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Abstract

Cloud computing has given rise to a variety of distributed
applications that rely on the ability to harness commodity
resources for large scale computations. The inherent per-
formance variability in these applications’ workload cou-
pled with the system’s heterogeneity render ineffective
heuristics-based design decisions such as system con-
figuration, application partitioning and placement, and
job scheduling. Furthermore, the cloud operator’s objec-
tive to maximize utilization conflicts with cloud applica-
tion developers’ goals of minimizing latency, necessitat-
ing systematic approaches to tradeoff these optimization
angles. One important cloud application that highlights
these tradeoffs is MapReduce.

In this paper, we demonstrate a systematic approach
to reasoning about cloud performance tradeoffs using
a tool we developed called Statistical Workload Anal-
ysis and Replay for MapReduce (SWARM). We use
SWARM to generate realistic workloads to examine
latency-utilization tradeoffs in MapReduce. SWARM
enables us to infer that batched and multi-tenant execu-
tion effectively balance the tradeoff between latency and
cluster utilization, a key insight for cloud operators.

1 Introduction

Cloud computing has made it easier for application de-
velopers to harness resources for large-scale distributed
computations. While application developers desire faster
response times, both public and private cloud operators
seek to trade performance for higher resource utilization,
and thus lower operating costs.

MapReduce has emerged as a popular computation
paradigm for processing large quantities of data in both
public and private clouds. Many Internet enterprises, i.e.
private clouds, rely on MapReduce for their core busi-
ness analytics and data mining applications. We use it to
highlight the conflicting goals between cloud operators

and application developers. There is significant benefit to
Cloud operators understanding performance trade-offs in
MapReduce-style computations, so they can customize
design and policy choices to trade per-job latency against
whole workload resource utilization.

The diversity of MapReduce usage scenarios makes it
difficult to develop a single performance benchmark. We
believe a statistics-based systematic approach can assist
cloud operators in understanding complex tradeoffs for
achieving predictable performance.

Design decisions must be informed by multiple fac-
tors including, but not limited to, latency, resource uti-
lization and performance variability. These factors often
conflict with one another. A reasonable tradeoff must sat-
isfy both the application developer’s performance goals
and the operator’s cost constraints.

Our work is motivated by the need for more de-
tailed investigation of the multi-dimensional perfor-
mance tradeoffs in MapReduce and the need for work-
load synthesis and replay tools for facilitating these in-
vestigations. To that end, the contributions presented in
this paper are as follows:

1. Analysis of production MapReduce traces from
two large scale private clouds. We collect production
traces from two Internet services. We analyze the empir-
ical workload characteristics to identify potential sources
of variability that affect performance. We bootstrap our
workload synthesis and replay tool with the trace data
to produce more representative workloads than existing
pseudo-benchmarks such as sort and gridmix.

2. Workload synthesis and replay using statistical
techniques. We present SWARM, a tool for statistics-
based workload synthesis and replay. SWARM distills
the statistical distributions for workload characteristics
of interest from production traces, and samples these em-
pirical distributions to generate a job stream that mimics
workload characteristics. This two-step approach can be
generalized to other applications by merely changing the
traces used for bootstrapping SWARM. Using SWARM,
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Figure 1: SWARM process flow showing workload syn-
thesis (top) and replay (bottom).

we generate synthetic yet representative workloads that
can drive our exploration of performance tradeoffs.

3. Von-Neumann-Morgenstern (VNM) utility func-
tion formulation for evaluating cloud performance
tradeoffs. We use SWARM-generated workloads in a
public cloud environment and VNM utility functions to
investigate performance tradeoffs between latency and
utilization. VNM utility is an established formulation we
borrowed from economic game theory. In particular, the
VNM formulation invites cloud operators to re-examine
their definitions of “good” performance.

4. Insights for cloud operators. Our key insights
are: 1. MapReduce performance variance is large, yet
the statistical distribution of performance is static. 2.
The tradeoff between utilization and latency can be made
using batch execution and multi-tenant workloads oper-
ating modes. 3. Data intensive workloads benefit from
running on smaller nodes with lower I/O performance,
provided that the bottleneck is degrees of parallelism and
not the datapath itself.

Figure 1 summarizes our workload synthesis process.
We consume traces, produce statistical distributions for
workload characteristics, and then produce representa-
tive workload through sampling the statistical distribu-
tions. Then we replay the synthesized workloads on
MapReduce clusters to explore the performance space.

The remainder of this paper is organized as follows.
Section 2 extracts insights from two production MapRe-
duce workloads to bootstrap statistical models used by
SWARM. Section 3 presents details of SWARM’s work-
load synthesis and replay mechanisms and describes the
generated synthetic workload and experimental testbed
we use for our work. In Section 4, we evaluate trade-
offs between latency and utilization using VNM utility
functions. We demonstrate the effectiveness of this for-
mulation for understanding design tradeoffs in the public
cloud. Lastly, we compare related work, in Section 5,
and conclude with insights on our approach for explor-
ing distributed system performance tradeoffs.

2 Lessons from Two Production Traces

We obtained production MapReduce traces from two In-
ternet enterprises. One dataset – from Facebook (FB)
– represents 6 months of activity on a 600 node dedi-
cated Hadoop cluster at Facebook. The second dataset
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Figure 2: Comparison of Facebook and Internet Company
temporal metrics.

– from Internet Company (IC)1 – contains 2 weeks of
activity on a 40 node Hadoop on Demand [8] cluster.
Both datasets depict multi-user environments running the
Hadoop implementation of MapReduce on clusters ded-
icated to MapReduce workloads.

A brief overview of MapReduce is helpful at this
point. At its core, MapReduce has two user-defined
functions. The Map function takes in a key-value pair,
and generates a set of intermediate key-value pairs. The
Reduce function takes all intermediate pairs associated
with a particular key, and emits a final set of key-value
pairs. The runtime system schedules parallel execution,
handles machine failures, shuffles the intermediate data,
and reads input from/writes output to an underlying dis-
tributed file system (DFS). For more implementation de-
tails, we refer the reader to [13].

We can describe a MapReduce job by several dimen-
sions - the inter-job arrival time, the input/shuffle/output
data sizes, the computation performed by the map and
reduce functions, the number of map and reduce tasks,
the running time, data locality, and others. Whereas the
traces we have do not allow a comprehensive character-
ization along all these dimensions, we describe the em-
pirical phenomena along the dimensions that are present.
We focus on statistical constructs to capture workloads
characteristics, which form the basis of workload synthe-
sis and replay in Section 3. Thus, while the traces do not
reflect all use cases of MapReduce, they offer sufficient
snapshot for synthesis and replay.

Inter-job arrival times. Figure 2(a) shows the cu-
mulative distribution function (CDF) of inter-job arrival
times for both our datasets. Most inter-job arrival in-
tervals last tens of seconds. In comparison, the grid-
mix pseudo-benchmark launches jobs in quick succes-
sion with negligible inter-job arrival time, capturing only
one extreme of the statistical distribution. The two sta-
tistical distributions differ both in shape and in average
value. Thus, a single inter-arrival distribution cannot rep-
resent both workloads well.

Running time. Figure 2(b) represents the distribution
of running time of jobs in our datasets. Both distribu-
tions have similar shape, although the distribution for the

1actual name anonymized
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Figure 3: Comparison of data sizes and data ratios for Face-
book and Internet Company jobs.
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Figure 4: Facebook trace analysis - (a) CDF of output/input
data ratio grouped by 40th percentile in input size (b) CDF of
input sizes for several frequent jobs.

IC trace appears to be horizontally shifted to a higher
mean. Running time is an essential performance metric.
However, one can argue that running time is a joint func-
tion of the workload and the workload execution envi-
ronment, influenced by factors such as scheduling, data
placement, etc. If the goal is to capture characteristics
intrinsic only to workload, then any synthesis and replay
mechanisms should not try to reproduce running time.

Data sizes. Figure 3(a) shows the data sizes per job
at various stages of the MapReduce pipeline. The shapes
of the curves do not follow any well known parametric
distributions. Furthermore, data sizes range from KB to
TB for both datasets. The gridmix benchmark only cap-
tures an extreme end of the workload by focusing solely
on GB and TB data sizes. When realistically replaying
workloads, we must capture the entire data size range.

Data ratios. Figure 3(b) shows the distribution of data
ratios for shuffle-input, output-shuffle and output-input
data sizes. Again, for the two traces, the statistical dis-
tributions differ both in shape and in average value. The
graph indicates that many jobs have output-input ratios
far from 1. Data expansion jobs, such as loading files
from file name inputs, will yield output-input ratios far
above 1. Conversely, data aggregation jobs, such as com-
puting data aggregates, will result in output-input ratios
far below 1. These two types of jobs routinely appear in
production environments with big data processing needs.
Thus, workload synthesis should accurately reproduce
the mix of data expansion and aggregation jobs.

Data ratios depend on data sizes. Figures 4(a) and
4(b) respectively show the CDF of output/input data ra-
tio for big and small input jobs, and the input data size
CDF for very frequent jobs in the Facebook trace. These
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Figure 5: Internet Company trace analysis - (a) CDF of map
and reduce task counts per job. (b) CDF of the fraction of ma-
chine and rack local map tasks per job.

distributions are very different from the CDF of all out-
put/input data ratios in Figure 3(b) and the CDF of all
input sizes in Figure 3(a), indicating a three-way depen-
dency between the job, the distribution of its data sizes,
and the distribution of its data ratios. A good workload
generation mechanism should capture this dependency.

Map and reduce tasks counts. Figure 5(a) shows the
distribution of the number of map and reduce tasks per
job. We have this data for only the IC trace. The tasks
per job range across several orders of magnitude. The
distribution shows some bimodal behavior, with the tran-
sition region between 10 tasks and 100 tasks per job.

Data locality. Figure 5(b) shows the distribution of
the fraction of data local map tasks. Again, we have this
data for only the IC trace. Most jobs contain a high frac-
tion of rack local or machine local map tasks. However,
the fraction of strictly machine local tasks has a wider
distribution. The machine local distribution also shows
some bimodal behavior, with the interval from 0.3 to 0.7
being the transition region. Similar to running time, data
locality is arguably a function of workload execution,
rather than an intrinsic property of the workload.

Data skew. The traces do not presently contain infor-
mation about data skew. However, we are confident that
such data exists, and we are working with our industry
partners to obtain this data.

Map and reduce functions computations The traces
do not contain descriptions of the map and reduce func-
tions for each job. Arguably, such information would
enable the reverse engineering of key business processes
and should thus remain proprietary. For in-house trace
analysis, we believe it would be insightful to distill the
common types of map and reduce computations within
a production workload, since this would enable a more
detailed characterization of the workload.

CPU, memory, disk, and network utilization. The
traces do not presently contain information on cluster
resource utilization. Although it would be insightful to
look at this data, we believe that this data is not an inher-
ent property of the workload, since workload execution
characteristics such as placement and network topology
affect these metrics.
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3 SWARM and Experimental Testbed

Production traces inform the synthesis of representative
workloads for multi-dimensional performance compar-
isons. In this section, we describe SWARM - Statistical
Workload Analysis and Replay in MapReduce. We ex-
plain the systematic process SWARM uses to produce
synthetic workload. We also describe the Amazon EC2
public cloud environment we use for experiments.

3.1 Workload Synthesis

SWARM first samples the CDF of inter-job arrival times
and the PDF of job names. Then, for each sampled job
name, it samples the input data size, shuffle-input and
output-shuffle data ratios for that particular job name.
Thus we construct a workload consisting of vectors of
jobs described by [inter-job arrival time, job name, input
size, shuffle-input ratio, and output-shuffle ratio]. We re-
peat sampling until we reach the desired number of jobs
or the desired time interval length for the workload.

To ensure fidelity of our synthetic workload to the
original traces, we must at least mimic inter-job ar-
rival times and the input, shuffle, and output data sizes.
Our sampling also reproduces data ratios and their per-
jobname dependency. We can include other characteris-
tics intrinsic to the workload, such as data skew and the
computational task being done, but currently omit these
characteristics as such information is absent in our traces.

The inability to characterize computational behavior is
unfortunate. For data intensive rather than compute in-
tensive. [11] suggests that the precise map and reduce
computations performed have less impact on perfor-
mance than quantity of data used for data intensive work-
load. SWARM currently targets data intensive work-
loads. However, for in-house experiments, our sampling
framework can extend to capture the distribution of com-
putational tasks.

Faithfully reproducing trace behavior involves a fun-
damental trade-off. If the workload generator exactly
mimics the trace’s characteristics, then the replay likely
reproduces quirks and defects of the system that gener-
ated the trace. In particular, any characteristics open to
design changes should not be included in the generated
workload. Therefore, we exclude map and reduce task
counts, running times, data locality, and resource utiliza-
tion metrics from our generated workload as they are a
function of the workload execution environment.

A final but crucial detail is that we scale input data size
by the ratio between the size of the original trace gener-
ation cluster and the size of the cluster where workload
is replayed, preserving the amount of data per node. The
scaling is necessary because one cannot expect, the pro-
duction input data set to fit on clusters that are orders of

magnitude smaller in the number of nodes. Some large
scale behavior is inevitably lost by scaling down the data.
However, one can argue that faithfully measuring large
scale behavior must use a production cluster with pro-
duction data sets. Thus, scaled down experiments repre-
sent a necessary prerequisite to justify using production
resources for performance evaluation.

3.2 Workload Replay
The primary objective for our framework is to replay re-
alistic workload. To this end, the SWARM workload ex-
ecutor takes our synthetic workload vectors and produces
a sequence of MapReduce jobs with varying characteris-
tics. At a high level, our workload generator consists of
one or more shell scripts that launch jobs with specified
data sizes and data ratios, and sleeps between successive
jobs to account for inter-arrival times. Specifically, our
workload replay tool comprises of three components.

First, SWARM uses RandomWriter to populate input
data, creating multiple fixed size files, one for each re-
duce task of a particular job. We populate the input
data once per workload, accounting for the jobs’ required
maximum input data size. Jobs in a workload select a
random subset of these files as input based on the desired
input data size. We set each file to be 64MB, the same
granularity as the default HDFS block size. We also vali-
dated that there is negligible performance overhead from
concurrent jobs reading from the same HDFS input.

Next, we implement a RatioMapReduce job that repro-
duces input-shuffle and output-shuffle ratios specified in
the workload vector. We use a simple probabilistic iden-
tity filter, constructed by modifying the RandomWriter
example included with the Hadoop source code.

Lastly, we delete each MapReduce job’s output to pre-
vent storage capacity overload. Upon completion of each
job in the workload, run the HDFS remove command as
a background process to remove data generated by that
job. We experimentally ensured that this mechanism im-
poses no performance overhead.

3.3 Generated Workloads
We generated two workloads – the Facebook workload
and a bimodal workload. The Facebook workload, as
the name suggests, comes from sampling the Facebook
traces. The bimodal workload demonstrates the flexibil-
ity of our workload generation tools, allowing us to con-
struct arbitrary workloads with more challenging in data
size, job frequency, and variance between jobs. The bi-
modal workload is composed of two jobs types. Large
jobs comprise 0.5% of all jobs and have 500 MB input
per node. Small jobs comprise the other 99.5% of jobs
in the workload and have 50 MB of input data per node
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producing a higher average data size than the Facebook
workload. Both the large and small jobs have shuffle-
input and output-shuffle ratio of 1.0. The inter-arrival
time is exponentially distributed, with an average of 15
seconds - again more intensive than the Facebook work-
load. We believe that bimodal behavior could potentially
arise in some production environments. Figures 5 and
5 already display some bimodal behavior, albeit in sec-
ondary workload characteristics.

We do not generate synthetic workloads based on IC
traces as they represent a shorter time interval (2 weeks)
and smaller cluster (40 nodes) compared to the Facebook
traces (6 months of data from a 600 node cluster).

3.4 Replay Environment
To evaluate design considerations at scale, we con-
duct experiments in Amazon’s Elastic Cloud Comput-
ing (EC2). EC2 allows users to select from a set of
virtual machine instance types. Most of our experi-
ments are on m1.large instances, with 7.5 GB memory
and 4 EC2 Compute Units, priced at $0.38 per hour
for the Northern California availability zone. We also
performed experiments on m1.small instances to quan-
tify cost-performance tradeoffs. The m1.small instances
have 1.7 GB memory and 1 EC2 Compute Unit, priced
at $0.095 for Northern California. 2

We use the Hadoop implementation of MapReduce
[2], distribution 0.18.2 running on Java version 6.0, up-
date 11. We avoid newer versions to ensure data compa-
rability with previous experiments and results in [12, 15].
We used default configuration parameters for Hadoop.

4 Performance Results and Analysis

We investigate several aspects of MapReduce workload
performance using the Facebook and bimodal workloads
described previously. To quantify performance tradeoffs,
we first run each workload in isolation on EC2 nodes.
Then, we run both workloads simultaneously on shared
EC2 nodes to understand multi-tenant superposition ef-
fects. The key lessons we learned include:

1. The distribution of performance variation is fixed.
Thus, cumulative distribution functions (CDFs) effec-
tively represent performance variation.

2. We can decrease performance variation and in-
crease resource utilization through batched execution,
with a cost in increased per-job latency.

3. We can tradeoff latency and resource utilization us-
ing suitable utility functions for each. The Von Neumann
- Morgenstern utility is a helpful formulation.

2Each Compute Unit is equivalent to the CPU capacity of a 1.0-1.2
GHz 2007 Opteron or Xeon processor.

4. We use the VNM utility formulation to assess
tradeoffs in several other dimensions, including differ-
ent machines types and cluster sizes. Counter-intuitively,
data intensive workloads benefit from running on smaller
nodes with lower I/O performance, provided that the bot-
tleneck is degrees of parallelism and not the datapath it-
self.

5. Multi-tenant execution involves the same
utilization-latency tradeoff as batched execution, with
the VNM utility again finding a good operating point.

Our goal in this section is to discuss in detail the exper-
iments, results, and analysis that led to the above lessons.
Following this discussion, we will summarize the impli-
cations for MapReduce operators in the next section.

4.1 Static Performance Distribution

To quantify MapReduce performance variation at scale,
we run the Facebook and bimodal workloads indepen-
dently on Hadoop clusters of 100 m1.large EC2 in-
stances. We run each workload in batch intervals of 5
minutes, 15 minutes, 1 hour, and 1 day, with two re-
peated runs for each batch setting. The measurements
from these experiments reveal that MapReduce workload
performance varies significantly, but the distribution of
variation remains fixed. Thus we can effectively charac-
terize performance variation using CDFs.

MapReduce workload performance varies signifi-
cantly. Figure 6 shows the per-batch running time for
different batch intervals. For the same batch interval, the
bimodal workload shows higher variance. For our exper-
iments, performance variance is a joint function of the
workload and the batch size.

Performance distribution remains fixed. When we
have a large number of batches, although per-batch per-
formance varies significantly, the performance distribu-
tion remains fixed. Figure 7 shows the CDF of running
times for two different batch sizes for our two workloads.
There is a negligible difference between the two lines
representing two repeated runs in Figure 7. We verified
that the same holds for other batch sizes and workloads.

Capturing performance distribution using CDFs.
The CDF is a good way to capture performance varia-
tion because it has two properties - it remains fixed from
run to run, and it describes the entire performance distri-
bution. There are alternatives to capturing performance
distributions, such as using the 90th, 99th, 99.9th per-
centiles to represent statistical summaries. Two distribu-
tions could have, the same 99th percentile yet completely
different behavior below the 99th percentile. In contrast,
two distributions with the same CDF would be the same
according to any statistical summary. For these reasons,
we believe that CDFs would provide a more detailed and
complete specification of service level objectives com-
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Figure 6: Batch running times between repeated mea-
surements for different batch interval sizes. The two lines
show the two repeated measurements.

0 

0.5 

1 

0  60  120 

CDF 

Running 0me (s) 

Facebook 5 min batch 

0 

0.5 

1 

0  300  600 

CDF 

Running 0me (s) 

Facebook 1 hour batch 

0 

0.5 

1 

0  300  600 

CDF 

Running 0me (s) 

Bimodal 5 min batch 

0 

0.5 

1 

0  1500  3000 

CDF 

Running /me (s) 

Bimodal 1 hour batch 

Figure 7: Batch running time CDFs.

pared to the 90th, 99th, 99.9th percentiles.

4.2 Benefits of Batching

We have already seen in Figure 6 that larger batch inter-
vals correspond with smaller variation. Additional anal-
ysis shows that there is in fact a fundamental causal re-
lationship between the two metrics. Also, larger batch
intervals correspond with higher resource utilization.
These observations lead to our second lesson - for a small
increase in latency, we can decrease performance varia-
tion and increase resource utilization through batching.

Normalized performance CDFs. To compare the
running time CDFs for different batch interval sizes on
the same numerical scale, we must normalize the run-
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ning time by batch interval size. We introduce the term
active fraction to refer to the running time normalized as
follows - the ratio between the running time of a particu-
lar batch and the batch interval represents the fraction of
the batch interval during which MapReduce was actively
doing work. Figure 8 shows the active fraction CDFs
for the two workloads at different batch intervals. Figure
8 offers another perspective on the correlation between
large batch intervals and small variance. The CDFs of
the larger batch intervals are “narrower” in the horizon-
tal direction and thus have smaller variation.

Larger batches result in higher utilization. Per our
definition, active fraction represents the fraction of the
batch interval during which MapReduce was actively do-
ing work. Thus, a lower active fraction represents higher
time efficiency and higher resource utilization. Figure
8 shows that larger batch intervals correspond to lower
active fractions. This relationship is straightforward to
understand. At the beginning of each batch, the cluster
would have high utilization. However, as jobs complete,
any straggling would cause the cluster to be active at a
low utilization. In the limit of infinitely small batches,
i.e., no batching, the active fraction would include any
time that the cluster had a job to run, even if a large
cluster is utilized at a low level to accomplish a small
task. This tradeeoff between utilization/throughput and
latency is well known. One can use our measurement
method to quantify the tradeoff for computing paradigms
other than MapReduce.

Larger batch intervals decrease variance. There is
in fact a strong, causal relationship between batch inter-
val size and variance in per batch running time. This re-
lationship can be explained using the Central Limit The-
orem, which states the following. If we sample many
times from any statistical distribution with finite mean µ
and variance σ2, then as the number of samples n gets
large, the sum of samples converge to a normal (Gaus-
sian) distribution with mean µ and variance σ2/n. In
other words, we decrease the variance in the sum sim-
ply by summing over more things. The connection to
MapReduce workloads is as follows. We can write the
per-batch running time as

RunningT ime = T + ε
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where T represents the total per-batch running time, and
ε is the per-batch inherent variance induced by Hadoop
and the underlying physical infrastructure. As batch in-
terval sizes increase, there are more jobs, translating to
more samples of the distribution of per job running time.
Thus, T converges to a normal distribution with variance
σ2

T /n, where n represent the number of jobs, i.e. the
number of samples. For a realistic workload, the vari-
ance σ2

T is fixed and finite. Thus, when batch interval in-
creases, the increasing n on the denominator causes the
decrease in variance. The same reasoning holds for a de-
crease in the variance for ε.

For brevity, we omit a formal derivation of the above
results involving a lengthy expansion of T as the product
of the number of jobs per batch and the per-job finish-
ing time, followed by an application of the Central Limit
Theorem to each component. The mathematical details
are less important than the implication for MapReduce
operators. Without changing the workload, i.e., σ2

T con-
stant, or changing the underlying system, i.e., σ2

ε con-
stant, we can decrease the per-batch running time vari-
ance simply by increasing the batch size.

Thus, for an increase in latency, MapReduce operators
can obtain more predictable running times by decreasing
the variance in the running time of the entire batch.

4.3 Performance Tradeoffs

The batching benefits above come at a cost of increased
latency. Current methods to consider tradeoffs in mul-
tiple metrics are clumsy and fail to suggest a desir-
able tradeoff point. For example, we would compare
5-minutes batches with active fraction of mean 0.4 and
variance 0.2 and latency of mean 400s and variance 200s
to 15-minutes batches with active fraction of mean 0.2
and variance 0.1 and latency of mean 1000s and variance
100s. This comparison considers two vectors in four di-
mensions, with each performance vector being better in
some dimension and not some others. MapReduce oper-
ators choosing between 5-minutes or 15-minutes batches
would be compelled to use some heuristics to make a de-
cision. Such heuristics become unusable when we con-
sider the full CDF of performance in many dimensions.

Thus, we need a mechanism to jointly consider the ef-
fects of multiple performance dimensions such as latency
and utilization. Further, we must account for any aver-
sion to variance in either dimension. Fortunately, we do
not need to invent such a mechanism. We borrow an es-
tablished formulation from economic game theory - the
Von Neumann-Morgenstern (VNM) utility function.

We use the VNM utility function for its two key prop-
erties: (i) it is additive and tractable, and (ii) it incor-
porates variance aversion in multiple dimensions. This
formulation allows us to find tradeoff points systemati-

cally. Also, as will be evident below, selecting the partic-
ular VNM utility function involves an ad-hoc, heuristical
component. We hope that our formulation and examples
here serve as a catalyst for further discussion regarding
multi-dimensional performance comparisons.

In the following section, we introduce a simplified for-
mulation of VNM utility. We then provide a concrete ex-
ample of how MapReduce operators can use this mecha-
nism to select the right batch interval with a good tradeoff
between latency and resource utilization.

4.3.1 VNM Utility in Brief

We demonstrate the VNM utility function using a sim-
ple example. For a given performance metric, define the
best-case outcome a and worst-case outcome b. The util-
ity at a certain outcome c is equivalent to a lottery that
yields outcome a with probability p and outcome b with
probability 1 − p. In this example, a and b have VNM
utility of 1 and 0 respectively. We next describe the key
properties of a VNM utility function.

The “additive” property: A significant advantage of
VNM utility is its additive property. This property im-
plies that the utility of a collection of probabilistic events
is its expected utility. In other words, if outcome ci oc-
curs with some probability qi, then the utility of the col-
lection of these outcomes is

∑
qiU(ci), where U(c) is

the utility function.
Given the additive property, the utility of a CDF is

straight-forward. We multiply the utility at each point in
the CDF with the probability associated with that point.
We can divide the CDF of performance metric X into
Q regular quantiles with quantile values represented by
Xi, i = 1, 2, ...Q, with Q being arbitrarily large. The
expected utility of the CDF is the expected value of
U(Xi), equal to 1

Q

∑
U(Xi).

Variance aversion: VNM utility automatically incor-
porates variance aversion through the lottery formula-
tion. If a system is neutral with regard to variance, its
VNM utility would be a straight line from (a, 1) to (b, 0).
If a system is variance averse or variance preferential,
its VNM utility would be respectively a concave or con-
vex line, respectively above or below the variance neutral
line. For example, Figure 9 shows three possible VNM
utility functions for latency. Consider the VNM utility
at a latency of 300s. If the system is variance averse, it
would equate 300 for sure with a lottery with expected
latency value much lower than 300s. Thus, the variance
averse line is above the variance neutral line. The identi-
cal analysis would show that the variance preferred line
is below the variance neutral line. The stronger the aver-
sion or preference for variance, the further the VNM util-
ity function would deviate from the variance neutral line.
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Figure 9: Typical utility functions.

Additive utility in many dimensions: We guarantee
additivity across many dimensions if we formulate the
utility in each using the same lottery. For example, we
could formulate the utility of latency and resource uti-
lization both in terms of lotteries in latency, or resource
utilization, or a third metric.

Connection to MapReduce workload management:
On the surface, the choice of VNM utility functions
seems arbitrary, and its relevance to MapReduce work-
load management unclear. However, as the following
section illustrates, the numerical value of the utility mat-
ters less than the rankings in the utility values. Such
rankings allow MapReduce operators to identify good
operating points in a multi-dimension performance trade-
off space. The method is more systematic than ad-hoc
comparisons between performance vectors, and scales to
a large number of dimensions.

4.3.2 Example - finding the right batch interval

Using the VNM approach involves three steps: defining
a family of utility functions, computing expected utilities
to rank tradeoff points, and interpreting the rankings.

Family of utility functions: While a single utility
function may appear arbitrary by itself, a family of utility
functions would allow MapReduce operators to explore
different degrees of variance tolerance and ranges of ac-
ceptable values. We seek to rank expected utilities of the
four batch sizes using a family of utility functions. Con-
sistent ranking across different utility functions would
build confidence that there is one winning tradeoff point.

Specifically, we use the utility functions in Figure 10.
Utility functions for active fraction are labeled U-AF1 to
U-AF4, while utility functions for latency are labeled U-
L1 to U-L4. We consider four pairs of utility functions.
(U-AF1, U-L1) and (U-AF2, U-L2) respectively repre-
sent variance neutral and variance averse systems that de-
mand active fraction below 1.0 and latency below 600s.
(U-AF3, U-L3) and (U-AF4, U-L4) are the counterparts
for less demanding systems requiring active fraction less
than 2.0 and and latency below 3600s.

We eliminate hourly and daily batch sizes as these
batch sizes contribute zero utility per U-L1 to U-L4. The
marginal improvement in active fraction going from 15-
minutes to hourly and daily batches does not compensate
for the latency penalty.
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1 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Figure 10: Utility functions used for performance compar-
isons.

Table 1: Expected utility for different batch sizes. The
AF columns show expected utility of active fraction
CDFs, Lat columns show expected utility of latency
CDFs, and Sum column adds the AF and Lat columns.

Facebook
5min 15 min

Util. functions AF Lat Sum AF Lat Sum
U-AF1, U-L1 0.82 0.40 1.23 0.90 0.00 0.90
U-AF2, U-L2 0.98 0.88 1.85 0.98 0.00 0.98
U-AF3, U-L3 0.91 0.90 1.81 0.94 0.72 1.66
U-AF4, U-L4 0.99 0.99 1.98 0.98 0.96 1.94

Bimodal
5min 15 min

Util. functions AF Lat Sum AF Lat Sum
U-AF1, U-L1 0.64 0.32 0.96 0.62 0.00 0.62
U-AF2, U-L2 0.86 0.76 1.62 0.91 0.00 0.91
U-AF3, U-L3 0.79 0.88 1.67 0.81 0.65 1.46
U-AF4, U-L4 0.95 0.99 1.93 0.97 0.95 1.92

Computing expected utility: We apply the utility
functions in Figure 10 to the active fraction CDFs in Fig-
ure 8 and corresponding latency CDFs. Table 1 shows
expected utility values for various batch interval sizes.

As per data in Figure 8, the utility of active fractions
tend to increase with batch interval size. At large batch
intervals, higher utility of active fraction is tempered by
lower utility from increased latency. All utility functions
suggest that 5 minutes is the preferred batch interval.

The VNM utility formulation also illustrates why
batching is preferred to executing jobs as they arrive. If
we do not batch, then the active fraction is always 1, and
the latency is always 0. For these values, the sum utility
are 1, 1, 1.5, and 1.9 for utility function pairs 1 to 4, re-
gardless of the workload. Compared with Table 1, the 5
minute batch is again preferred for all utility functions.

Utility functions to design decisions: Our compu-
tations show that multiple utility functions rank the 5-
minutes batch ahead of alternate batch sizes. The con-
sistent ranking builds confidence that the ranking is not
sensitive to different degrees of variance tolerance and
ranges of acceptable value. It suggests to MapReduce
operators that batching every 5-minutes is a good oper-
ating mode, provided that the active fraction and latency
capture all performance dimensions of interest. If not, we
can define VNM utility functions for other performance
metrics, and re-rank the additive expected utility.

Several caveats apply when interpreting VNM utility
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values. Our batch size selection process depends more
on the relative utility values than the numerical values
themselves. Thus, the VNM utility is not a definitive
indication of monetary or intangible “value” to MapRe-
duce operators; it merely helps decide between two per-
formance tradeoff points.

Also, had the rankings been inconsistent, the prefer-
ence between the tradeoff points would be sensitive to
the choice of utility functions. In such cases, MapRe-
duce operators can examine alternate design choices that
lead to clearer tradeoffs or consider tradeoffs along addi-
tional performance dimensions.

4.4 Other Tradeoffs using VNM Utility

The previous section introduced the VNM utility formu-
lation and used it to find a batch interval size that bal-
ances latency and resource utilization. We next use the
VNM utility approach to examine two additional design
choices - cluster size and machine type.

These examples serve a dual purpose. First, the mea-
surement and comparison results help inform MapRe-
duce operators about cluster configuration. It turns out
that in both cases, the performance tradeoffs are clear
enough that we can rank design choices even without the
VNM utility formulation. Thus, the second purpose of
these experiments is to verify the correctness of the VNM
utility method when clear interpretations exist.

4.4.1 Cluster size

There are two ways to operate MapReduce on a large
set of machines. We could run an entire workload on
a single, large cluster or partition the workload and ma-
chines to run workload subsets on subsets of machines.
Large clusters may be necessary to accommodate work-
load dataset size. However, data size permitting, smaller
cluster may avoid cluster size scalability bottlenecks.

To investigate the tradeoff between large and small
clusters, we run the Facebook and bimodal workloads
on clusters of 10 m1.large machines on EC2, and com-
pare the performance measurements with our preceding
results on clusters of 100 m1.large machines. Recall that
the SWARM scales the data size according to cluster
size. Thus, the Facebook and bimodal workloads on a
10-node cluster would be computing over one-tenth the
data on a 100-node cluster.

Figure 11 shows the active fraction CDF for the two
workloads. Relative to Figure 8, the CDFs are near iden-
tical. This result empirically supports the belief that
Hadoop easily scales to hundreds of nodes. In other
words, a single large cluster of 100s of machines is
equivalent to many small clusters of 10s of machines.

Figure 11: Active fractions for a cluster of 10 machines.

Table 2: Expected utility for a cluster of 10 machines.
Condensed form of Table 1

Facebook Bimodal
5min 15 min 5min 15 min

Util. functions Sum Sum Sum Sum
U-AF1, U-L1 1.28 0.89 0.90 0.60
U-AF2, U-L2 1.86 0.99 1.60 0.90
U-AF3, U-L3 1.83 1.67 1.64 1.45
U-AF4, U-L4 1.98 1.96 1.92 1.92

Table 2 shows the corresponding VNM analysis, again
limited to the 5-minutes and 15-minutes batches. Com-
pared with Table 2, the values are near identical. Thus,
the comparison under the VNM formulation agrees with
the comparison of active fraction CDFs. In particular,
5-minutes batches is preferred for both cluster sizes.

4.4.2 Machine types

Aside from cluster size, MapReduce operators can
change the machine types in a cluster. In particular, for
EC2, one can easily change a cluster of m1.large ma-
chine instances to a cluster of m1.small instances. For
MapReduce users of EC2, it is important to understand
which instance type is more cost efficient. In general,
MapReduce operators make similar assessments on the
cost-performance tradeoff of different cluster hardware
to inform hardware purchasing choices for cluster up-
grades or construct clusters of heterogenous machines.

To understand cost-performance tradeoffs among ma-
chine types, we run the Facebook and bimodal workloads
on both a cluster of 50 m1.large machines and a clus-
ter of 200 m1.small machines. A m1.large machine rep-
resents four times the CPU capacity of a m1.small ma-
chine, costing 4 times more. For EC2, cost and running
time are proxies for each other. For simplify analysis, we
assume that billing is at a second granularity instead of
hourly granularity. Also, for fair comparison, we do not
rescale the data size between the two clusters.

Figure 12 shows the active fraction CDF for both
workloads across the two instance types. For the Face-
book workload, m1.large cluster shows a narrower and
lower CDF, with the 5-minute batch showing a more
prominent decrease. In this case, the task slots are not
saturated, and we have a fair comparison suggesting that
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Figure 12: Active fractions for a cluster of 10 machines.

Table 3: Expected utility for cluster of 200 m1.small ma-
chines and cluster of 50 m1.large machines.

Facebook
5min 15min

Util. functions m1.small m1.large m1.small m1.large
U-AF1, U-L1 1.07 1.27 0.83 0.91
U-AF2, U-L2 1.75 1.86 0.97 0.98
U-AF3, U-L3 1.73 1.80 1.61 1.68
U-AF4, U-L4 1.95 1.89 1.95 1.96

Bimodal
5min 15min

Util. functions m1.small m1.large m1.small m1.large
U-AF1, U-L1 0.95 0.83 0.63 0.52
U-AF2, U-L2 1.62 1.57 0.94 0.89
U-AF3, U-L3 1.70 1.60 1.47 1.39
U-AF4, U-L4 1.96 1.87 1.93 1.91

the m1.large is more cost efficient.
For the bimodal workload, the reverse is observed. As

m1.large instances are intended to have high I/O per-
formance, this surprising result for the bimodal work-
load alludes to a cluster configuration issue. We con-
structed the bimodal workload to be more data inten-
sive with smaller inter-job arrival times and larger data
size. Even the “small” jobs in the bimodal workload
have larger data sizes than most jobs in the Facebook
workload. Larger jobs imply more map and reduce tasks
under default Hadoop settings. Default Hadoop settings
assign the same number of task slots to each machine, re-
gardless of the machine size. Thus, in a cluster of fewer
large machines, the number of task slots becomes a bot-
tleneck. For the bimodal workload, having more small
machines increases the availability of task slots to exe-
cute more map and reduce tasks in parallel.

This finding is significant. If possible, MapReduce op-
erators should configure larger machines to have more
task slots per machine. However, if MapReduce oper-
ators cannot control configuration, as when using EC2,
they can check if the workload saturates available task
slots. If so, it is cost-effective to move data-intensive
workload to a cluster of many low I/O machines.

The corresponding VNM analysis is in Table 3. Again,
the comparison under the VNM formulation agrees with
the comparison in active fraction CDFs. The ranking is
consistent across all four utility functions.

4.5 Multi-Tenant Workloads

Thus far, our experiments have focused on a single work-
load at a time. The natural next step is to look at multi-
tenant workloads, i.e., concurrently running the Face-
book and bimodal workloads on the same cluster. Multi-
tenant workloads facilitate the statistical multiplexing of
available computing resources. However, we must elim-
inate potential counter-productive interference. In ad-
dition, multi-tenancy highlights an inherent tension be-
tween MapReduce operators, who want high utilization
and MapReduce users, who want low latency. These con-
flicting goals are identical to the latency-utilization trade-
off associated with batch execution, and we believe the
VNM formulation can once again assist.

To understand multi-tenant performance tradeoffs, we
ran the Facebook and bimodal workloads together on
the same Hadoop cluster on EC2. This cluster has 50
m1.large machines, and is identical to the m1.large clus-
ter of the machine instance type experiments. The multi-
tenant performance baseline would be the CDF of the
sum of Facebook and bimodal active fractions. There
are three possible outcomes: (i) if there is interference,
the multi-tenant CDF would be higher than the base-
line CDF, and the variation would be larger, (ii) if there
is statistical multiplexing, the multi-tenant CDF would
be lower than the baseline CDF, and the difference pre-
served across different batch sizes, and (iii) if neither oc-
curs, multi-tenancy is equivalent to a batch with more
jobs so the multi-tenant CDF would be lower but the dif-
ference would significantly decrease at larger batch sizes.

Figure 13 shows the active fraction CDF for the multi-
tenant workload, as well as the baseline CDF of the sum
of Facebook and bimodal active fractions. Clearly, multi-
tenancy leads to lower active fractions. To verify whether
this decrease comes from statistical multiplexing of re-
sources or more jobs in a batch, we compute the ratio be-
tween the multi-tenant CDF and the baseline CDF. For
5-minutes batches, the ratio is roughly 0.65. For 15-
minutes batches, the ratio is marginally higher at 0.70.
Thus, we observe a combination of statistical multiplex-
ing and increased per-batch job count. Repeating the
comparison at hourly and daily batch sizes would quan-
tify the asymptotic ratio between multi-tenant and base-
line running times as batch sizes get arbitrarily large.

We again use the VNM utility functions in Figure 10
to rank the latency-utilization tradeoffs. Table 4 shows
the expected utility for the multi-tenant workload.

Comparing the sum of expected utilities with the
m1.large columns in Table 3, we see that there is no con-
sistent advantage to running workloads in isolations over
running them in a multi-tenant fashion. The implication
is that multi-tenancy consolidates, on a single cluster,
workloads intended for two clusters. The unused cluster
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Figure 13: Active fractions for multi-tenant (mt) workload.
Also showing the baseline CDF of the sum of Facebook and
bimodal active fractions (fb+bm).

Table 4: Expected utility for the multi-tenant workload
at 15-minutes and 5-minutes batches.

5min 15 min
Util. functions AF Lat Sum AF Lat Sum
U-AF1, U-L1 0.58 0.29 0.87 0.57 0.07 0.64
U-AF2, U-L2 0.85 0.74 1.58 1.34 0.33 1.66
U-AF3, U-L3 0.75 0.87 1.62 0.79 0.81 1.60
U-AF4, U-L4 0.93 0.99 1.92 0.97 0.98 1.95

is now available for other uses. Our measurements and
the VNM utility analysis show that multi-tenancy can be
achieved with manageable cost.

There are several additional design considerations
for multi-tenant workload management, including the
choice between priority-based and deadline-driven
schedulers. MapReduce operators can further explore
tradeoffs between consolidating many different work-
loads on a shared cluster and consequent performance
degradation. These design considerations require analy-
sis of multiple performance metrics due to a variety of
workload parameters and heuristic-based approaches for
decision making become intractable. The VNM utility
formulation offers a succint way to jointly consider such
tradeoffs among many dimensions.

5 Related Work

Understanding performance tradeoffs in MapReduce-
style computations requires a systematic approach to iso-
late the sources of performance variation. To this end
SWARM differs from, but in some cases, complements
preceding efforts in four key areas:

MapReduce benchmarks and simulators: The ear-
liest MapReduce performance evaluations use sort and
grep type jobs as microbenchmarks. The gridmix
pseudo-benchmark represents an improvement on sort
[1] by its inclusion of five different jobs, each with dif-
ferent data ratios, that run on data sizes ranging from
500GB to a few TB. While gridmix contains more job
types, it is still does not capture production workload
variability. In contrast, we bootstrap SWARM with
real traces and employ statistical techniques to synthe-
size workloads with representative characteristics along

many workload dimensions.
The Mumak Hadoop simulator seeks to replicate de-

tailed behavior of a Hadoop cluster [3]. Mumak expe-
dites evaluation and debugging of new software mech-
anisms but requires the full data layout information.
As such our techiques for analyzing production traces
and synthesizing representative workloads will facilitate
more realistic evaluations in Mumak with less overhead.

Workload generation and replay tools: Current
workload generation tools suffer two key limitations -
they rely on pre-defined statistical patterns, and/or the
joint generation and replay mechanisms do not scale.

Several application-specific tools only generate work-
loads that conform to a parametric pattern, e.g., SURGE
for URLs [9], SLAMD for LDAP servers [5], Stream-
Gen for data streams [18], and Harpoon for Internet traf-
fic [19]. SWARM, in contrast, samples empirical CDFs
and PDFs of various job-characteristics in production
traces to construct workloads and thus also handles non-
parametric distributions.

Many web service workload generators have trans-
formed into benchmarks [6, 7, 4] but suffer from
two limitations. They (i) use stationary matrices of
transition probabilities for request generation and (ii)
scale poorly due to per-user/request state maintenance
overhead. SWARM separates workload synthesis from
workload replay/execution. Consequently, we can use
resource intensive techniques for generating our job
stream. SWARM also requires less per-job state and thus
seamlessly scales to very high job event rates.

Isolating sources of performance variability: The
database community has studied performance variability
due by workload as well as inherent to the system itself.

Prior work on adaptive query processing modifies
query execution based on the systems’ utilization and
performance characteristics including I/O latencies and
data transfer rates [14]. These techniques have been
adapted for Internet applications by additionally consid-
ering service level objectives and tradeoffs between in-
complete results and query completion time [17].

There is sizeable literature on understanding variance
in the underlying data and consequent performance pre-
dictability of parallel database workload. The petabyte
scale of data magnifies variance and imposes high penal-
ties for inaccurate data cardinality estimates [16].

The experiments in this paper distinguish between
three MapReduce performance variability sources.

Comparing and ranking performance metrics: Di-
rect predecessors to our work, [12] and [10] exam-
ine MapReduce configuration decisions and compression
tradeoffs respectively. [15] uses multi-dimensional in-
put characteristics for accurate performance prediction,
demonstrating the advantage of combining multiple per-
formance dimensions. Using VNM utility functions, we
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build on prior multi-dimensional modeling work, formal-
ize tradeoffs between variability and performance, and
systematically derive a reasonable operating point.

6 Conclusions and Future Work

Our experimental results address several MapReduce op-
erational considerations. First, there is an inherent trade-
off between latency and utilization due to conflicting pri-
orities between cloud operators and application develop-
ers. Next, in the absence of representative workloads,
operators must understand statistical properties of their
workloads to optimize appropriately.

In this paper, we show snapshots of two production
Hadoop workloads. These traces inspired us to develop
the SWARM workload analysis and replay tool. We
used SWARM to generate two synthetic workloads, one
mimicing Facebook traces and the other explicitly to ar-
tificially challenge our design decisions. We replayed
both workloads on EC2 to investigate tradeoffs in batch-
ing, cluster size, machine types, and multi-tenant work-
load management. We introduced the VNM utility for-
mulation to additively capture tradeoffs in multiple per-
formance dimensions.

The SWARM tool demonstrates that even for applica-
tions as challenging as MapReduce, it is possible to syn-
thesize realistic workloads by computing statistical dis-
tribution from production traces, and sampling these dis-
tributions. This method generalizes to arbitrary traces
such that the more workload characteristics the trace
captures, the more realistic the generated workload can
be. More importantly, SWARM can be generalized to
other (non-MapReduce) applications by merely chang-
ing the traces used for bootstrapping. Thus, we believe
the SWARM approach is powerful for many cloud com-
puting applications.

Additionally, our VNM utility formulation allow us to
consider multi-dimensional performance preferences in
general, in addition to the utilization-latency tradeoff at
the center of several design choices. We demonstrate that
a family of utility functions can capture different degrees
of variance aversion, and multiple definitions of “good”
performance. Given the distributed nature of cloud ap-
plications, any design and policy decisions should con-
sider tradeoffs along multiple dimensions. We believe
the VNM utility formulation offers a tractable method to
explore the complex performance space.

Our methodology generalizes to other MapReduce
traces as well as non-MapReduce applications. Thus, the
natural next step is to apply our methodology to contexts
involving non-MapReduce applications. This could be
single application environments such as distributed stor-
age, or multiple application environments such as clus-
ters concurrently running interactive web apps, MapRe-

duce data mining, and development and testing work-
loads.
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