SOFTWARE—PRACTICE AND EXPERIENCE
Softw. Pract. Ezper. 2000; 00:1-7 Prepared using speauth.cls [Version: 2002/09/23 v2.2]

Understanding Web server HZ

configuration issues

Martin Arlitt*! and Carey Williamson

Department of Computer Science, University of Calgary

SUMMARY

This paper proposes a methodological approach to the evaluation of Web server
performance in a simple LAN test environment. The paper examines how different
system and application configuration parameters can, over a range of workloads, impact
the performance of a Web server. Our approach relies on relatively fine-grain reporting
of performance data for a broad set of system-level metrics. Graphical visualization
of these performance indices helps to identify the primary system bottleneck in each
configuration studied.

The Apache Web server is used as a case study to demonstrate the methodology. Our
experiments quantify the performance implications of several configuration decisions
common to any Web server implementation, and also serve to illustrate several
performance anomalies specific to the Apache Web server (if misconfigured).

KEY WORDS: Web servers; Web performance; benchmarking; validation; performance methodology

1. INTRODUCTION

Web server performance plays a central role in the user-perceived “Internet experience”,
and thus has been the focus of a lot of recent research [3, 4, 5, 12, 18, 19, 25]. Many
different Web server architectures have been proposed, and evaluated on a wide range of
platforms [5, 12, 18, 19, 22, 27]. Many implementation optimizations have been proposed for
Web servers as well, particularly in regards to communication protocol handling [3, 4], request
scheduling [7], and reducing system overhead [3, 18].

One of the challenges in comparing and evaluating Web servers is the sensitivity of
Web server performance to a broad set of system-level and application-level configuration
parameters. For example, some Web servers are process-based, some are not; some Web servers

*Correspondence to: Department of Computer Science, University of Calgary, 2500 University Drive NW,
Calgary, AB, CANADA T2N 1N4
T E-mail: {arlitt,carey}@cpsc.ucalgary.ca

Received August 2002
Copyright © 2000 John Wiley & Sons, Ltd.

2 M. ARLITT AND C. WILLIAMSON

use memory-mapped files, some do not; some Web servers are highly optimized for static
content retrieval, while others are not. Understanding the performance tradeoffs between
these configuration choices is complicated. In addition, the characteristics of the workload
presented to the Web server can have a dramatic effect on the observed performance. In fact,
fundamentally different server behaviours can result for different workloads, depending on
whether the primary system bottleneck is the CPU, the network bandwidth, or the network
latency [19].

Understanding the performance implications of different Web server configurations is
particularly relevant in the validation stage of any performance evaluation study. The
validation process entails verifying the accuracy of measurements, explaining any counter-
intuitive results, and investigating anomalous or unexplained behaviours [16]. Furthermore,
the results obtained from the study must be repeatable: re-running the experiments on the
same system or in a similar test environment (whether by the original researchers or by others)
must yield equivalent results.

This paper describes work that was done as part of the validation process for our work on
Web server benchmarking using parallel WAN emulation [25]. For simplicity, we focus only on
the LAN environment in this paper. The paper explores the implications of different system
and application configurations on the performance of a Web server. Our approach relies on
relatively fine-grain reporting of performance data for a broad set of system-level performance
metrics. Graphical visualization of these performance indices helps to identify the primary
system bottleneck in each configuration studied. The visualization process makes results more
understandable, building the intuition required for the identification of bottlenecks in new
test configurations as they are explored. Data visualization also makes performance anomalies
immediately apparent, when they occur. Our intent is not to instruct all administrators how
to configure their servers; rather, we aim to provide a better understanding of the potential
impacts of different configuration decisions. In addition, we demonstrate how others can
evaluate the impact of various workload and configuration factors in a systematic fashion.

The main contributions of the paper are as follows. First, we describe a methodological
approach to Web server benchmarking in a simple LAN test environment, codifying certain
common-sense principles followed by many other researchers. Second, we show that (as
expected) some system-level and application-level parameter settings can have a significant
impact on the performance of the Web server. For example, the use of persistent connections
and pipelining can significantly improve performance, while unnecessary process creation and
termination can degrade performance. Third, we demonstrate that some components of a
system behave in an unexpected manner when a bottleneck is impeding the system. As a
result, the methodology highlights the (typical) need to examine the behaviour of multiple
components in order to correctly identify the system bottleneck. Through our efforts, we
have gained a better understanding of how Web servers behave in the presence of different
bottlenecks. This knowledge provides useful insight into the validation and understanding
of results from more elaborate Web server benchmarking studies. Our methodology is also
general enough to apply to a wide range of performance evaluation studies beyond Web server
benchmarking.

There are several intended audiences for this paper. First, performance analysts may be
interested in our instrumentation and graphical visualization approaches to identifying system

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2000; 00:1-7
Prepared using speauth.cls

UNDERSTANDING WEB SERVER CONFIGURATION 3
&

bottlenecks. Second, researchers familiar with Web server benchmarking can learn about
the process behind properly tuning the Web server in our benchmarking study. Finally,
system /network administrators can gain insight into the performance implications of different
configurations on their operational Web servers.

The remainder of the paper is organized as follows. Section 2 discusses related work. Section 3
describes the test environment used in this study. Section 4 presents our methodology and
experimental design, while Section 5 presents the results of our study. Section 6 concludes the
paper with a summary of our work and a discussion of future directions.

2. RELATED WORK

The work presented in this paper was initiated while evaluating the effects of Wide-Area
Network (WAN) characteristics on Web server performance [25]. As part of the validation
process for that study, we needed to first understand the behaviour of a Web server in a
simple Local Area Network (LAN) environment. In other words, we needed to distinguish
between Web server behaviours that were caused by WAN characteristics and those that were
simply due to the configuration of the Web server.

There are several research studies that have evaluated the performance of different Web
servers (e.g., [12, 13, 18]). There are also informal guidelines for tuning the Apache Web
server [1, 9]. While such studies and guidelines are complementary to our own, they typically
do not provide detailed information on the performance implications of specific system and
application configurations used. In addition, we elaborate on our methodology, to enable others
to conduct their own experiments in a consistent manner.

There have also been many commercial Web server benchmark studies. For example, many
server companies use standard benchmarks such as SPECWeb [26] to provide a measure of
the performance of their products relative to those of their competitors. When publishing
SPECWeb results a company must disclose a detailed list of the system and application
configurations. Many of these disclosures contain dozens of configuration changes. However,
little or no information is provided regarding the performance impacts of these changes. In
this paper, we focus on evaluating the performance impact of a small set of parameters on the
Apache Web server. We examine Apache since it is the most commonly used Web server on
the Internet today [20], primarily because it is feature-rich and freely-available. Most server
companies provide SPECWeb results for only less popular, but more performant Web servers.

Benchmarking of Web caching products has received significant attention in recent years.
Since Web proxy cache workloads vary significantly from Web server workloads, alternative
benchmarking tools are required. One of the most complete tools for benchmarking such caches
is Web Polygraph [24]. This tool can not only generate realistic Web cache workloads, but
also evaluates the performance based on metrics of specific importance for caching, including
measures of hit ratios and object freshness.

Graphical visualization of performance data is common practice in many companies and
organizations, and is often crucial to identifying interesting phenomena. For example, Barford
and Plonka [6] report how the University of Wisconsin uses this approach to detect anomalies
in network traffic behaviour. In many cases, the key to identifying each type of anomaly is

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2000; 00:1-7
Prepared using speauth.cls

4 M. ARLITT AND C. WILLIAMSON

Server

Figure 1. Simple LAN test environment for Web server experiments

to combine information from multiple sources [6]. In this paper, we similarly demonstrate
the importance of monitoring multiple components in order to identify the system bottleneck
correctly.

3. EXPERIMENTAL ENVIRONMENT

This section describes the simple LAN test environment used for the experiments in this paper.
The testbed, as shown in Figure 1, consists of two clients that submit requests to a Web server
over a 1 Gb/s full-duplex switched-Ethernet LAN. The remainder of this section provides a
detailed description of the test environment.

3.1. Equipment and configuration
3.1.1. Client configuration

The client machines in our testbed are IBM x335 servers running RedHat Linux 8.0. Each
client machine has a single Intel 2.4 GHz Xeon processor, 1 GB RAM, a 36 GB 15K SCSI
disk, and two 1 Gb/s Ethernet NICs (although only one NIC in each machine is used in our
experiments). Each client uses 25 MB of memory as a “RAMdisk” (i.e., a virtual disk [21])
for collecting statistics on the client behaviour during testing. Using a RAMdisk eliminates
writing to the physical disk during testing.

The Linux /proc directory [23] is used to monitor the behaviour of the system (see
Section 3.2.3) and to communicate configuration changes to the kernel. In particular, we
used this interface to make several modifications that allow the clients to generate and
sustain very high connection request rates, even when the server is overloaded. First, we
increased the number of available file descriptors (/proc/sys/fs/file-max) to 32,768. We
also enabled TCP TIME_WAIT recycling (/proc/sys/net/ipv4/tcptw_recycle) to free
up sockets in a TIME_WAIT state more quickly. Next, we increased the size of the local
port range (/proc/sys/net/ipv4/ip_local port_range) that is available for use. Finally,
since we were not running the workload generators as root, we had to modify the PAM

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2000; 00:1-7
Prepared using speauth.cls

UNDERSTANDING WEB SERVER CONFIGURATION 5
&

(Pluggable Authentication Module) configuration to allow us to utilize all 32,768 file descriptors
rather than the default of 1,024. This requires modifying /etc/security/limits.conf and
/etc/pam.d/ssh.

All non-essential processes on the client machines were disabled, to minimize the
consumption of resources by processes unrelated to workload generation. This step removes
“noise” from the performance data collected, allowing us to identify more readily the impacts
of specific configuration changes.

3.1.2. Server configuration

The Web server platform is an IBM x335 server running RedHat Linux 7.3. The server has a
single Intel 2.4 GHz Xeon processor, 1 GB RAM, a 36 GB 15K SCSI disk, and two 1 Gb/s
Ethernet NICs (only one of which is used in this study). A 25 MB RAMdisk is used for storing
system measures during testing.

As with the client machines, all non-essential processes on the server were disabled prior to
conducting tests, to minimize consumption of system resources. We also modified the server’s
kernel configuration, increasing the number of available file descriptors to 32,768.

3.2. Software configuration
3.2.1. Client workload generation

The primary workload generation tool in our test environment is httperf [17], a tool for
measuring HTTP performance. We chose to use this tool for several reasons. First, we have used
this tool in the past, so we are familiar with its interface and its capabilities. Second, httperf
supports a wide-range of features (e.g., persistent connections, pipelining, SSL) that are useful
for testing Web server functionality. Third, httperf is available [11] in source code form, so
that we can easily add desired functionality (e.g., to print server response rate information
more frequently).

A second workload generation tool used is netperf [15]. The netperf utility is a network
benchmark that focuses primarily on bulk data transfer and request-response performance
using either TCP or UDP via the BSD socket interface [14]. We use netperf for validating
network performance results.

3.2.2. Web server software

The majority of our experiments used the Apache Web server [2] (version 1.3.28), a process-
based server that uses a separate process to handle each outstanding request. We chose to use
Apache for several reasons. First, Apache is currently the most common Web server on the
Internet, used by approximately 60% of all Web sites [20]. Second, Apache has been ported to
many platforms, including Linux (used in our LAN test environment) and Tru64 (used in our
WAN emulation environment). Third, the source code for Apache is available, which allows us
to learn more about its operation, and to make modifications to the server if needed.

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2000; 00:1-7
Prepared using speauth.cls

6 M. ARLITT AND C. WILLIAMSON

The purpose of this paper is to understand the implications of different configurations on
the performance of a Web server; it is not our goal to look for performance problems specific
to Apache. We note that, as stated on the Apache Web site, Apache is designed to be “correct
first, and fast second”. We simply use Apache, for the reasons stated above, to demonstrate
the performance impacts of Web server configurations (and misconfigurations). Clearly, it is
possible to misconfigure any server.

The other Web server that we use is Tux [27] (version 2.1). Tux is a kernel-based, multi-
threaded, high performance HTTP server available for Linux systems. We use Tux to verify
that our client workload generators are not the bottleneck in any of our tests.

3.2.8. Monitoring software

Critical to our work is the availability of timely and detailed data on the state of the system
under study. We rely on several sources for this information. Much of our data is acquired
using the Linux utility sar (system activity report) [10]. Using sar, we are able to monitor
a wide range of system activities (e.g., CPU utilization, I/O transactions). Statistics on the
Linux networking subsystem are obtained using the netstat command. In particular, netstat
can provide information on network-related errors (e.g., dropped TCP connections). This
information is collected before and after every test. Information on TCP and HTTP behaviours
is available from the output of httperf. This output provides the response rate on a second-by-
second basis, and other statistics (e.g., average TCP connection rate, HTTP request rate, and
HTTP reply rate) on a test-by-test basis. Additional information is collected from a variety
of log files. The Apache error log reports warnings and errors specific to the Apache server.
In addition, syslogd can be used to record messages on system activity, and to trap kernel
messages. The latter log is useful for ensuring that the kernel is functioning properly. These
logs are examined after the conclusion of an experiment.

3.3. Controlling the test environment

In this paper, we define an experiment as a number of tests, each of which examines a different
level of a particular factor. All other factors are fixed throughout the experiment, although
they can vary between experiments.

Each experiment is controlled from one of the client machines (Client A). Each experiment
is specified as a shell script, which is then executed on the control machine. Controlling the
experiments in this way ensures that the tests are conducted in a consistent manner. Archiving
the scripts aids in repeating the results as well.

Prior to the start of each experiment, the control machine communicates (via ssh) with
each machine involved in the experiment. Prior to starting the initial test, information on the
current state of each machine is collected. The control machine then starts the monitoring
software on all test systems. The control machine is also used to start each test, and to collect
data after tests complete. At the completion of the experiment, all of the collected data is
archived to disk for off-line analysis.

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2000; 00:1-7
Prepared using speauth.cls

UNDERSTANDING WEB SERVER CONFIGURATION 7
&

4. PERFORMANCE EVALUATION METHODOLOGY

4.1. Principles

Our performance evaluation study follows several key principles, which we briefly describe
here. While most of these principles are common-sense and not highly original, we think it
is important to state them explicitly, thus codifying them as part of our methodology, and
justifying some of the design choices made in our study.

The key principles are:

e Keep it Short and Simple (KISS). The KISS principle has been around for many
years, and applies in many different contexts, including software design and program
debugging. In simple terms, it means to include everything that is crucial to your purpose,
while excluding everything that is not. We apply this principle by choosing a simple LAN
test environment for our study (the WAN test environment easily merits another paper).
We also use this principle to justify a simple two-client test network, with each client
retrieving fixed-size static content from the Web server.

e Instrumentation Necessary for Knowledge (INK). Adequate instrumentation
is crucial to the characterization of system performance and the identification of
performance anomalies. In our study, we use relatively fine-grain (i.e., five second
intervals) reporting of performance data. Past experience suggests that aggregating
performance data over longer time scales tends to miss short-time-scale performance
anomalies.

e Multiple Observational Viewpoints (MOV). When identifying performance
bottlenecks or anomalies, it is important to have measurements from multiple
perspectives [6]. For example, Barford and Crovella [5] recommend simultaneous
collection of client, server, and network performance data in order to quantify wide-area
Web performance. We apply a similar principle to our study so that we can separate
client-side and server-side effects from network-level effects.

4.2. Overview of methodology

When conducting a performance evaluation study, identifying the bottleneck resource can be
just as important as (or even more important than) arriving at a set of numbers that quantify
the performance of the system. When evaluating a complex distributed system, correctly
identifying the bottleneck resource can be quite challenging. Furthermore, when one bottleneck
is alleviated, a new one appears elsewhere in the system, and the search must begin anew.
When the cost of removing the bottleneck exceeds the benefit of doing so, the exercise ends.

There are numerous problems in identifying bottlenecks. For example, if the system under
study is proprietary, it may be difficult or impossible to distinguish between many potentially
limiting resources. Similarly, if measurement data is not available in a timely fashion, multiple
resources may behave erratically, making it difficult to identify the true bottleneck. If
measurement data is not available for all resources in the system, finding the bottleneck
resource can be difficult.

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2000; 00:1-7
Prepared using speauth.cls

8 M. ARLITT AND C. WILLIAMSON SRE

Table I. Experimental workload factors and levels (default values in bold)

Factor Description Levels Section
File Size Web document transfer size requested | 1 KB, 1 MB 5.1,5.2
Connection Rate (1 KB) TCP connection rate (1 KB transfers) | 500-10,000/second | 5.1
Connection Rate (1 MB) TCP connection rate (1 MB transfers) | 10-200/second 5.2
Persistent Connection (1 KB) | requests/connection (1 KB transfers) 1,2,4,8 5.1.6
Pipelining (1 KB) pipelined requests (1 KB transfers) 1,2,4,8 5.1.6

Table II. Experimental Apache server configuration factors and levels (default values in bold)

Factor Description Levels Section
access log record access log of all client requests disabled, enabled 5.1.2
MaxRequestsPerChild | maximum requests per server process 0, 1,000, 10,000, 100,000 | 5.1.3
MMapFile map file into server memory at startup disabled, enabled 5.1.4
MaxClients maximum simultaneous requests in service | 128, 150, 256, 512, 1024 | 5.1.5
MaxSpareServers maximum idle server processes 10, 128, 256, 512, 1024 5.1.5
MinSpareServers minimum idle server processes 5, 128, 256, 512, 1024 5.1.5
StartServers initial number of server processes 5, 128, 256, 512, 1024 5.1.5

We are fortunate to have timely access to a lot of measurement data in our test environment.
Furthermore, we were able to obtain additional data by modifying the open source code that we
were using. In addition to learning about the performance implications of various configuration
parameters, we utilized the available data to recognize how a system behaves in the presence
of various bottlenecks.

Our approach to understanding the behaviour of the system is as follows. We begin by
examining the system in an idle state (i.e., when the server is not receiving or servicing any
requests). This step provides us with the information needed to filter out activity unrelated to
the Web server testing. We then conduct tests in a controlled manner, purposely keeping the
tests as simple as possible. While this might not exercise the Web server in the most realistic
manner, we believe that our approach is sufficiently realistic to enable us to identify correctly
the causes of various behaviours. As a better understanding of system behaviours is acquired,
the degree of realism in the experiments can be increased. If the initial experimental design is
too complex, it may be difficult to ascertain the true cause of certain behaviours.

4.3. Experimental design

We explore eleven factors in our experiments using a one-factor-at-a-time experimental
design [16]. The factors include four workload factors and seven application configuration
parameters. Table I summarizes the workload factors and levels used in our experiments,
while Table IT lists the Apache server configuration factors and levels. The default values used
for each factor are shown in bold.

The workload factors allow us to exercise the server in a variety of ways. Of particular
importance in our experiments is the duration that TCP connections are held open. Since
the Apache 1.3.28 server uses a process-based model, the number of Apache processes limits
the number of concurrent TCP connections that can be serviced simultaneously. Since our
experiments are conducted in a LAN environment, and all our requests are for static files,

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2000; 00:1-7
Prepared using speauth.cls

UNDERSTANDING WEB SERVER CONFIGURATION 9
&

the duration of each experiment is (typically) related directly to the file size requested. Thus
we focus on tests involving two file sizes: small (1 KB = 1,024 bytes) and large (1 MB =
1,048,576 bytes). The lifetime of the TCP connections used to exchange a single request for
and response of a small file is dominated by the time to perform the TCP handshakes to
establish and terminate a connection. These experiments stress the server’s ability to accept
new requests. We also examine the performance impact of re-using TCP connections, both
with and without pipelining of requests for 1 KB files. The TCP connection lifetime for the
large files is dominated by the time to transfer the files. These tests stress the server’s ability
to send data to the client.

The Apache server configuration factors allow us to influence the Web server’s behaviour in
the following ways. The MMapFile, and logging factors affect the amount of disk traffic that
occurs. The MaxClients, MaxRequestsPerChild, MinSpareServers, MaxSpareServers and
StartServers parameters affect the creation and termination of Apache server processes.

4.4. Validation of test environment

In this section, we provide a basic “sanity check” of our experimental environment and its
instrumentation. We first study the idle test system, and discuss the steps taken to make the
system as “clean” as possible; next, we verify the correct operation of the client workload
generators.

4.4.1. The idle system

When we initially monitored our test system (with a default Apache/Linux configuration)
during an idle period (i.e., no test in progress), we were surprised to find a non-trivial amount
of activity occurring. This activity included packets arriving on the network interfaces, files
being read and written, and several processes consuming varying amounts of CPU time. After
some effort, we were able to identify the causes of all of the extraneous behaviours. We then
“cleaned-up” the system by disabling system processes not required for our testing.

4.4.2. Client workload generation capabilities

The next step in our study was to verify that the clients could generate the targeted range of
connection and request rates. That is, we want to demonstrate that our clients can generate
and sustain a rate of (at least) 10,000 requests per second for a static 1 KB file. We also need
to confirm that the network, server hardware, and monitoring infrastructure can handle (at
least) 10,000 requests per second. For the validation experiments only, we use the Tux Web
server. All remaining experiments use the Apache server.

In the 1 KB validation experiments, the clients start by generating 500 requests per second,
for a sustained two-minute interval. The clients then increment the request rate by 500 requests
per second, and use that target rate for the next two-minute interval (with a slight pause
between rate changes). The clients continue in this fashion up to a peak connection rate of
20,000 per second is reached.

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2000; 00:1-7
Prepared using speauth.cls

10 M. ARLITT AND C. WILLIAMSON

20000

connection rate «
request rate
17500 reply rate

15000

12500

10000

7500

5000

Achieved Rate (number per second)

2500

0
0 2500 5000 7500 10000 12500 15000 17500 20000
Target Rate (number per second)

Figure 2. Connection, request and reply rates for 1 KB workload, Tux server

200 100 1000

‘connection rate .
180 request rate 900
reply rate
160 80 800
140 700
120 Y 600
100 . g 500
80 . 2 400
60 300
40 ’ 20 200
20 100
0 0

o .
0 20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200
Target Rate (number per second) Target Rate (number per second) Target Rate (number per second))

(a) (b) ()

Figure 3. Validation Information for 1 MB workload, Tux server

responses ——
requests -

Achieved Rate (number per second)
CPU Utilization (%)
Network Bandwidth (Mb/s)

Figure 2 shows the results from the 1 KB workload validation tests. In this graph there are
three sets of data plotted. First, the points (black squares) represent the average number of
TCP connections per second initiated by the clients in the two-minute test. Second, the solid
line (which happens to overlay the points throughout most of the graph) shows the average
rate at which HTTP requests are issued to the server. Third, the dotted line (also overlaid on
most of the points in this plot) shows the average number of HTTP responses received per
second from the server in each two-minute test. Graphs of this form are used throughout the
paper to illustrate performance results.

Figure 2 shows that the clients were able to generate and sustain rates of up to 20,000
TCP connections per second, and 17,000 HTTP requests per second. In addition, these results
indicate that the server hardware can issue 1 KB responses at a rate of (at least) 17,000
responses per second. Since we do not anticipate the Apache server outperforming Tux, we do
not attempt to alter the configuration of the Tux server to further improve its performance.
Should Apache achieve lower performance than that of Tux, it indicates a bottleneck related
to the Apache server software, and not to our testing infrastructure.

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2000; 00:1-7
Prepared using speauth.cls

UNDERSTANDING WEB SERVER CONFIGURATION 11
&

We also use the Tux Web server to examine the ability of our test environment to support
the transfer of 1 MB files. Figure 3 shows the results. Figure 3(a) indicates that our clients
are able to establish up to 200 TCP connections per second, and issue up to 200 HTTP
requests per second. However, the server can only send a maximum of 110 1 MB responses
per second. As the request rate increases beyond this point, the response rate continually
decreases. Figure 3(b) shows that the server CPU utilization is 100% for request rates above
110 per second. However, this is not the bottleneck in the system. Figure 3(c) reveals that
the network link between the Web server and the Ethernet switch is saturated, with average
utilization above 900 Mb/s, and peak utilization reaching 1 Gb/s, once the request rate exceeds
110 per second. This is an example of why it is important to monitor multiple components in
order to properly identify the system bottleneck. Although the server CPU utilization reaches
100%, this is a result of the network bottleneck. To identify the true bottleneck, it is important
to determine the order in which events occur; fine-grain instrumentation helps in this case.

These experiments establish confidence in the suitability of our simple experimental
infrastructure. The experiments in the next section use this infrastructure to assess the
performance implications of different Web server configurations.

5. EXPERIMENTAL RESULTS

In this section, we present the results of experiments involving different Web server
configurations. Section 5.1 describes the experiments that used 1 KB transfers. Experiments
conducted with 1 MB transfers are discussed in Section 5.2. Section 5.3 summarizes our results.

5.1. Experiments utilizing 1 KB workloads
This section presents the results of experiments involving 1 KB workloads.
5.1.1. Baseline Apache performance (default configuration)

In this experiment, we study the performance of the Apache Web server using its default
configuration. This experiment has access logging turned off, and memory mapping is not used.
The Apache defaults for StartServers, MinSpareServers, MaxSpareServers, MaxClients,
and MaxRequestsPerChild are used (5, 5, 10, 150 and 0 (unlimited), respectively). Figure 4
shows the performance results from this experiment.

Figure 4(a) provides the performance results for the default Apache server configuration
in our test environment. Two distinct phases of operation can be seen in this graph. On the
lower left hand side, the server is operating normally, and is able to accept and respond to all
client requests. Above the peak achieved rate of 5,700 per second, the achieved request and
response rates begin to deviate from the target rates. This occurs because the server is now in
an overloaded state.

From Figure 4(a) we can tell that the server platform operates correctly throughout the
experiment, as it continues to establish TCP connections up to the maximum rate of 10,000
per second. Furthermore, we established in Section 4.4.2 that our infrastructure is capable

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2000; 00:1-7
Prepared using speauth.cls

12 M. ARLITT AND C. WILLIAMSON

10000 ———

‘connection rate
9000 request rate
reply rate

8000

7000
6000
5000

4000

CPU Utilization (%)

3000

Achieved Rate (number per second)
Number of Apache Processes
8

2000

1000

0 0 0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Target Rate (number per second) Target Rate (number per second)) Target Rate (number per second))

(a) (b) (c)

Figure 4. Performance results for the baseline (default) Apache configuration

of handling more than 10,000 requests and responses per second. Thus, we know that the
bottleneck is related to the Apache server application.

Figure 4(a) indicates that once the server enters the overloaded state, the achieved request
rate is well below the target rate. At first glance, the bottleneck might seem to be that the
clients are not capable of generating the target request rate, and that the server is simply
responding to all of the requests that it receives. However, we know that this is not the case,
as we have already demonstrated the workload generation capabilities of the clients far exceed
this rate. What is actually occurring in the overloaded state is that the server is too busy
to accept all of the incoming requests. As a result, the server actually limits the achieved
request rate, and thus controls the response rate as well. This is another example of why it
is important to evaluate the system from multiple perspectives, to avoid misidentifying the
bottleneck. Although we used a separate experiment to demonstrate that the clients are not
the bottleneck, the same conclusions could be reached by analyzing the httperf and netstat
outputs for this experiment.

Figures 4(b) and (c) provide insights into what is occurring on the server. Figure 4(b) shows
that the CPU utilization (as expected) increases as the issued request rate increases. After
request rates above 5,700 per second, the CPU utilization has reached 100%. Figure 4(c) shows
that until the bottleneck occurs, Apache is able to satisfy most requests quite quickly, and as
a result, only needs to spawn a few new worker processes per test. Once the bottleneck occurs,
Apache quickly tries to generate new processes, in order to accommodate new requests, as the
existing processes are busy servicing outstanding requests. Under this overload condition, the
number of Apache processes quickly increases to the maximum of 150, specified by MaxClients.

5.1.2. Logging client requests

An oft-mentioned approach for improving the performance of a Web server is to disable the
logging of client requests (which we have already done in our previous experiment). However,
logging is important in numerous circumstances. In this section, we quantify the penalty
incurred by enabling the Apache CustomLog.

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2000; 00:1-7
Prepared using speauth.cls

UNDERSTANDING WEB SERVER CONFIGURATION 13
&

g

Nm

o B8 I
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Target Rate (number per second) Target Rate (number per second) Target Rate (number per second)

(a) (b) (c)

Figure 5. Performance Results with Logging

10000

Connecton raie
9000 default (no logging)
logging

8000
7000
6000
5000
4000

1O Transactions/second
CPU Utilization (%)

3000
2000

Achieved Rate (number per second)

1000

Figure 5(a) compares the response rates that were achieved with and without logging of
client requests. With logging enabled, the server supported approximately 5,200 requests per
second. This represents a 10% decrease in performance, compared to the same system with no
logging of client requests.

Figure 5(b) shows the I/O activity on the Web server during the logging experiment.
These results show that enabling logging results in relatively few I/O transactions per second.
However, Figure 5(c) shows that enabling logging results in slightly higher CPU utilization
(compared to Figure 4(b)), resulting in a CPU bottleneck at a lower rate than in the experiment
without logging.

We believe our results in this section are optimistic, for several reasons. First, we are only
recording 74 bytes per request. In operational servers, more data is often recorded (e.g., queries,
cookies, referring URLs, user-agent). Recording more data will likely slow the server further. In
addition, the server in our test environment has a high performance disk; we expect that servers
equipped with slower disks will experience a greater performance penalty for logging client
requests. The safest interpretation of our results is that logging reduces server performance by
at least 10%.

For all remaining experiments, we leave the logging of client requests disabled.

5.1.3. Mazimum requests per child process

On some platforms, memory leaks are known to wreak havoc with the performance of the
Apache Web server. Because of this, the Apache server provides a simple mechanism to mitigate
these problems. This is done through the MaxRequestsPerChild server directive. In most cases
this parameter should not be changed from the default of 0, which allows each process to handle
an unlimited number of requests. Setting this parameter to a different value will cause each
child process to terminate after serving the specified number of requests, freeing up its memory
resources for use by newly created processes.

Figure 6 shows the performance results when each of the 150 child processes is limited to
serving a particular number of requests. The results in Figure 6 show that the performance can

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2000; 00:1-7
Prepared using speauth.cls

14 M. ARLITT AND C. WILLIAMSON

10000
connection rate =
9000 MaxRequestsPerChild=0 ——
MaxRequestsPerChild=100,000 ---------
8000 MaxRequestsPerChild=10,000
MaxRequestsPerChild=1,000

7000
6000
5000
4000
3000
2000

Achieved Rate (number per second)

1000

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Target Rate (number per second)

Figure 6. Effect of number of requests per child on Apache performance

suffer substantially if the limit is too restrictive. The default Apache configuration does not
place a limit on the number of requests that a process can serve. The maximum performance,
as we have already discussed, is 5,700 responses per second. If an overly restrictive limit is used
(e.g., 1,000 requests per child process), the performance of the server can be cut in half (or
worse). The Apache configuration file suggests a value of 10,000, if the operator is concerned
about memory leaks. With this value, the server performance is reduced by approximately
15%.

The drop in performance that occurs when using this mechanism is due to the high cost of
creating a new child process. Under normal conditions, Apache pre-forks a number of child
processes. When a client request arrives at the server, an idle child process is ready to respond
to it. If there are no idle child processes (i.e., the server is busy, or the children have terminated
after serving their quota of requests), a new child process must be created to serve the client’s
request. Process creation is typically much more expensive than serving the request, thus
consuming many extra CPU cycles. In other words, when each child process can only serve a
finite number of requests, the server loses the benefits of pre-forking processes, and resembles
a forking server.

Our results illustrate why the default MaxRequestsPerChild parameter value of 0
(unlimited) should not be changed unless absolutely necessary. Limiting the number of requests
that can be handled by each child process seriously degrades the performance of the server.
For the remainder of our experiments we use the default value of 0 for this parameter.

5.1.4. Memory-mapped files

In this test scenario, the single 1 KB file requested by the clients is mapped into the server’s
address space when the server is started. Figure 7 indicates that this has a rather significant
impact on the performance of the server, as it is now capable of serving 7,300 requests per
second (a 28% improvement in performance) over the default case. Note, however, that even
with this improvement, the Apache server remains the bottleneck in the system. For the
remaining experiments in this section, we leave memory mapping enabled.

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2000; 00:1-7
Prepared using speauth.cls

UNDERSTANDING WEB SERVER CONFIGURATION 15
&

10000

connection rate =
9000 MMapFile
default

8000
7000
6000
5000
4000
3000
2000

Achieved Rate (number per second)

1000

0
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Target Rate (number per second)

Figure 7. Performance results for memory-mapped files

5.1.5. Server processes

In Section 5.1.1, we observed that the maximum request rate supported by our default Apache
configuration was 5,700 requests per second. This rate increased to 7,300 requests per second
with memory-mapped files. In both cases, the maximum number of server processes (150) was
reached. In this experiment, we compare the default configuration to a new configuration that
increases the maximum allowable number of server processes to 1,024. This setting is controlled
via the MaxClients parameter. In other words, in this experiment we compare the effect of
changing MaxClients from 150 to 1,024. In order to set MaxClients to such a large value, it
was necessary to first modify the Apache source code (change HARD_SERVER LIMIT to 1024 in
apache_1.3.28/src/include/httpd.h) and recompile the server.

Figures 8(a) shows that increasing the maximum number of server processes does not
alleviate the bottleneck, as both settings result in the same peak performance. However, using
1,024 server processes results in lower, albeit more predictable performance under overload.
Figures 8(b) and 8(c) provide insights into this behaviour. Figure 8(b) reveals that under
normal operating conditions, the same number of server processes are used by both server
configurations. Once the CPU resources are exhausted, both server configurations attempt
to spawn additional server processes to handle the extra client workload. Once 150 server
processes have been spawned, the default configuration cannot create any additional processes.
Once this occurs, incoming client requests may be dropped. Client requests may also be
dropped in the 1,024 server process configuration, as Apache limits the rate at which new
server processes can be spawned. However, Figure 8(c) indicates that fewer client requests
are being dropped by the 1,024 process configuration (indicated by the number of established
connections being dropped from the server’s listen queue). Once 150 server processes exist
in the default configuration, the server spends no time creating new processes, and less time
accepting new requests, since more client requests are being dropped from the listen queue.
As a result, the default configuration achieves slightly higher performance under overload
conditions. Since the 1,024 process configuration is able to accept and process a larger number

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2000; 00:1-7
Prepared using speauth.cls

16 M. ARLITT AND C. WILLIAMSON

10000 ——— 500 450000

Connectionrate _» - MaxClients=1024 —— MaxClienis=150 ¥ oy
9000 || | MaxClienisz150 —— 450 {1 MaxClients=150 400000 | MaxClients=1024 A A2 v‘\,
8000 - 400 350000 A%
N
7000 350 300000 Rt

6000 300
250000
5000 250
200000

4000 200

150000

3000 150

Number of Apache Processes

100000

2000 100

Achieved Rate (number per second)
Number of Listen Queue Overflows

1000 50 50000

0 0 O
1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

Target Rate (number per second) Target Rate (number per second) Target Rate (number per second)

(a) (b) ()

Figure 8. Effect of number of server processes on Apache performance

o

of requests concurrently, its behaviour under overload is smoother than that of the default
server configuration.

These results indicate that limiting Apache to a smaller number of server processes has some
benefit under overload conditions, at least in a LAN environment with short-lived conditions.
However, having more predictable behaviour under overload may be preferable, especially in
situations where connections are long-lived (e.g., WAN environments [3, 19, 25]).

The Apache Web server dynamically creates more server processes (up to a total of
MaxClients processes) when the currently available processes cannot handle all of the incoming
client requests. When the workload subsides, Apache has a similar mechanism to terminate
some of the idle processes. One suggestion in Apache performance tuning guides is to disable
this mechanism, to avoid the overhead of creating and terminating new processes. To revert
to a static number of server processes, one can simply set the value of StartServers,
MinSpareServers, MaxSpareServers and MaxClients to the desired number of processes.

Figure 9 shows the results of a comparison between the default dynamic mechanism and
several static configurations. For the dynamic mechanism, we used a MaxClients setting of
1,024; for the static configurations, we evaluated values of 128, 256, 512, and 1,024. Figure 9
reveals that all of the tested static configurations obtained lower peak performance than
the dynamic mechanism. This is because during the normal operating range, the dynamic
configuration requires only a small number of processes, as shown in Figure 8(b). The static
configurations all had higher numbers of processes, and thus had higher overhead to administer,
resulting in lower peak performance. One additional observation from Figure 9 is that once
an overload condition occurs, a larger number of server processes results in more predictable
behaviour, as we noted earlier.

As a result of these observations, we believe that it is not a good idea to disable Apache’s
dynamic mechanism for controlling the number of server processes. Although there may be a
static configuration that works well for a particular workload, we expect that the configuration
will vary across different workloads. Thus is it likely simpler and as efficient to use the dynamic
mechanism. We use the default dynamic mechanism for all of our remaining experiments.

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2000; 00:1-7
Prepared using speauth.cls

UNDERSTANDING WEB SERVER CONFIGURATION 17
&

16000

14000

12000

10000

8000

6000

connection rate =
4000 !

dynamic
128 static -~

Achieved Rate (number per second)

256 static
- 512 static
ot) 1024 static ——=---

2000

Target Rate (number per second)

Figure 9. Effect of number of server processes on Apache performance

5.1.6. Persistent Connections and Pipelining

Two enhancements to the HT'TP/1.1 protocol are persistent connections and pipelining [8].
These enhancements can potentially increase the performance of a Web server in several ways.
First, a persistent TCP connection can be use to transfer multiple requests and responses, thus
reducing the number of handshakes required to establish and terminate TCP connections.
Persistent connections can also reduce the amount of TCP state that must be kept at the
server, and improve throughput by increasing the volume of data that is transferred on
each TCP connection. Pipelining can further improve performance. Pipelining allows multiple
HTTP requests to be sent on a TCP connection without waiting for the corresponding HTTP
responses to be received before sending the next request. This enhancement reduces the number
of round trips that occur, which is the cause of the performance improvement.

In this section we explore the performance benefits of persistent connections and pipelining
for the Apache Web server. Both of these features are enabled by default, so we did not have
to alter the configuration of the server.

First, we examine the benefits of persistent connections alone. We consider reusing a TCP
connection for either two, four, or eight requests for a 1 KB file. The results are shown
in Figure 10(a). These results are for an Apache server using memory-mapping, and with
1,024 maximum processes (to smooth the performance under overload conditions). As we have
already seen, the maximum performance of the server when using a separate TCP connection
for each HTTP request is 7,300 responses per second. When each TCP connection transfers two
requests and responses, the performance improves to 9,600 responses per second, an increase
of 32%. The performance increases further as the amount of reuse increases. Using a TCP
connection for four requests and responses increases the performance to 10,400 responses
per second. 11,200 responses per second are supported when each TCP connection transfers
eight requests and responses. Note however that the maximum number of TCP connections
supported decreases as the amount of reuse increases. This occurs because server processes
are assigned to a TCP connection for a longer period of time. As a result more processes are
needed, which increases the overhead.

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2000; 00:1-7
Prepared using speauth.cls

18 M. ARLITT AND C. WILLIAMSON

16000 T T T T T T T T T 16000

8 regs/conn

14000 14000

12000 8 regs/conn 12000 |

4 regs/conn

10000

2 regs/conn 10000 |

Ll S S R e L

8000

-
" Lregiconn B

6000 (defautt

6000 2 regs/conn
_.-" 1 reg/conn
- (default)

4000 4000

Achieved Rate (number per second)
Achieved Rate (number per second)

2000 2000

s o ==
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
Target Rate (number per second) Target Rate (number per second)

(a) (b)

Figure 10. Effect of persistent connections and pipelining on Apache performance

Comparing Figure 10(b) to Figure 10(a) indicates the impact of using pipelining of
requests in addition to persistent connections. As expected, utilizing pipelining increases the
performance of the server. Using pipelining when issuing two requests on a connection results
in a modest 4% improvement over persistent connections alone. Pipelining has more impact
as the number of requests per connection increases. When eight requests for a 1 KB file
are pipelined over each TCP connection, the server achieves a peak response rate of 16,000
per second. This is a 43% increase over using just persistent connections, and an increase of
nearly 220% over non-persistent connections (i.e., when each HTTP request requires a separate
connection). Pipelining provides significant gains over persistent connections alone, due to the
asynchronous submission of requests.

Achieving similar gains in a WAN environment may be more challenging, primarily due
to the larger latencies that will be experienced between the clients and the server. Server
administrators may need to alter the configuration to clean up idle connections more
aggressively when the server is busy. An evaluation of this type is beyond the scope of this
paper. However, what should be obvious from the results presented here is that persistent
connections and pipelining offer significant performance advantages, and thus should not be
disabled.

5.1.7. Other Observations

Some of the factors that we examined during our Web server configuration study did not have
a significant impact on server performance. For example, the atime system parameter, which
controls the updating of a file’s access time information, had little effect in our experiments,
particularly when memory mapping of the file being served is used. Likewise, altering the
length of the Apache server’s listen queue (via ListenBacklog) had little impact, since it is
not able to alleviate the CPU bottleneck. Both of these parameters could have an impact in
other studies, if different workloads, file systems, and network environments are used.

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2000; 00:1-7
Prepared using speauth.cls

UNDERSTANDING WEB SERVER CONFIGURATION 19
&

|

0 0 -
0 20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200
Target Rate (number per second) Target Rate (number per second) Target Rate (number per second)

(a) (b) (c)

Figure 11. Apache performance results for 1 MB transfers

200 — 100 1000
Connection rate _*

180 request rate . 900
reply rate .

160 L 80 800
140

T

700
120 600
100 500

80 400

CPU Utilization (%)
Network Bandwidth (Mb/s)

60 300

Achieved Rate (number per second)

40 20 200

20 100

There are many, many factors that can affect the performance of a Web server, far more
than we could even attempt to analyze. In this paper, we focused our discussion on some of
the more commonly discussed parameters for the Apache Web server.

5.2. Large transfers

In this section, we conduct experiments with 1 MB file transfers. Much lower request rates
were used in these tests, with request rates between 20 and 200 per second.

Unlike the experiments with small transfers, the Apache server has no problem handling
the request rates generated in these tests. We do not examine higher request rates, since these
rates are sufficient for encountering a bottleneck elsewhere in our test environment, namely
the network, as demonstrated in Section 4.4.

Figure 11(a) shows the connection, request and response rates achieved during the 1 MB
tests. This figure reveals that once the network bottleneck occurs, the achieved request rate
drops below the target rate. This occurs because there are not always processes available to
accept the incoming requests, as processes are spending longer trying to respond to already
accepted requests. The achieved response rates are even lower, as the network bottleneck
dramatically slows the transfer rates. In an attempt to imitate actual user behaviour (i.e., user
frustration resulting in aborted connections), we configure httperf to timeout a connection
if a request or response takes too long. When a timeout occurs, the connection is reset. This
further reduces the (successful) response rate.

Figure 11(b) indicates that the client CPU reaches 100% utilization once the network
bottleneck has been encountered. Figure 11(c) shows that, as expected, the network link
between the server and the Ethernet switch is completely utilized at a target response rate of
120 per second. As we discussed in Section 4.4, the CPU utilization reaches 100% after the
network bottleneck occurs. Again, this points out the need for detailed data from multiple
components in order to properly identify the system bottleneck.

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2000; 00:1-7
Prepared using speauth.cls

20 M. ARLITT AND C. WILLIAMSON SRE

Table III. Summary of Results

Factor Impact Section
access log degrades performance slightly 5.1.2
MaxRequestsPerChild | can degrade performance significantly | 5.1.3
MMapFile improves performance 5.14
MaxClients affects overload behaviour 5.1.5
persistent connections | improve performance 5.1.6
pipelining significantly improves performance 5.1.6

5.3. Summary of results

This section presented our experimental results involving several workloads and numerous Web
server configurations. Table III summarizes our results, and lists the sections which examined
each of these factors.

Our recommendations regarding Web server configuration are:

e Logging of client requests incurs a modest penalty. If peak server performance is vital,
then logging should be disabled.

e The creation and termination of server processes should be avoided when the server
is busy. In particular, the MaxRequestsPerChild configuration option should not be
changed from its default value of 0 unless it is absolutely necessary (e.g., to clean up
known memory leaks).

e Memory mapping of files provides a reasonable performance improvement. However,
there are disadvantages to be considered, such as identifying which files to map, and
restarting the server if the files are modified.

e Apache is quite effective at creating extra processes when they are needed, and
terminating them when they are not required. This (default) mechanism should only
be disabled under exceptional circumstances.

e Persistent connections and pipelining offer significant increases in performance. These
default features of the Apache server should not be disabled; rather, efforts should be
focused on optimizing the use of these features.

In addition to these recommendations, our results also offered information on how to identify
different bottlenecks. We discussed several situations where a bottleneck caused unexpected
behaviours to occur elsewhere in the system. In these situations identifying the correct
bottleneck may not be straightforward. This observation stresses the importance of monitoring
many system components in a timely fashion.

6. CONCLUSIONS

In this paper, we evaluated the effects of different system and application configurations on
the performance of a Web server. By monitoring many system components, we revealed how

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2000; 00:1-7
Prepared using speauth.cls

UNDERSTANDING WEB SERVER CONFIGURATION 21
&

different bottlenecks can cause similar behaviours, and that some non-bottleneck resources
behave in unexpected ways, which can make it difficult to identify the true bottleneck resource.

The work discussed in this paper was done as part of the validation process of our study
of Web server benchmarking in an emulated WAN environment. The insights we gained on
identifying bottlenecks helped us to verify various behaviours we observed in the emulated
environment, where we did not have access to as much information. We believe that the
approach used in this paper could help others to identify bottlenecks in other environments.

Our primary focus for future work is on identifying bottlenecks in more complex
environments. For example, as part of our network emulation work, we need to examine more
realistic workloads and to identify bottlenecks in WAN rather than LAN environments. A more
ambitious goal is to (eventually) automate the identification of bottlenecks in benchmarking
experiments.

ACKNOWLEDGMENTS

Financial support for this work was provided by iCORE (Informatics Circle of Research
Excellence) in the province of Alberta, and by the Natural Sciences and Engineering Research
Council (NSERC) of Canada. The authors are grateful to Nayden Markatchev and Rob
Simmonds for their assistance with the test environment. The authors would also like to thank

Tim Brecht, Balachander Krishnamurthy, and the anonymous reviewers for their constructive
feedback.

REFERENCES

1. M. Abbott, “Making Apache Ten Times Faster”.
http://da.teltecnz.co.nz/manual/apache-1.3.12/misc/perf-mja.html

2. “The Apache HTTP Server Project”. http://httpd.apache.org/

3. M. Aron and P. Druschel, “T'CP Implementation Enhancements for Improving Web Server Performance”,
Technical Report TR99-335, Rice University, July 1999.

4. H. Balakrishnan, V. Padmanabhan, S. Seshan, M. Stemm, and R. Katz, “T'CP Behavior of a Busy Internet
Server: Analysis and Improvements”, Proceedings of IEEE INFOCOM, pp. 252-262, San Francisco, CA,
March 1998.

5. P. Barford and M. Crovella, “Measuring Web Performance in the Wide Area”, ACM Performance
FEvaluation Review, Vol. 27, No. 2, pp. 35-46, September 1999.

6. P. Barford and D. Plonka, “Characteristics of Network Traffic Flow Anomalies”, Proceedings of the First
ACM SIGCOMM Internet Measurement Workshop (IMW 2001), San Francisco, CA, pp. 69-73, November
2001.

7. N. Bansal and M. Harchol-Balter, “Analysis of SRPT Scheduling: Investigating Unfairness”, Proceedings
of ACM SIGMETRICS Conference, pp. 279-290, Cambridge, MA, June 2001.

8. R. Fielding, J. Gettys, J. Mogul, H. Frystyk-Nielsen, L. Masinter, P. Leach, and T. Berners-Lee, “Hypertext
Transfer Protocol — HT'TP/1.1”, RFC 2616, HT'TP Working Group, June 1999.

9. D. Gaudet, “Apache Performance Notes”. http://httpd.apache.org/docs/misc/perf-tuning.html

10. S. Godard, systat home page. http://perso.wanadoo.fr/sebastien.godard/

11. “httperf home page”. ftp://ftp.hpl.hp.com/pub/httperf

12. J. Hu, S. Mungee, and D. Schmidt, “Techniques for Developing and Measuring High-Performance Web
Servers over ATM Networks”, Proceedings of IEEE INFOCOM, San Francisco, CA, March/April 1998.

13. Y. Hu, A. Nanda, and Q. Yang, “Measurement, Analysis, and Performance Improvement of the Apache
‘Web Server”, Technical Report No. 1097-0001, University of Rhode Island, 1997.

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2000; 00:1-7
Prepared using speauth.cls

22 M. ARLITT AND C. WILLIAMSON
14. Information Networks Division, Hewlett-Packard Company, “netperf: A Network Performance

15.
16.
17.
18.
19.

20.
21.

22.
23.
24.
25.

26.
. Red Hat, “Tux Web Server Manuals”, www.redhat.com/docs/manuals/tux

Benchmark”, Revision 2.0, http://www.netperf.org/netperf/training/Netperf.html

Information Networks Division, Hewlett-Packard Company, “The Public netperf Home Page”.
http://www.netperf.org/

R. Jain, The Art of Computer Systems Performance Analysis: Techniques for Ezperimental Design,
Measurement, Simulation and Modeling, John Wiley & Sons, Inc., New York, NY, 1991.

D. Mosberger and T. Jin, “httperf: A Tool for Measuring Web Server Performance”, ACM Performance
FEvaluation Review, Vol. 26, No. 3, pp. 31-37, December 1998.

E. Nahum, T. Barzilai, and D. Kandlur, “Performance Issues in WWW Servers”, IEEE/ACM Transactions
on Networking, Vol. 10, No. 1, pp. 2-11, February 2002.

E. Nahum, M. Rosu, S. Seshan, and J. Almeida, “The Effects of Wide-Area Conditions on WWW Server
Performance”, Proceedings of ACM SIGMETRICS Conference, Cambridge, MA, pp. 257-267, June 2001.
Netcraft Web Server Survey Archives. http://news.netcraft.com/archives/web_server_survey.html
M. Nielsen, “How to use a RAMdisk for Linux”,
http://www.linuxfocus.org/English/November1999/article124.html

V. Pai, P. Druschel, W. Zwaenepoel, “Flash: An efficient and portable Web server”, Proceedings of 1999
USENIX Annual Technical Conference, Monterey, CA, pp. 199-212, June 1999.

Red Hat, “Red Hat Linux 8.0: The Official Red Hat Linux Reference Guide”,
http://www.redhat.com/docs/manuals/linux/RHL-8.0-Manual/ref-guide/

A. Rousskov and D. Wessels, “High Performance Benchmarking with Web Polygraph”, Software Practice
and Ezperience, 2003.

C. Williamson, R. Simmonds, and R. Bradford, “A Case Study of Web Server Benchmarking Using Parallel
WAN Emulation”, Proceedings of IFIP Performance 2002, Rome, Italy, September 2002.

Standard Performance Evaluation Corporation, www.spec.org

Copyright © 2000 John Wiley & Sons, Ltd. Softw. Pract. Ezper. 2000; 00:1-7
Prepared using speauth.cls

