/zero using the dd program (with a block size of 1 byte and count of
1,024), reads the files using cat, and deletes them with rm.

—LFS-SH2. This version is similar to LFS-SH1, but dd uses a 1,024-byte block
size, and a count of 1.

—LFS-SH3. This code is the same as LFS-SH1, but uses cp instead of dd to
create the files.

—LFS-C. This is a C implementation of the code.

—LFS-PL. This is a Perl code implementation.

The source-code for all five versions is available at www.fsl.cs.sunysb.
edu/project-fsbench.html. The results, shown in Figure 6, clearly demonstrate
that different implementations yield significantly different results. The three

ACM Transactions on Storage, Vol. 4, No. 2, Article 5, Publication date: May 2008.



A Nine Year Study of File System and Storage Benchmarking • 5:39

bash script versions are much slower than the others because every operation
in the benchmark forks a new process. In addition, all of the implementations
except for LFS-SH3 have insignificant wait-time components, showing that file
system activity is minimal.

9.3 Ad Hoc MicroBenchmarks

Until now, we have been discussing widely available benchmarks in isolation.
In contrast, ad hoc benchmarks are written by the authors for in-house use. In
this section, we describe ad hoc microbenchmarks in the context of the papers in
which they appear, since the benchmarks alone are usually not very interesting.
62 of the 106 surveyed research papers used ad hoc microbenchmarks for at
least one of their experiments (191 total ad hoc microbenchmarks).

These benchmarks all have a general drawback. Because they are not made
available to other researchers, they are not reproducible. Even if they are de-
scribed in detail (which is usually not the case), another implementation will
certainly differ (see Section 9.2 for experimental evidence). In addition, since
these benchmarks are not widely used, they are not tested as much as widely
available benchmarks, and therefore are more prone to bugs. One good aspect
we have noticed about these benchmarks is that usually some reasoning behind
the benchmark is described.

Because microbenchmarks test the performance of a file system under very
specific circumstances, they should not be used alone to describe general per-
formance characteristics. The only exception to this rule is if a minor change is
made in some code and there is a clear explanation as to why no other execution
paths are affected.

We have identified three reasonable ways of using microbenchmarks. The
first acceptable way of using ad hoc microbenchmarks is for the purpose of
better understanding the results of other benchmarks. For example, one pa-
per [Ng et al. 2002] measured the throughput of reads and writes for sequential-,
random-, and identical-block access for this purpose. Because the results are
not meant to be compared across papers, the reproducibility is no longer much
of an issue. Sequential access may show the best case because of its short disk-
head seeks and predictable nature, a domain where read-ahead and prefetch-
ing shine. The random-read microbenchmark is generally used to measure read
throughput in a scenario where there is no observable access pattern and disk-
head seeks are common. This type of behavior has been observed in database
workloads. The random aspect of the benchmark inherently inhibits its re-
producibility across machines, as discussed in Section 7.1. Since the aforesaid
paper involved network storage, repeatedly reading from the same block gives a
time for issuing a request over the network that results in a cache hit. The rea-
son for writing to the same block, however, was not explained. Nevertheless,
using ad hoc microbenchmarks to explain other results is a good technique.
Another paper [Fu et al. 2000] used the read phases of LFS benchmarks to
examine performance bottlenecks.

A second method for using these benchmarks is to employ several ad hoc mi-
crobenchmarks to analyze the performance of a variety of operations, as eight
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papers did. This can provide a sense of how the system would perform com-
pared to some baseline for commonly used operations, and may allow readers
to estimate the overheads for other workloads.

The third way to acceptably use the microbenchmark is in order to isolate
a specific aspect of the system. For example, a tracing file system used an
ad hoc microbenchmark to exercise the file system by producing large traces
that general-purpose benchmarks such as Postmark could not produce, thereby
showing worst-case performance [Aranya et al. 2004]. Another used a simple
sequential-read benchmark to illustrate different RPC behaviors [Magoutis
et al. 2003]. Others used ad hoc microbenchmarks to show how the system
behaves under specific conditions. Most of these papers focused on the read-,
write-, and stat operations, varying the access patterns, number of threads,
and number of files. However, most did not use the microbenchmarks to show
worst-case behavior.

In addition, ad hoc microbenchmarks can be used in the initial phases of
benchmarking to explore the behavior of a system. This can provide useful
data about code that requires optimization, or to make decisions about what
additional benchmarks would most effectively show the system’s behavior.

9.4 System Utilities

Some papers use standard utilities to create workloads instead of creating work-
loads from scratch, as discussed in Section 9.3. Some examples of benchmarks
of this type that were used in the surveyed papers are next provided.

—wc [Van Meter and Gao 2000] and grep [Van Meter and Gao 2000; Fraser and
Chang 2003] sequentially read from one or more files.

—cp [Zadok et al. 2001; Padioleau and Ridoux 2003; Schindler et al. 2002;
Santry et al. 1999; Muniswamy-Reddy et al. 2004] sequentially reads from
one file while copying to another.

—diff [Schindler et al. 2002] sequentially reads two files and compares them.

—tar [Lee et al. 1999; Anderson et al. 2000] and gzip [DeBergalis et al. 2003]
sequentially read from a file and append to a set of files while consuming
CPU.

Using these utilities is slightly better than creating ad hoc benchmarks be-
cause the former are widely available and there is no misunderstanding about
what the benchmark does. However, none of the papers specified what version
the authors were using, which could lead to some (possibly minor) changes
in workloads; for example, different versions of grep use different I/O strate-
gies. However, researchers can easily specify their tool version and thus elim-
inate all ambiguity. Nonetheless, an important flaw in using these utilities is
that the benchmarks do not scale, and depend on input files which are not
standardized.

10. CONFIGURABLE WORKLOAD GENERATORS

Configurable workload generators generally have lower flexibility when com-
pared to creating custom benchmarks, but they require less setup time and are
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usually more reproducible. In addition, since they are more widely used and
established than ad hoc benchmarks, it is likely that they contain fewer bugs.
We discuss some of the more popular generators here.

Iometer. This workload generator and measurement tool was developed by
Intel in 1998 and originally developed for Windows [OSDL 2004]. Iometer was
given to the Open-Source Development Lab in 2001, which open-sourced and
ported it to other OSs. The authors claim that it can be configured to emulate
the disk or network I/O load of any program or benchmark, and that it can
be used to generate entirely synthetic I/O loads. It can generate and measure
loads on single- or multiple (networked) systems. Iometer can be used for mea-
surement and characterization of disk- and network controller performance,
bus latency and bandwidth, network throughput to attached drives, shared-
bus performance, and hard drive- and network performance.

The parameters for configuring tests include the following: the runtime, the
amount of time to run the benchmark before collecting statistics (useful for en-
suring that the system is in a “steady state”), the number of threads; number of
targets (i.e., disks or network interfaces), number of outstanding I/O operations,
and the workload to run.

The parameters for a thread’s workload include: the percent of transfers
of a given size, the ratio of reads-to-writes, the ratio of random-to-sequential
accesses, number of transfers in a burst, time to wait between bursts, the align-
ment of each I/O on the disk, and the size of the reply (if any) to each I/O request.
The test also includes a large selection of metrics to use when displaying results,
and can save and load configuration files.

Iometer has four qualities not found in many other benchmarks. First, it
scales well, since the user gives as input the amount of time the test should
run, rather than the amount of work to be performed. Second, allowing the
system to reach steady state is a good practice, although it may be more useful
to find this point by statistical methods rather than by trusting the user to
input a correct time. Third, it allows for easily distributing and publicizing the
configuration files by saving them so that benchmarks can be run with exactly
the same workloads. Although researchers can publicize parameters for other
benchmarks, there is no standard format so some parameters are bound to be
left unreported. Fourth, having a suite that runs multiple tests with varying
parameters saves time and reduces errors. However, there are tools such as
Auto-pilot [Wright et al. 2005] that can automate benchmarks with greater
control (e.g., the machine can reboot automatically between runs, run helper
scripts, etc.).

A drawback of Iometer is that it does not leave enough room for customiza-
tion. Although it can recreate most commonly used workloads, hard-coding the
possibilities for workload specification- and performance metrics reduces its
flexibility. For example, the percentage of random reads is not sufficient to de-
scribe all read patterns. One read pattern suggested for testing read-ahead is
reading blocks from a file in the following patterns: 1, 51, 101, . . . ; 1, 2, 51, 52,
101, 102, . . . ; 1, 2, 3, 51, 52, 53, 101, 102, 103, . . . [Tang 1995]. Such patterns
cannot be recreated with Iometer.
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Surprisingly, even though Iometer has many useful features, only two papers
used it [Sarkar et al. 2003; Yu et al. 2000]. This may be because Iometer was
unable to generate the desired workload, as described earlier. However, most
workloads are fairly straightforward, so this is less of a factor. More likely,
researchers simply may not know about or be familiar with it. This may be
why researchers prefer to write their own microbenchmarks rather than using
a workload generator. Furthermore, it does not seem that the ability to save
configuration files improved the reporting of workloads in the research papers
that used Iometer (neither paper fully described their microbenchmarks).

Buttress. The goal of Buttress is to issue I/O requests with a high accu-
racy, even when high throughputs are requested [Anderson et al. 2004]. This is
important for Buttress’s trace replay capability, as well for obtaining accurate
inter-I/O times for its workload generation capability. Accurate I/O issuing is
not present in most benchmarks, and the authors show how important this is
to have. The Buttress toolkit issues read- and write requests close to their in-
tended issue time, can achieve close to the maximum possible throughput, and
can replay I/O traces as well as generate synthetic I/O patterns. Several inter-
esting techniques were employed to ensure these properties. In addition, the
toolkit is flexible (unlike Iometer) because users can specify their own work-
loads using a simple event-based programming interface. However, this also
makes it more difficult to reproduce benchmarks from other papers (it is easier
to specify simple parameters, as with Iometer). Two of the surveyed research
papers, both from HP Labs, have used this toolkit [Lumb et al. 2003; Lu et al.
2002]. Unfortunately, Buttress is only available by special request from HP.

FileBench. This workload generator from Sun Microsystems [McDougall
and Mauro 2005] is configured using a scripting language. FileBench includes
scripts that can generate application-emulating or microbenchmark workloads,
and users may write their own scripts for custom benchmarks. The application
workloads it currently emulates consist of an NFS mail server (similar to Post-
mark; see Section 7.1), a file server (similar to SPEC SFS; see Section 7.5), a
database server, a Web server, and a Web proxy.

FileBench also generates several microbenchmark workloads, some of which
are similar to Bonnie (see Section 9.1) or the copy phase of the Andrew bench-
mark (see Section 7.3). In addition to the workloads that come with FileBench,
it has several useful features: (1) workload scripts that can easily be reused
and published, (2) the ability to choose between multiple threads or processes,
(3) microsec. accurate latency- and cycle counts per system call, (4) thread syn-
chronization, (5) warm-up and cool-down phases to measure steady-state activ-
ity, (6) configurable directory structures, and (7) database emulation features
(e.g., semaphores, synchronous I/O, etc.).

Only one of the surveyed papers [Gulati et al. 2007] used FileBench, possibly
because Filebench was made publicly available only in 2005 on Solaris, though
a Linux port was created soon after. However, it is highly configurable, and
it is possible that researchers will be able to use it for running many of their
benchmarks.
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Fstress. This workload generator has similar parameters to other genera-
tors [Andrerson 2002]. One can specify the following: the distributions for file,
directory, and symlink counts, the maximum directory-tree depth, popularity
in accesses for newly created objects, and file sizes, operation mixes, I/O sizes,
and load levels. Like SPEC SFS (see Section 7.5), it only runs over NFSv3,
and constructs packets directly rather than relying on a client implementa-
tion. However, NFSv3 is currently being replaced by NFSv4, so supporting this
protocol would be necessary to ensure relevance. Like Iometer, it has limited
workload configuration parameters. Another drawback is that requests are sent
at a steady rate, so bursty I/O patterns cannot be simulated. Fstress was not
used in any of the surveyed papers.

11. BENCHMARKING AUTOMATION

Proper benchmarking is an iterative process. In our experience, there are four
primary reasons for this. First, when running a benchmark against a given
configuration, one must run each test a sufficient number of times to gain con-
fidence that the results are accurate. Second, most software does not exist in a
vacuum; there is at least one other related system or a system that serves as a
baseline for comparison. In addition to one’s own system, one must benchmark
the other systems and compare one’s own system performance to those. Third,
benchmarks often expose bugs or inefficiencies in one’s code, which requires
changes. After fixing these bugs (or simply adding new features), one must re-
run the benchmarks. Fourth, after doing a fair number of benchmarks, you in-
evitably run into unexpected, anomalous, or just interesting results. To explain
these results, one often needs to change configuration parameters or measure
additional quantities, necessitating additional iterations of one’s benchmark.
Therefore, it is natural to automate the benchmarking process from start to
finish.

Auto-pilot [Wright et al. 2005] is a suite of tools that we developed for pro-
ducing accurate and informative benchmark results. We have used Auto-pilot
for over five years on dozens of projects. As every project is slightly different,
we continuously enhanced Auto-pilot and increased its flexibility for each. The
result is a stable and mature package that saves days and weeks of repetitive
labor on each project. Auto-pilot consists of four major components: a tool to
execute a set of benchmarks described by a simple configuration language, a
collection of sample shell scripts for file system benchmarking, a data extrac-
tion and analysis tool, and a graphing tool. The analysis tool can perform all of
the statistical tests that we described in Section 3.

12. EXPERIMENTAL EVALUATIONS

In this section we describe the methods we used to benchmark file systems to
show some of their qualities. Our goal is to demonstrate some of the common
pitfalls of file system benchmarks. We describe the file system that we used
for the benchmarks and show some of the faults that exist in commonly used
benchmarks.
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12.1 Slowfs

To reveal some characteristics of various benchmarks, we have modified the
ext2 file system to slow down certain operations. In the remainder of this article,
we call this modified ext2 file system Slowfs. Rather than calling the normal
function for an operation, we call a new function which does the following.

(1) start = getcc() [get current time in CPU cycles];

(2) calls the original function for the operation;

(3) now = getcc();

(4) goal = now + ((now − start) * 2N ) − (now − start); and

(5) while (getcc() ≤ goal) { schedule() }.

The net effect of this is a slowdown of a factor of 2N for the operation. The
operations to slowdown and N are given as mount-time parameters. For this
article we slowed down the following operations.

—Read. Reads data from the disk.

—Prepare Write and Commit Write. These operations are used by the file system
to write data to disk for the write system call. We refer to these operations
collectively as WRITE for the remainder of the article.

—Lookup. Takes a directory and a file name, and returns an in-memory inode.

If no operation was slowed down, we call it EXT2. If all of the aforesaid operations
were slowed down we call it ALL. We experimented with the preceding three
functions because they are among the most common found in benchmarks. Note
that this type of slowdown exercises the CPU and not I/O, and that a slowdown
of a certain factor is as seen inside the file system, not by the user (the amount
of overhead as seen by the user varies with each benchmark). For example,
heavy use of the CPU can be found in file systems that perform encryption,
compression, or checksumming for integrity or duplicate elimination.

The source-code for Slowfs is available at www.fsl.cs.sunysb.edu/project-
fsbench.html.

12.2 Hiding Overheads

In this section we use Slowfs to prove some of the claims we have made in this
article.

Compile benchmarks. In our first experiment, we compared Slowfs and ext2
for configuring and compiling OpenSSH versions 3.5, 3.7, and 3.9. We used
Slowfs with the read operation slowed down by several factors. The results are
shown in Figure 7. Only the results for versions 3.5 and 3.7 are shown because
they showed the highest overheads. We chose to slow down the read operation
because, as shown in Section 7.2, it is the most time-consuming operation for
this benchmark. Because a compile benchmark is CPU intensive, such extraor-
dinary overheads as a factor of 32 on read can go unnoticed (the factor of 32
comes from setting N to 5, as described in Section 12.1). For all of these graphs,
the half-widths were less than 1.5% of the mean, and the CPU% was always
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Fig. 7. Time taken to configure and compile OpenSSH versions 3.5 and 3.7 on ext2 and on Slowfs
with the read operation slowed down by several factors. Note the different scales for the y-axes.
The half-widths were always less than 1.5% of the mean.

more than 99.2%, where CPU% =
timeuser + timesystem

timeelapsed
× 100. In the following dis-

cussion, we do not include user or I/O times because they were always either
statistically indistinguishable or very close (these two values were not affected
by the Slowfs modifications).

For the configure phase, the highest overhead was 2.7% for elapsed time,
and 10.1% for system time (both for version 3.7). For the compile phase, the
highest overhead was 4.5% for elapsed time and 59.2% for system time (both
for version 3.5). Although 59.2% is a noticeable overhead, this can be hidden by
only reporting the elapsed time overhead.

We also conducted the same compile benchmarks with slowing down each of
the operations listed in Section 12.1 by only a factor of five. We slowed them
down both separately as well as together. There was no statistical difference
between ext2 and any of these slowed down configurations.

These results clearly show that even with extraordinary delays in critical file
system operations, compile benchmarks show only marginal overheads because
they are bound by CPU time spent in user space. As mentioned in Section 7.3,
the deficiencies in compile benchmarks apply to the Andrew benchmark as well.
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Table IV. Postmark Configurations Used in Our Slowfs Experiments

PARAMETER FSL CVFS CVFS-LARGE

Number of Files 20,000 5,000 5,000
Number of Subdirectories 200 50 50
File Sizes 512 bytes–10KB 512 bytes–10KB 512–328,072 bytes
Number of Transactions 200,000 20,000 20,000
Operation Ratios equal equal equal
Read Size 4KB 4KB 4KB
Write Size 4KB 4KB 4KB
Buffered I/O no no no

Fig. 8. Time taken to execute the Postmark benchmark with several configurations while slowing
down various file system operations using Slowfs. Note the different scales for the y-axes.

Postmark. We tested Slowfs with three different Postmark configurations
(described in Table IV). The FSL configuration is the one we have been using in
our laboratory [Aranya et al. 2004; Wright et al. 2003a], the CVFS configuration
is from the CVFS research paper [Soules et al. 2003], and CVFS-LARGE is
similar to the CVFS configuration, but we used the median size of a mailbox
on our campus’s large mail server for the file size. We have used a similar
configuration before [Muniswamy-Reddy et al. 2004], but in these experiments
we updated the file size. We used Postmark version 1.5, and used Slowfs to slow
down each of the operations separately, as well as together, by a factor of four.
The results are shown in Figure 8.

ACM Transactions on Storage, Vol. 4, No. 2, Article 5, Publication date: May 2008.



A Nine Year Study of File System and Storage Benchmarking • 5:47

The graphs show us two important features of this benchmark. First, if we
look at the EXT2 bar in each graph, we can see how much changing the configu-
rations can affect the results. The three are very different, and clearly incom-
parable (FSL takes over 55 times longer than CVFS, and CVFS-LARGE is still
almost twice as long as FSL). Second, we can see that different configurations
show the effects of Slowfs in varying degrees.

For example, slowing down the reads yields an elapsed time overhead of
3.6% for FSL (16.7% system time), 14.1% for CVFS (19.4% system time), and
116% for CVFS-LARGE (2,055% system time) over ext2 (EXT2). We can see
that in the CVFS configuration, there is no wait time on the graph. This is
because the configuration was so small that the benchmark finished before the
flushing daemon could write to the disk. CVFS has larger overheads than FSL
because writes are a smaller component of the benchmark, and so reads become
a larger component. CVFS-LARGE has higher overheads than the other two
configurations because it has much larger files, and so there is more data to be
read. Similarly, when all operations are slowed down (ALL), there is an elapsed
time overhead of 12.3% for FSL (85.6% system time), 65.8% for CVFS (83.5%
system time), and 183% for CVFS-LARGE (3,177% system time).

Depending on the characteristics of the file system being tested, it is pos-
sible to choose a configuration that will yield low overheads. Even so, we see
that Postmark sufficiently exercises the file system and shows us meaningful
overheads, so long as the workload is large enough to produce I/O (i.e., the work-
ing set is larger than available memory and the benchmark runs for enough
time). This is in contrast to the compile benchmarks, which barely show any
overheads.

13. CONCLUSIONS

We have examined a range of file system and storage benchmarks and de-
scribed their positive and negative qualities, with the hope of furthering the
understanding of how to choose appropriate benchmarks for performance eval-
uations. We have done this by surveying 106 file-system and storage-related re-
search papers from a selection of recent conferences and by conducting our own
experiments. We also provided recommendations for how benchmarks should
preferably be run and how results might be presented. This advice was sum-
marized in our suggested guidelines (see Section 3).

We recommend that with the current set of available benchmarks, an ac-
curate method of conveying a file or storage system’s performance is by using
at least one macrobenchmark or trace, as well as several microbenchmarks.
Macrobenchmarks and traces are intended to give an overall idea of how the
system might perform under some workload. If traces are used, then special
care should be taken with regard to how they are captured and replayed, and
how closely they resemble the intended real-world workload. In addition, mi-
crobenchmarks can be used to help understand the system’s performance, to
test multiple operations to provide a sense of overall performance, or to high-
light interesting features about the system (such as cases where it performs
particularly well or poor).

ACM Transactions on Storage, Vol. 4, No. 2, Article 5, Publication date: May 2008.



5:48 • A. Traeger et al.

Performance evaluations should improve the descriptions of what the au-
thors did, as well as why they did it, which is equally important. Explaining
the reasoning behind one’s actions is an important principle in research, but
is not being followed consistently in the fields of file system and storage per-
formance evaluations. Ideally, there should be some analysis of the system’s
expected behavior, and various benchmarks either proving or disproving these
hypotheses. Such analysis may offer more insight into a behavior than just a
graph or table.

We believe that the current state of performance evaluations, as seen in the
surveyed research papers, has much room for improvement. Computer science
is still a relatively young field, and the experimental evaluations need to move
further in the direction of precise science. One part of the solution is that stan-
dards clearly need to be raised and defined. This will have to be done both by
reviewers putting more emphasis on a system’s evaluation, and by researchers
conducting experiments. Another part of the solution is that this information
needs to be better disseminated to all. We hope that this article, as well as our
continuing work, will help researchers and others to understand the problems
that exist with file and storage system benchmarking. The final aspect of the
solution to this problem is creating standardized benchmarks, or benchmarking
suites, based on open discussion among file system and storage researchers.

We believe that future storage research can help alleviate the situation by
answering questions such as the following.

(1) How can we accurately portray various real-world workloads?

(2) How can we accurately compare results from benchmarks that were run on
different machines and systems and at different times?

To help answer the first question, we need a method of determining how
close two workloads are to each other. To answer the second, we believe that
benchmark results can be normalized for the machine on which they were run.
To standardize benchmarks, we believe that there is a need for a group such
as the SPC to standardize and maintain storage and file system benchmarks,
and for such benchmarks to be more widely used by this community. We are
currently working on some of these problems and there is still much work to be
done, but we hope that with time the situation will improve.

The project Web site (www.fsl.cs.sunysb.edu/project-fsbench.html) contains
the data collected for this survey, our suggestions for proper benchmarking
techniques, and the source-code and machine configurations that we used in
the experiments throughout the article.
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