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ABSTRACT
Basic topics from probability and statistics – such as proba-
bility distributions, parameter estimation, confidence inter-
vals and statistical hypothesis testing – are often included in
computing curricula and used as tools for experimental per-
formance evaluation. Unfortunately, data collected through
experiments may not meet the requirements of many sta-
tistical analysis methods, such as independent sampling or
normal distribution. As a result, the analysis methods may
be more tricky to apply and the analysis results may be more
tricky to interpret than one might expect. Here, we look at
some of the issues on methods and experiments that would
be considered basic in performance evaluation education.

1. INTRODUCTION
In experimental performance evaluation, we often need

to draw conclusions from measurements. Because measure-
ments may suffer from artifacts such as noise, observation
overhead or workload fluctuations, it is recommended that
conclusions be derived using statistical methods – indeed,
papers such as [1] demonstrate how careless evaluation dis-
torts research results and call for statistically (more) rigor-
ous experimental evaluation.

In our experience, one problem with this call is in choos-
ing appropriate statistical methods. We may encounter mea-
surements that exhibit long range dependence between sam-
ples, have unknown probability distributions with long tails,
or are not stationary – generally, measurements with prop-
erties that complicate statistical analysis. Even in mundane
situations, it is not easily possible to recommend a partic-
ular statistical method; instead, considerable expertise in
applying statistical methods may be required.

The problem becomes acute when viewed through the op-
tics of a typical bachelor level course in probability and
statistics. Such a course would include basic statistical meth-
ods such as computation of confidence intervals or statistical
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hypothesis testing for some well behaved data sets – some-
thing our measurements are not. Obviously, a naive appli-
cation of basic statistical methods to realistic measurements
may not always provide rigorous conclusions.

In this paper, we want to take a closer look at the problem
by investigating how basic statistical methods behave when
applied to several realistic measurements. We are not after
a comprehensive evaluation (given the variability in mea-
surement scenarios, it is not clear whether a comprehensive
evaluation is even possible), our goal is merely to provide
the reader with some feel for how things can differ between
the idealized settings that the chosen statistical methods
assume and the realistic settings of performance evaluation
experiments.

The paper is quite short. In Section 2, we briefly list
the basic statistical methods we examine. In Section 3, we
present our results. Concluding remarks close the paper in
Section 4.

2. METHODS EXAMINED
Our idea is to examine the working of those statistical

analysis methods that are taught among basic topics from
probability and statistics in software related bachelor level
courses. We focus on the use of confidence intervals for ex-
pressing performance, and the use of statistical hypothesis
testing for comparing performance. In particular, we evalu-
ate:

– computation of confidence intervals for sample mean
with asymptotic normality assumptions,

– use of Welch t-test [13] and Mann-Whitney U-test [8]
for detecting difference in performance.

To justify our choice, we look at which statistical analysis
methods are mentioned in several sources of bachelor pro-
gram information, starting with the ACM/IEEE curricula
recommendations.

The guidelines for undergraduate computer science pro-
grams [5] are perhaps the least specific, suggesting that prob-
ability and statistics do not deserve a full core course: “while
we do note a growing trend in the use of probability and
statistics in computing . . . we still believe it is not necessary
for all CS programs to require a full course in probability
theory for all majors.”

More emphasis on probability and statistics can be found
in the guidelines for software engineering programs [6], which
explicitly support statistics among core topics: “the interac-
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Figure 1: The measurement histograms collected in our experiments. The histogram for the long tail method
from the JDOM benchmark is shown without outliers to preserve scale.

tions of a software artifact with other system elements often
leads to behavior that is non-deterministic and, hence, best
described using statistical models.” The guide also lists an
example course that covers our choice in general terms as
“parameter estimation, statistical intervals, and statistical
inferences.”

The most detailed exposition is in the guidelines for com-
puter engineering programs [7], which list “sampling distri-
butions, estimation and hypothesis tests” among core top-
ics. The guide again lists an example course that covers our
choice as “calculation of mean and variance, central limit
theorem, interval estimates and confidence intervals, testing
hypotheses, t-test.”

Another authoritative source of course information is the
MIT Open Course Ware initiative [9]. Here, the most rel-
evant course from the electrical engineering and computer
science collection is called Statistics and Probabilistic Sys-
tems Analysis and Applied Probability. Again, the syllabus
includes our choice of statistical methods in general terms,
listing “the Law of Large Numbers, the Central Limit The-
orem, estimation and hypothesis testing.”

In the same source, a similar course from the mathemat-
ics collection is called Introduction to Probability. Again,
the syllabus covers basic topics including “the Central Limit
Theorem and frequentist significance tests and confidence
intervals.”

Finally, we can look at material covered in performance
evaluation books. The classic “Art of Computer Systems
Performance Analysis”by Jain [3] introduces basic summary
statistics and confidence intervals; use of confidence intervals
is explicitly preferred to hypothesis testing. Among more
recent performance evaluation books, “Performance Evalu-
ation and Benchmarking” edited by John and Eeckhout [4]
follows similar trend.

3. EXPERIMENTAL EVALUATION
Both the confidence interval computation and the statis-

tical hypothesis testing involve defining a probability of cer-
tain incorrect result – with confidence intervals, the confi-
dence level defines the (complementary) probability of the
interval missing the true value of the unknown metric; with
hypothesis tests, the significance level defines the probability
of the test rejecting a correct hypothesis. In practical exper-
iments, it is important that the probability of such incorrect
results is kept low – but this probability may actually differ
from the chosen confidence or significance level because the

computations are based on assumptions such as independent
sampling, which are difficult to guarantee in reality.

In our evaluation, we contrast the true probability of ob-
taining incorrect results against the chosen confidence or
significance level. We use measurements from three data
sets that represent different practical experiments:

– the maximum throughput metric collected from the
SPECjbb2015 composite benchmark [12], running on
an Intel Xeon E5-2620 V4 machine (8 cores at 2.1 GHz)
with 64 GB RAM with Fedora Linux 25 and OpenJDK
1.8,

– the benchmark iteration times collected from the Scal-
aBench scaladoc large benchmark [11], running on In-
tel Xeon E5-2660 (32 cores at 2.2 GHz) with 48 GB
RAM with Fedora Linux 24 and OpenJDK 1.8,

– the method execution times of two arbitrarily selected
methods collected from unit testing benchmarks devel-
oped for the JDOM library [2], running on Intel Xeon
E5-2660 (32 cores at 2.2 GHz) with 48 GB RAM with
Fedora Linux 20 and OpenJDK 1.7.

Our experiments collect different measurements at differ-
ent speeds. The SPECjbb2015 reports a throughput metric,
one number per one run, which takes about 30 minutes in
our configuration. The ScalaBench experiments report an
execution time metric, one number per one iteration. Af-
ter warm up, we perform 40 iterations in each run, which
takes about 5 minutes in our configuration. The JDOM
benchmarks report an execution time metric, produced con-
tinuously during execution. After warmup, we collect 1000
measurements in each run. For illustration, we show mea-
surement histograms in Figure 1.

To collect sufficiently representative measurements, we
run each benchmark multiple times. Except for the SPEC-
jbb2015 experiments, which report one number per one exe-
cution, our data sets therefore have a large number of mea-
surements coming from a smaller number of runs, and we
have to decide how to apply the statistical computations
to the measurements. Here, we examine three possible ap-
proaches:

– considering all measurements together. With no guide-
lines on how to treat measurements coming from mul-
tiple runs, one simple approach is ignoring the runs
and treating the measurements together. On the plus
side, the approach is simple and uses all data avail-
able. On the minus side, measurements from the same
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Figure 2: How likely a confidence interval contains the true mean. The X axis shows how many runs are
used to compute the confidence interval, the Y axis shows how likely it is that the interval contains the true
mean.

run are more likely to be more statistically dependent
than measurements from different runs, and this can
influence the statistical computations. In the plots, we
label this option “runs merged.”

– considering entire runs rather than individual mea-
surements. Another simple approach is aggregating
all measurements in a run and using the aggregate
statistic, for example sample mean per run, instead
of the individual measurements. On the plus side, the
approach is less likely to suffer from statistical depen-
dency issues. On the minus side, the aggregation ob-
viously loses information. In the plots, we label this
option “run means.”

– considering only one measurement from each run. On
the plus side, the approach is least likely to influence
the statistical computations with runs. On the minus
side, again, the selection loses information, which is a
problem when the run time is long. In the plots, we
label this option “one sample.”

3.1 Confidence Interval Computation
A common method of computing the confidence interval

for sample mean relies on the fact that the probability distri-
bution of sample mean is asymptotically normal. Here, we
use the computation as provided by the stats.t.interval

method of the SciPy package [10], for a more detailed expla-
nation in the performance evaluation context see [1].

To provide a baseline to compare the confidence intervals
against, we use an approach inspired by bootstrap – we col-
lect many more measurements than we use to compute the
confidence intervals, and compute many confidence inter-
vals from random subsets of those measurements. We then
compute the probability that such a confidence interval in-
cludes the sample mean of all measurements, which should
approach the true confidence level achieved.

More formally, for a confidence interval from r runs at
confidence level 1 − α, when measurements are represented
as a set of runs M = {R1, R2, . . . , Rm} and each run is
represented as a set of samples Ri = {si1, si2, . . . , sin}, we
compute as follows:

1. we set M =
∑m

i=1

∑n
j=1 s

i
j/(m ·n) as the sample mean

of all measurements,

2. we draw a random subset Mci ⊂M with replacement
such that |Mci| = r and compute the confidence inter-
val ci from Mci,

3. we repeat step 2 multiple times and keep track of how
many times M ∈ ci,

4. using the count from above, we compute probability
P (M ∈ ci) ; ideally, P (M ∈ ci) ≈ 1− α.

Figure 2(a) illustrates that for the ScalaBench benchmark,
the “runs merged” approach produces confidence intervals
that miss the true mean with very high probability even for
a high number of runs used – ideally, the probability should
correspond to the confidence level used, as is roughly the
case with the “run means” and “one sample” approaches.

Figures 2(b) and 2(c) show the same results for the two
methods from the JDOM benchmark, denoted as long tail
method and bimodal method because of the shape of their
probability distributions. We see that even the “run means”
and “one sample” approaches may lead to confidence inter-
vals that are surprisingly likely to miss the true mean.

We omit the results for the SPECjbb2015 benchmark,
where the confidence interval computation works reasonably
well.

3.2 Statistical Hypothesis Testing
Common statistical hypothesis tests used to detect dif-

ference in performance are Welch’s t-test [13] and Mann-
Whitney U-test [8]. The Welch’s t-test assumes normally
distributed data, however, it is considered robust enough
to be used with other probability distributions; the null
hypothesis postulates that the two compared distributions
have equal means. The Mann-Whitney U-test does not as-
sume any particular probability distribution; the null hy-
pothesis postulates that a sample drawn from one of the
two compared distributions is as likely to exceed a sample
drawn from the other distribution as the other way around.

When the test assumptions are met, both tests should
reject a true null hypothesis, or make a type I error, with
probability equal to the significance level. To examine how
much this holds for real data, we use the tests on many
random subsets of measurements of the same benchmark.
When comparing measurements of the same benchmark, the
null hypothesis should hold by definition, the rejection rate
would therefore ideally approach the significance level.
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Figure 3: Difference detection sensitivity. The X axis shows the size (ratio) of the difference between the
compared data sets, the Y axis shows how likely it is that a statistical test discovers the difference (rejects
the null hypothesis). 5 runs per data set.

More formally, for a hypothesis test from r runs at signif-
icance level α, when measurements are represented as a set
of runs M = {R1, R2, . . . , Rm} and each run is represented
as a set of samples Ri = {si1, si2, . . . , sin}, we compute as
follows:

1. we draw random subsets Ma,Mb ⊂ M with replace-
ment such that |Ma| = |Mb| = r and evaluate the
hypothesis test between Ma and Mb,

2. we repeat step 1 multiple times and keep track of how
many times the hypothesis test rejected the null hy-
pothesis,

3. using the count from above, we compute hypothesis
rejection probability P ; ideally, P ≈ 1− α.

Apart from testing the type I error rate, we also look at
the ability of each test to recognize a true difference between
measurements. To do this, we introduce controlled differ-
ence between the compared distributions by taking random
subsets of measurements of the same benchmark and mul-
tiplying one of the subsets by a constant. Then, we look at
how much the rejection rate exceeds the type I error rate.

More formally, for a hypothesis test from r runs at signif-
icance level α with multiplication constant γ, when measure-
ments are represented as a set of runsM = {R1, R2, . . . , Rm}
and each run is represented as a set of samples {si1, . . . , sin},
we compute as follows:

1. we draw random subsets Ma,Mb ⊂ M with replace-
ment such that |Ma| = |Mb| = r,

2. we set Mc = γ ·Mb where multiplying a set with a
scalar denotes multiplying all members of that set with
the scalar,

3. we evaluate the hypothesis test between Ma and Mc,

4. we repeat steps 1 to 3 multiple times and keep track of
how many times the hypothesis test rejected the null
hypothesis,

5. using the count from above, we compute hypothesis
rejection probability P .

To provide an additional reference, we include results for
simple confidence interval overlap test alongside the Welsh’s
t-test and Mann-Whitney U-test results.

Figure 3(a) illustrates that for well behaved data sets, such
as that of the SPECjbb2015 benchmark, the tests reliably
detect a difference in means as small as 5 % from only 5 runs.

Figure 3(b) demonstrates how some tests fail with more
measurements per run, even when the probability distribu-
tion itself is quite benign. Here, we use a total of 200 mea-
surements from 5 runs to again reliably detect a difference
in means as small as 5 %, but while the “run means” and
“one sample”approaches ignore smaller differences, the“runs
merged”approach reports even data sets where no difference
was introduced as different around 70 % to 80 % of the time.

Finally, Figures 4(a) and 4(b) show that if the probability
distribution of the measurements exhibits a long tail, the
ability of the test to detect differences decreases dramati-
cally. 5 runs, which constitute 5000 measurements, are only
sufficient to reliably detect differences above 25 %, and 30
runs, which constitute 30000 measurements, are needed to
again reliably detect a difference in means as small as 5 %.

Other combinations of benchmarks and run counts exhibit
similar behavior and are omitted for brevity.

4. CONCLUSION
Our goal was to see how easily basic statistical meth-

ods apply to common practical measurements. We picked
three common computations – confidence interval for the
mean, Welch’s t-test and Mann-Whitney U-test – and ap-
plied them to three data sets coming from a long running
benchmark with small result variance (SPECjbb2015), a
short running benchmark with multiple measurements per
run (ScalaBench), and a short running benchmarks with
high result variance (JDOM unit test, long tail method and
bimodal method).

We have designed our experiments so that we can assess
the quality of the computation results – the true confidence
level for the confidence interval computation and the type I
error rate and the change detection sensitivity for the hy-
pothesis tests. The true value of these metrics is not known
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Figure 4: Difference detection sensitivity. The X axis shows the size (ratio) of the difference between the
compared data sets, the Y axis shows how likely it is that a statistical test discovers the difference (rejects
the null hypothesis). JDOM benchmark, long tail method.

in common experiments, instead, an error rate correspond-
ing with the computation parameters (confidence level, sig-
nificance level) is intuitively expected.

We show that even in our rather simple configuration, the
quality of the results very much depends on the properties
of the measurements and details of how the computation is
applied on the data. For the confidence intervals, we illus-
trate how a relatively straightforward application can lead
to confidence intervals that miss the true mean an order of
magnitude more often than the confidence level would sug-
gest. For the hypothesis tests, we outline how certain ap-
proaches to application lead to an impractically high type I
error rate, and how the sensitivity of the test very much
depends on what kind of data the test examines.

The reasons for our results are not difficult to divine –
they are mostly related to breaking some computation as-
sumptions or relying on properties that hold only asymp-
totically. The point we raise is this: given what statisti-
cal analysis methods are taught in software related bach-
elor level courses, it may well be that the (poor) results
we demonstrate are exactly the results our students will en-
counter. And while we may not have enough space to include
more advanced methods, or even may not have methods that
would work more reliably, we should carefully convey the
practical limitations of the methods we do teach.
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