
-- --

To Appear in Proceedings of the
1994 Scalable High Performance Computing Conference, May 1994 (Knoxville, TN).

Dynamic Program Instrumentation for Scalable Performance Tools

Jeffrey K. Hollingsworth Barton P. Miller Jon Cargille
hollings@cs.wisc.edu bart@cs.wisc.edu jon@cs.wisc.edu

Computer Sciences Department
University of Wisconsin-Madison

Abstract
In this paper, we present a new technique called

dynamic instrumentation that provides efficient, scalable,
yet detailed data collection for large-scale parallel appli-
cations. Our approach is unique because it defers insert-
ing any instrumentation until the application is in execu-
tion. We can insert or change instrumentation at any time
during execution by modifying the application’s binary
image. Only the instrumentation required for the
currently selected analysis or visualization is inserted. As
a result, our technique collects several orders of magni-
tude less data than traditional data collection
approaches. We have implemented a prototype of our
dynamic instrumentation on the CM-5, and present results
for several real applications. In addition, we include
recommendations to operating system designers, compiler
writers, and computer architects about the features neces-
sary to permit efficient monitoring of large-scale parallel
systems.

1. Introduction
Efficient data collection is a critical problem for

any system that monitors the performance of a parallel or
distributed application. We have estimated that monitor-
ing programs at a reasonable level of detail on current
RISC processors can easily generate two megabytes per
second per processor of performance data. For a mas-
sively parallel computer (say 1000 nodes), this amount of
data is impractical to collect for all but the shortest pro-
grams. However, to understand the performance of paral-
lel programs, it is necessary to collect data for full-sized
data sets running on large numbers of processors. In this
paper, we present a new approach to performance instru-
mentation that defers instrumenting the program until it is
in execution, permitting dynamic insertion and alteration
of the instrumentation during program execution.

Monitoring the performance of massively parallel
programs requires an instrumentation system that is
detailed, frugal, and scalable. It must collect information
that is detailed enough to permit the programmer to
hhhhhhhhhhhhhhhhhh

This research supported in part by Department of Energy grant
DE-FG02-93-ER25176, Office of Naval Research grant N00014-89-J-
1222, and National Science Foundation grants CCR-9100968 and
CDA-9024618. Hollingsworth is supported in part by an ARPA Gra-
duate Fellowship in High Performance Computing.

understand the bottlenecks in their program. It must be
frugal so that the instrumentation overhead does not
obscure or distort the bottlenecks in the original program.
The instrumentation system must also scale to large, pro-
duction data set sizes and number of processors.

A detailed instrumentation system needs to be able
to collect data about each component of a parallel
machine. To correct bottlenecks, programmers need to
know as precisely as possible how the utilization of these
components is hindering the performance of their pro-
gram.

There are two ways to provide frugal instrumenta-
tion: make data collection efficient, or collect less data.
All tool builders strive to make their data collection more
efficient. To reduce the volume of data collected, tool
builders are forced to select a subset of available data to
collect. Most existing tools require the decisions about
what data to collect be made prior to the program’s exe-
cution. By deferring data collection decisions until the
program is executing, we can customize the instrumenta-
tion to a specific execution.

The goals of being frugal and detailed are often in
opposition. Collecting detailed information requires a lot
of data, but frugality says you can not afford to collect it.
This dichotomy can be seen in the choice of how the data
is collected. Currently two styles of collection are used:
periodic sampling of the state of a program and tracing
(logging) of events during an execution. Sampling optim-
izes data volume over accuracy, and tracing optimizes
accuracy over data volume. We chose a hybrid of sam-
pling and tracing that provides the low data volume of
sampling with the accuracy of tracing. We periodically
sample detailed information stored in event counters and
timers. These intermediate values provide data to make
decisions about how to change the instrumentation.

Scalable instrumentation requires that data collec-
tion remain detailed yet frugal as the number of resources
in the system grows. This means that we should be able
to handle increases in the application code size, length of
program execution, data set size, and number of proces-
sors. Providing scalable instrumentation is important
because the nature of bottlenecks in parallel programs
change as each dimension is increased.

We tried to remove obstacles that could deter pro-
grammers from using our system. We feel that recompil-
ing an application to use a performance tool is an unrea-

-- --

- 2 -

sonable burden. The only step required to use our tool is
to run a standalone pre-processor that appends our instru-
mentation library to the application’s binary. The instru-
mentation is enabled by modifying the application’s
binary image while it is executing. Our technique has no
impact on the application until we insert instrumentation.
Also, once we insert the instrumentation, there is no over-
head to check if it is enabled. At any point during the
application’s execution, the programmer can invoke our
tool and attach it to their already running program and
start to investigate its performance.

While our dynamic approach makes it possible to
collect a wide variety of performance data, it also requires
that runtime decisions be made about what data to collect
and when to collect it. Although it is possible for pro-
grammers to manually control data collection, this is
difficult and tedious. We have built a system called the
Performance Consultant[6] that liberates the programmer
from needing to make these decisions.

The rest of this paper describes an instrumentation
system we have built to meet goals of being detailed, fru-
gal, and scalable. Section 2 describes the design of our
system. Section 3 provides details about its implementa-
tion. Section 4 presents a series of performance bench-
marks for our initial implementation of dynamic instru-
mentation on the CM-5. Sections 5 and 6 describe related
work and conclusions about our approach respectively.

2. Design
Our instrumentation system is designed as an inter-

face to be used by higher level analysis and visualization
tools. We present two abstractions to these tools:
resources and metrics. Resources are the objects about
which we gather performance information. Metrics are
quantitative measures of performance.

Synchronization
Objects

Compute
Object

Other CPUs
Cpu #12

Individual
Message
Types

work.f

matMultcompute transpose

Barriers

Individual Barriers

Code
Object

util.cutil.c

Msg Recv.

Figure 1. Resources showing three class hierarchies.
Each resource instance is associated with a single resource hierarchy. The shape of the resource
indicates when it was defined. Oval objects are statically defined independent of the application.
Triangles are static based on the application, and rectangles are dynamically (runtime) identified.

2.1. Resources and Metrics
The first abstraction provided by our dynamic

instrumentation is resources. Resources are separated
into several different hierarchies, each representing a
class of objects in a parallel application. For example,
there is a resource hierarchy for CPUs, containing each
processor. Figure 1 shows three sample resource hierar-
chies. The left-most hierarchy is for code resources. The
root of the hierarchy is Code Objects. The next level con-
tains the modules (files) that constitute the application
under study. Below each module are the procedures
defined in that module.

Individual resource instances are created both when
an application starts execution, and during its execution.
The static components are at the top of each hierarchy,
and the more dynamic nodes are at the lower levels in
each hierarchy. The lowest levels in each hierarchy,
representing specific resource instances, are added during
the application’s execution when the resource is first
used. For example, the procedure resources are created
when the program to be monitored is specified. However,
information about data files used is discovered dynami-
cally when the files are opened.

The second abstraction is metrics. Metrics are time
varying functions that characterize some aspect of a
parallel program’s performance; examples include CPU
utilization, counts of floating point operations, and
memory usage. They are defined by higher level perfor-
mance tools that use our instrumentation system (e.g., the
Performance Consultant[6]). However, to assist tool
builders, we provide a standard set of metrics as part of
our system. Metrics can be computed for any subset of
the resources in the system. For example, CPU utilization
can be computed for a single procedure executing on one
processor or for the entire application.

-- --

- 3 -

2.2. Data Collection Model
To provide the resource and metric abstractions, we

developed a new dynamic data collection model that com-
bines the advantages of tracing and sampling. Our
approach is to dynamically modify the program to record
precise information about relevant state transitions in
counter and timer data structures. These structures are
then periodically sampled to report performance informa-
tion to the higher layers of our system. We control the
volume of data collected in two ways: first by collecting
only the information needed at a give moment, and
second by controlling the sampling rate.

Our hybrid of dynamic tracing and sampling can
provide more accurate information than can be provided
by pure sampling. For example, if you periodically sam-
ple the program counter to compute the amount of time
spent in a procedure, the accuracy of the result will
depend on the sampling rate. Instead, we insert code to
start and stop timers at the procedure entry and exit to
accurately record time spent in the procedure. In this
case, the sampling rate affects only how frequently we
update our knowledge of the time, not the accuracy of the
time.

We periodically sample our performance metrics
for two reasons. First, we want to isolate performance
bottlenecks to specific phases (time intervals) during a
program’s execution. Second, our higher level analysis
system uses partial data to decide what additional data
should be collected to further isolate a performance
bottleneck. The dynamic instrumentation actually col-
lects and calculates the performance data; sampling is
used only to periodically report the collected data. Vary-
ing the sampling rate affects only our rate of decision
making and granularity of phase boundaries; it does not
affect the accuracy of the underlying performance data.

Collected data is stored in a data structure called a
time histogram[5]. A time histogram is a fixed-size array
whose elements store values of a performance metric for
successive time intervals. Two parameters determine the
granularity of the data stored in time histograms: initial
bucket width (timer interval) and number of buckets.
Both parameters are supplied by higher level consumers
of our performance data. However, if the program runs
longer than the initial bucket width times the number of
buckets, we run out of buckets to store new data. In this
case, we simply double the bucket width and re-bucket
the previous values. In addition, we change the sampling
rate to the new bucket width. This process repeats each
time we fill all the buckets.

2.3. Points, Primitives, and Predicates
Recording performance information about the

application program is accomplished by points, primitives
and predicates. Points are well-defined locations in the

application’s code where instrumentation can be
inserted†. Primitives are simple operations that change
the value of a counter or a timer. Predicates are boolean
expressions that can be associated with primitives that
determine if the associated primitive gets executed. By
inserting predicates and primitives at the correct points in
a program, a wide variety of metrics can be computed.

if (expr) actn

If expr is non-zero then execute actn.

actn

An if statement or a call to a primitive.

operand

A counter, constant, or parameter.

expr

operand operator operand or

operand

operator

+ - / * < > <= >= == != and or.

Figure 2. Description of the Predicate Language.

Our system consists of six primitives: set counter,
add to counter, subtract from counter, set timer, start
timer, and stop timer. Predicates are simple conditional
statements that consist of an expression and an action. If
the value of the expression is non-zero, the associated
action is taken. Expressions can contain numeric and
relational operators. The operands of predicate expres-
sions can be either counters or constants. If the point
where the predicate is inserted is a procedure call or
entry, the parameters to the procedure can be used as
operands in expressions. If the predicate is inserted at a
procedure exit, the procedure’s return value can be used.
Actions are either other predicates or calls to one of the
six primitives. Figure 2 describes the predicate facility.

Examples of how primitives and predicates can be
combined to create metrics is shown in Figure 3. This
example shows two different metrics. The first example
computes the number of times procedure foo is called.
A single primitive to increment a counter by one has been
inserted at the entry point to the procedure foo. The
second example shows a metric to compute the number of
bytes transferred via a message passing procedure. The
second parameter to the add counter primitive is a multi-
plication expression that uses the third and fourth argu-
ments to the message passing function to compute the
number of bytes transferred.

hhhhhhhhhhhhhhh
† Currently the available points are the procedure entry, exit and indivi-
dual call statements. In future versions of our instrumentation, points
will be extended to include basic blocks and individual statements.

-- --

- 4 -

foo()
{
 .
 .
 .
}

SendMsg(dest, ptr,
 cnt, size)
{
 .
 .
 .
}

addCounter(bytes,
 param[3] * param[4])

addCounter(fooCount,1)

Figure 3. Example Showing Two Different Metrics.

Figure 4 shows a slightly more complex example of
dynamic instrumentation. Four instrumentation points are
used to compute the waiting time due to message passing
constrained to a single procedure. The top two primitives
maintain a counter fooFlg, which is non-zero when-
ever the procedure foo is active. The lower two points
are calls to primitives to start and stop the timer
msgTme. However, the timer operations only occur
when the counter fooFlg is non-zero.

foo()
{
 .
 .
 .
}

SendMsg(dest, ptr,
 cnt, size)
{
 .
 .
 .
}

if (fooFlg)
 startTimer(msgTme,ProcTime)

if (fooFlg)
 stopTimer(msgTme)

addCounter(fooFlg, 1)

subCounter(fooFlg, 1)

Figure 4. Sample Constrained Metric.

3. Implementation
In the previous section, we defined two abstrac-

tions: resources and metrics. To actually collect data,
requests to enable metrics for specific resource combina-
tions must be translated into calls to primitives and predi-
cates at the appropriate points in the application
processes. The implementation of our instrumentation
system is divided into two parts. The first part, the Metric
Manager, translates requests for metric and resource com-
binations into primitives and predicates. The second part,
the Instrumentation Manager, modifies code sequences in
the application being monitored.

3.1. Metric Manager
The Metric Manager’s role is two-fold; it translates

requests for metrics into primitives and predicates and
informs higher level consumers about new resources. It
also provides a way to monitor and control the amount of
overhead that the instrumentation will inflict on the
application’s execution. The Metric Manager is designed
to be application and machine independent.

The translation from metrics to primitives is
described by metric definitions . These definitions can be
provided by higher level performance tools, although we
provide a substantial library of them. A metric definition
can be viewed as a template that describes how to com-
pute a metric for different resource combinations. It con-
sists of a series of code fragments that create primitives
and predicates to compute the desired metric.

Our strategy of enabling instrumentation only when
it is needed greatly reduces the amount of data collected,
and therefore the potential perturbation caused by our
instrumentation system. However, instrumentation
requests still have an impact on the program’s perfor-
mance. To help quantify this effect, the Metric Manager
includes a predicted cost model . The predicted cost
model provides information about the expected perturba-
tion of the application for each instrumentation request.
The Metric Manager uses the metric’s definition to com-
pute what instrumentation primitives and predicates need
to be inserted and where. For each instrumentation point,
the overhead of its predicates and primitives is multiplied
by the point’s expected execution frequency to compute
the predicted perturbation. The overhead information for
each predicate and primitive is measured once for each
hardware platform and stored in a system configuration
file. The execution frequency of points comes from a
static model of procedure call frequency. While the cost
model does not perfectly predict the impact of instrumen-
tation on the application, data collected during execution
can be used to dynamically tune the estimates during the
course of program execution[6].

3.2. Instrumentation Manager
The Instrumentation Manager performs two func-

tions: it identifies the potential instrumentation points, and
handles requests for primitives and predicates and inserts
them into the application program. The requests are
translated into small code fragments, called trampolines ,
and inserted into the program. We define two types of
trampolines: base trampolines and mini-trampolines (see
Figure 5). There is one base trampoline per point with
active instrumentation. Base trampolines have slots for
calling mini-trampolines both before and after the relo-
cated instruction. One slot before and one slot after the
instruction are used to call global primitives (ones that are
inserted into all processes in an application). The other

-- --

- 5 -

slots are used to call local primitives (ones that are
specific only to this process). This structure makes it
easier to use hardware broadcast facilities to install global
requests.

Save Registers

SetUp Arg

Restore
Registers

 Base
Trampoline

Mini
Trampoline

Program

Relocated
Instruction(s)

Local

Global

Local
Global

Primitive

startTimer

Function‘A’

Figure 5. Inserting Instrumentation into a Program.

Identifying the points where instrumentation can be
inserted is accomplished by analyzing the instructions in
the application. This is one area where compiler writers
could help make our task easier. It would be helpful if
additional symbol table information were available that
indicated exactly what is code and what is data in a pro-
gram. Many compilers place read-only data into a
program’s text (code) segment. This creates a problems
for post-linker tools (correctness debuggers and perfor-
mance tools). Ball[1] has also noted this problem.

Mini-trampolines contain predicate and primitive
specific code and there is one for each primitive at each
point. A sample instrumentation point with trampolines
installed appears in Figure 5.

Creating a mini-trampoline requires generating
appropriate machine instructions for the primitives and
predicates requested by the Metric Manager. The predi-
cate language is simple, requiring only a handful of
instruction types. The instructions are assembled by the
Instrumentation Manager, and then transferred to the
application process using a variation of the UNIX ptrace
interface (described in the next section). In addition to
code requested by the Metric Manager, code must also be
generated to save and restore any registers that the gen-
erated code (or called primitives) might overwrite. When
we extend the available points to include basic blocks and
individual statements, additional processor state (such as
condition codes) must also be saved and restored. Figure
6 shows two sample mini-trampolines. The first example
(a) shows a simple counter increment that has been gen-
erated as inline code. This is the code that would be gen-
erated for the first primitive in Figure 4. The second
example (b) shows the instrumentation generated for the
predicate and primitive at the entry point to the

SendMsg procedure in Figure 4. The if statement has
been translated into a branch based on the value of the
fooFlg counter. If the counter is non-zero, the stop-
Timer predicate is called from the mini-trampoline.

(a) (b)

restore

save

ba,a baseTramp1+4

add o1,1,o1
load fooFlg, o1

store o1, fooFlg

restore

be +8

ba,a baseTramp3+4

call startTimer

cmp o1, 0

save
load fooFlg, o1

load #msgTme, o0

Figure 6. Two Sample Mini-Trampolines.

To implement our dynamic instrumentation, we
needed several efficient operating system services. These
include a data transport mechanism for moving perfor-
mance data off of the parallel machine with little pertur-
bation of the program under study, and a scalable version
of Unix ptrace. Unfortunately, the operating system of
our target machine included neither of these features, and
we were forced to construct them.

The data transport is responsible for moving perfor-
mance data off the parallel machine to some other loca-
tion where it can be analyzed. However, if performance
data moves through the parallel machine during program
execution, it can compete for resources with the program
under study, and thus perturb it. We take advantage of
the CM-5 synchronous gang scheduling to avoid this
problem. We developed something similar to a signal
handler, that we term a "timeslice handler". This handler
is a piece of user-level code that gets called on each node
at the end of each timeslice, after the normal program
context has been saved by the operating system.

On top of this timeslice handler mechanism, we
built the data transport. Each node buffers performance
data in memory while the application program runs, and
then transfers the data at the end of each timeslice. Since
the program has already been stopped by the operating
system and its execution context has been saved, the pro-
gram execution state is not affected and the timeslice
handlers do not contend with the program for machine
resources.

This technique will cause some dilation of wall-
clock execution time, but the data transport itself has vir-
tually no perturbing effect on the program’s execution†.
On machines without a synchronous scheduling model,
such as the Intel Paragon, we use this model of data tran-
hhhhhhhhhhhhhhhhhh

† The one exception is when the data buffer fills up on the nodes;
then it is necessary to either force the timeslice to end early, or wait for
it to end. Either option has a perturbing effect.

-- --

- 6 -

sport but it is more difficult to factor out the cost.
The Instrumentation Manager may make frequent

changes to the instrumentation during the application’s
execution. To be scalable, the cost of instrumentation
operations must not grow with the number of nodes in the
parallel computer. When we insert instrumentation into
all instances of a procedure on all nodes, the cost should
be the same as inserting instrumentation into a single
node. To achieve this goal, we have developed a parallel
(broadcast based) version of the ptrace function on the
CM-5. Ptrace allows the application address space to be
read and written. We use our broadcast ptrace to insert
global instrumentation into all nodes in unit time.

On machines that do not provide hardware broad-
cast, such at the IBM SP/1, we can construct a software
message spanning tree. The spanning tree technique
achieves logarithmic time, instead of unit time cost. We
are currently experimenting with these software mechan-
isms. Most new machines come with some form of
broadcast facility, including the Intel Paragon (though it is
currently not accessible to application software), Cray
T3D, and Meiko CS-2. We believe that unit time opera-
tions such as these are crucial to dealing with the issue of
scale in tools for large parallel machines.

4. Performance of Implementation
We studied the performance of our dynamic instru-

mentation at two levels. First, we report on the cost of the
individual operations, accounting for cost down to exact
number of instruction cycles. These costs provide insight
into the abilities and limitations of our techniques, and
insights to operating system designers about what facili-
ties to provide. Next, we provide macro benchmarks for a
few examples of the overall cost of using these facilities.
The macro results are based on a few simple workloads
and are meant only to be a general guideline (i.e., your
mileage may vary).

To explain the performance of our instrumentation,
it is necessary to know a bit about the implementation of
the CM-5. The CM-5 is a distributed memory multipro-
cessor containing nodes connected together by a network
that provides both point-to-point and broadcast communi-
cation. The machine is controlled by a front end proces-
sor running a modified version of the SunOS operating
system. Processor nodes consist of SPARC processors
running at 33Mhz, memory, and a network interface chip.
Each node has a virtual 64 bit free running clock.

4.1. Micro Benchmarks
Our micro benchmarks show the cost of the indivi-

dual components of the dynamic instrumentation. We
first report the cost of basic instrumentation, including
cost of executing the trampolines, cost of the primitives
and predicates, and a detailed break down of several of

the primitive operations. Next, we report on the cost of
the instrumentation support functions, including the data
transport and broadcast ptrace. These detailed results
provide insights into the limitations of various instrumen-
tation techniques. It also provides guidance to operating
system designers about what facilities are needed to sup-
port efficient instrumentation.

The first aspect of the performance of our instru-
mentation system we studied was the overhead of the
trampolines that get inserted any time a primitive is
called. Figure 7 shows the cost involved in trampolines.
The time required for a base trampoline is 4 clock
cycles‡. This time provides four no-op slots to call the
mini-trampolines. The second row shows the time
required for the smallest mini-trampoline. Two clock
cycles are required for the SPARC save and restore regis-
ter instructions (for case when no register window
overflow occurs). Another source of delay in the trampo-
lines (8 clock cycles long) is for the branches into and out
of the trampolines. The final component of the trampo-
line overhead is the time required to setup the parameters
to call the predicate. This time ranges from 1 to 5 clock
cycles depending on the type of the parameter.
iii

Clock
Item Cyclesiii

Base Trampoline (slots for branches) 4
Mini Trampoline (save/restore registers) 2
Branches 8
Parameters 1-5iiic
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

Figure 7. Time to execute trampolines.
The other intrinsic cost of our instrumentation is the

time to execute our primitives. Figure 8 shows each of
our six primitives and their execution time in clock
cycles. In addition, the time to execute a simple predicate
that checks if a counter is positive is included. The meas-
ured times ranged from 7 clock cycles for the predicate to
71 clock cycles to stop a process timer. These results
were collected by invoking each primitive 1,000 times in
a tight loop, and recording the elapsed time. For each
call, the counter or timer passed to the primitive was the
same, so the effects of the machine’s memory hierarchy
has been factored out of these results. To get a feel for
the relative cost of these numbers, we compared the cost
of our primitives to simple procedure calls on the
machine. A one-argument procedure call that returned its
argument took 15 clock cycles.

To look for bottlenecks in our timers, we isolated
the time required to execute each part of each timer prim-
itive. Figure 9 shows each of the four timer primitives
and 5 different operations used to implement the timer.
hhhhhhhhhhhhhhhhhh
‡ It’s a 33Mhz clock, so one cycle is about 30 nano-seconds.

-- --

- 7 -

iiiiiiiiiiiiiiiiiiiiiiiiiii
Clock

Primitive Cyclesiiiiiiiiiiiiiiiiiiiiiiiiiii
addCounter 8
subCounter 8
startTimer(wall) 32
stopTimer(wall) 55
startTimer(process) 37
stopTimer(process) 71
if (counter > 0) 7iiiiiiiiiiiiiiiiiiiiiiiiiiicc
c
c
c
c
c
c
c
c
c
c

cc
c
c
c
c
c
c
c
c
c
c

Figure 8. Cost of Primitive Operations.
The first row, "read clock", is the time to get a 64 bit
representation of the time (either wall or process time)
into two 32 bit registers. This involves reading the 32 bit
free running Network Interface clock (7 clock cycles)
plus reading the high order 32 bits from memory. Since
the low-order word could overflow while we read the
high-order word, we need to check for this condition and
re-read the clock if it overflowed. As a result, it took 20
clock cycles to read the wall clock, and 25 clock cycles to
read process time (Process time requires an additional
load and subtraction to factor out time when the process
was not running.) The semantics of our timers permit
multiple call to startTimer to be made and a match-
ing number of stopTimer calls are required to stop the
timer. The time to provide this abstraction appears in the
row "maintain counter". The third component of our
timer primitives is "store value" which is the time to
record either when the timer started or the elapsed time
when it stopped. In addition, stopping a timer involves
two extra steps. First, we need to compute the elapsed
time since the timer was started (shown in the "compute
elapsed" row). Second, since timers can be read by an
asynchronous sampling function, we need to ensure that
the value of the timer is consistent even when we are
stopping it. Permitting sampling at any time is accom-
plished by storing a snapshot of the timer in an extra field
while the other fields are being updated. The overhead
introduced to maintain this field is shown in the row
labeled "consistency check".

iii
Time (clock cycles)
Wall Process

Operation start stop start stopiii
read clock 20 20 25 25
maintain counter 8 10 8 11
store value 4 4 4 4
compute elapsed 10 10
consistency check 11 21iiic
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c
c

Figure 9. Primitive times by component.

Our breakdown of the cost of timer operations
shows that the largest time component in any primitive

(and the majority of time in two cases) is spent reading
the clock. This time could be substantially reduced if pro-
cessors provided a clock that was readable by user level
code at register access speed. Few RISC processors, with
the exception of the DEC Alpha[12], provide such a
clock. We feel this type of clock is a critical architectural
feature to permit building efficient performance tools.

The numbers presented above reflect the time to
execute our primitives after we made a slight modification
to the CM-5 operating system. Originally, the operating
system required a system call to read the clock, and the
overhead of this system call dominated the cost of our
timer primitives. Figure 10 shows the time to execute our
four timer primitives both with and without the mapped
clock. Using this system call slowed down our timer
primitives by a factor ranging from 2 to 9. We overcame
this bottleneck by adding a new system call to the operat-
ing system that maps the kernel’s clock data structure into
user address space so that we could read the clock at
memory speed. Another option to implement our timers
would be to use the timer library routines supplied by
Thinking Machines. The results of using their timer calls
also appears in Figure 10. Our timers are a factor of 6 to
12 times faster than the vendor-supplied ones. However,
the Thinking Machine timers provide both a process and a
wall timer in one. While this may be useful for some
applications, for dynamic instrumentation we only need
one timer type at a time. We feel it is vitally important
when building performance tools that accessing clocks be
as fast as possible. Requiring a kernel call to read a clock
is unacceptably slow.

iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii
Default Dyninst

Primitive TMC OS mapped
Timers trap clockiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii

start(Wall) 410 109 32
stop(Wall) 410 133 55
start(Process) 410 320 37
stop(Process) 410 358 71iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiic
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c
c

Figure 10. Timer overheads on a TMC CM-5.
The overhead of trampolines is one place where we

could improve our implementation. For example, if we
generated the base and mini-trampolines as a straight line
code sequence we could reduce the overhead by 7 clock
cycles (4 for the no-op slots, and 3 for not having to
branch to the mini-trampoline). This would require addi-
tional complexity in the instrumentation manager (espe-
cially when one primitive is removed from a point with
several primitives). However, 7 clock cycles is a
significant fraction of the time for many of our primitives.

We also measured the performance of several com-
ponents of our scalable ptrace implementation to deter-
mine the performance of each piece. Figure 11 outlines

-- --

- 8 -

the structure of the communication paths in our imple-
mentation. First, ptrace requests are sent from the Instru-
mentation Controller over a pipe to the Timeslice Handler
running on the front end processor. These requests are
then broadcast over the CM-5 network to the nodes where
they are processed. Ptrace requests are aggregated into
batches by the Instrumentation Controller, and sent as a
group to amortize the per-operation cost of the pipe.

For each of the two communication paths shown in
Figure 11 we divided the overhead into three component
costs. First, there is a fixed startup latency associated
with sending any request. This round-trip-time is
represented in the first row of Figure 12. Second, there is
a cost associated with interpreting and executing each
request; this is shown in the second row. Last, there is a
cost for each byte transferred, shown in the third row.

Instrumentation
Controller

CP−side
Handler

Unix Pipe

Nodes

CM−5
Network

Figure 11. Communication Paths for Scalable Ptrace.

ii
Time (in micro-seconds)

Cost Controller Handler
Component to Handler to Nodesii

Startup Cost 3027.0 35.9
Per-operation Cost 8.3 14.9
Per-byte Cost 0.3 1.8iic
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

c
c
c
c
c
c
c
c

Figure 12. Component Costs of Broadcast Ptrace.
The results show several bottlenecks in our current

ptrace implementation. There is a high cost, 3 mil-
liseconds, associated with each batch transferred due to
UNIX context-switching. The impact of this bottleneck
can be mitigated by using large batch sizes to amortize
the startup cost across many operations. Although the
CM-5 network provides better bandwidth than a Unix
pipe, the per-byte cost in the handler to node case is
higher than for the pipe. This is because each byte sent to
a node is received into a temporary buffer, and then
copied into the desired memory location. This extra
copying reduces the effective bandwidth of the broadcast
network.

We also measured the performance of our data
transport layer, which moves performance data from the
nodes to the front end processor. The data path for the
transport is the reverse of that shown in Figure 11. Our

data transport layer, implemented using timeslice
handlers, achieves throughput of approximately 2 MB/sec
from the nodes to the front end. The throughput is
bounded by hardware architecture; although the network
is capable of greater bandwidth (40 MB/s theoretical phy-
sical limit), the front-end processor can only receive from
the network when the appropriate process is scheduled by
the SunOS kernel. Although 2MB/sec can arrive on the
front-end, we are limited to about 1.5 MB/sec because we
pass data through a Unix pipe.

The front end processor or the transport mechanism
can become a bottleneck if too much data needs to pass
through them. To reduce the amount of data sent through
the transport mechanism, we use the hardware combining
facilities of the CM-5 to aggregate metrics that have com-
ponents on each node. This approach ensures that the data
required for aggregate metrics remains constant regard-
less of the machine size.

4.2. Macro Benchmarks
The micro benchmarks were designed to study the

performance of the primitive operations in our instrumen-
tation system. To get a feel for the larger picture, we also
studied the performance of our instrumentation system for
entire applications. The goal of these benchmarks was to
study the aggregate impact of our instrumentation system
for several real applications. We conducted two type of
benchmarks. First, we evaluated how our system per-
formed with a tool that makes multiple requests to change
instrumentation. Second, we compared the overhead of
dynamic instrumentation to existing tools.

For the dynamic tests, we ran two parallel applica-
tions on the CM-5. The first application does a domain-
decomposition method for optimizing large-scale linear
models. The second program is a database simulator that
implements a parallel Grace Hash join algorithm in a
simulated shared-nothing environment[11]. Both pro-
grams are written in C. We compared the execution time
of an un-instrumented application to the execution time of
an instrumented application. We measured the overall
cost of our instrumentation and the overhead of various
components of the instrumentation. For this study, we
used the Performance Consultant[6], a system that takes
full advantage of dynamic instrumentation, to drive our
instrumentation.

The results for these tests are shown in Figure 13.
The second column, Original Execution Time, shows the
time to run the application without any instrumentation.
One program ran for about an hour, and the other one for
a couple of minutes. The third column, Execution Time
w/Instrumentation, shows the total execution time with
dynamic instrumentation. To understand where this time
is spent, we have divided the overhead for instrumenta-
tion into three categories: Null Handler time, Actual

-- --

- 9 -

Handler time, and Direct Perturbation. The first two types
of overhead represent the time spent in the end-of-
timeslice handlers. Null Handler time is the cost of run-
ning the end-of-timeslice code without any instrumenta-
tion enabled. The Actual Handler time is the time to pro-
cess ptrace requests and collect data from the nodes. The
differences between the two applications for Actual
Handler time is due to the larger volume of performance
data transferred for the database application. Since the
CM-5 uses synchronous gang scheduling, overhead time
in the handlers does not directly perturb the performance
of the program. Instead, it dilates execution similar to the
way that other time-shared jobs impact an application’s
execution. The third type of overhead represents the
direct perturbation of the application due to the instru-
mentation inserted. It is a modest amount (6 & 8%) for
these two applications, since the Performance Consultant
requests only the instrumentation it requires.

For the second set of tests, we selected several
sequential applications and compared the overhead of our
system to two UNIX profilers: prof, and gprof. This
made it possible to benchmark our instrumentation cost
compared to existing techniques. Using the dynamic
instrumentation, we enabled the CPU time metric for each
procedure in the program. While this does not take
advantage of dynamic instrumentation’s ability to adapt
data collection, it still provides the benefits of an attach-
able performance tool and does not require the application
to be recompiled. In addition, since dynamic instrumen-
tation collects intermediate values, it is possible to study
the time varying performance of an application which is
not possible with traditional prof. We then compiled and
ran each program with prof and gprof profiling enabled.

The results of running dynamic instrumentation,
prof, and gprof on the two sequential applications is sum-

iii
Components of Overhead

Original Execution Time Null Actual DirectApplication
Execution Time w/Instrumentation Handlers Handlers Perturbationiii

Decomp 59:22 1:05:29 (10%) 01:26 (2%) 00:06 (< 1%) 04:34 (8%)
Hash-join 01:22 0:02:09 (57%) 00:10 (12%) 00:32 (39%) 00:05 (6%)iiicc
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

cc
c
c
c
c
c

Figure 13. Cost of ptrace operations.
This table shows the overhead of using dynamic instrumentation with the Performance Consultant
for two applications running on the CM-5. All times in minutes:seconds.

iii
Overhead (minutes:seconds)

Application Original
Dynamic Inst. Prof Gprofiii

MultiComm 01:12 00:02 (4%) 00:29 (40%) 00:56 (79%)
Tycho 01:57 01:22 (70%) 00:16 (14%) 00:32 (44%)iiicc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

cc
c
c
c
c

Figure 14. Overhead of different Sequential CPU Profilers.

marized in Figure 14. The first application is MultiComm
which is a math programming application that solves a
multi-commodity network flow problem with mutual
capacity constraints. It is written in a mixture of C and
Fortran. For this application, dynamic instrumentation
has only 4% overhead, but prof and gprof have overheads
of 40% and 79% respectively. This is because prof and
gprof instrument the internals of the C library, and this
application makes heavy use of integer divide which is a
library function on most SPARC machines.

The second application is tycho, a cache simulator.
It is written in C and spends most of its time repeatedly
calling 9 small procedures. For this application, dynamic
instrumentation has a very high overhead of 70% com-
pared to prof and gprof which have overheads of 14% and
44%. Dynamic Instrumentation has a higher per-
procedure overhead because it needs to invoke a mini-
trampoline and start and stop a timer for each procedure
called. In contrast, prof only increments a counter (using
periodic sampling to approximate CPU time per pro-
cedure) and gprof needs to identify the caller/callee rela-
tionship at each procedure.

The sequential macro benchmarks indicate that
dynamic instrumentation has a higher per-operation over-
head than traditional UNIX profiling. This is not surpris-
ing since dynamic instrumentation uses direct timing
instead of sampling. However, the overhead seen for all
three techniques when the procedure call frequency is
high indicates that blindly instrumenting procedures is not
necessarily the right granularity for data collection. The
flexibility afforded by dynamic instrumentation to instru-
ment at different levels than just procedures (e.g. modules
and loops) makes it possible to collect data at an appropri-
ate granularity for each application.

-- --

- 10 -

5. Related Work
Several systems have been built that defer instru-

mentation until after compilation. Both QPT[1] and
Mtool[4] use binary re-writing to insert instrumentation
into an object file after it has been compiled and assem-
bled. These systems require data collection decisions to
be made prior to program execution. One system that
defers instrumentation until the program has started to
execute is the TAM facility[10] provided by Intel for the
Paragon. TAM uses a static set of performance instru-
mentation profiles (i.e. prof style sampling, or full event
tracing) to insert instrumentation into a program after it
has been loaded into memory but prior to execution.
Their method of inserting instrumentation is similar to
ours, but their data collection is not as dynamic.

The other major area of related work are techniques
for modifying a program once it has started execution. A
number of correctness debuggers have been built that
modify an executing program for assertion checking and
conditional breakpoints. Jeff Brown[2] developed a
debugger for Cray Computers that provided this feature.
Kessler at Xerox Parc[7] built a system that used dynamic
modification of a program to insert breakpoints. Work
has also been done by Wahbe, et. all on fast data break-
points[13]. They employ sophisticated program analysis
techniques to minimize the overhead of instrumentation
for data breakpoints. Massalin and Pu[8] have a novel
application of code patchup in their Synthesis operating
system. They modify a program to automatically
schedule another thread when it is about to block.

6. Conclusion
We have described the design and implementation

of a new data collection strategy that meets ours goals of
being detailed, frugal, and scalable. Our current imple-
mentation runs on a Thinking Machine CM-5 using expli-
cit message passing programs written in C, C++, or For-
tran. The cost of the primitive operations is only a few
instruction times, and overall application perturbation was
under 10% for several real applications tested. Our sys-
tem also provides a simple interface, metrics and
resources, that makes it easy to use our instrumentation
system with higher level performance tools.

In addition, we have provided several specific
recommendations to compiler writers, operating systems
designers, and machine architects about the features
necessary to monitor large parallel systems. Compilers
need to provide additional symbol table information for
post-linker tools to be able to correctly relate machine
activity back to the source program. Operating systems
need to provide scalable versions of services like ptrace,
and make clock access as cheap or cheaper than memory
accesses. Architects should provide high resolution
clocks that are easy to access by user-level programs.

This work is part of an ongoing project, called
Paradyn, to design and build a complete performance
measurement environment for large-scale parallel
machines. In the future, we plan to conduct a detailed
case study of both the Performance Consultant[6],
dynamic instrumentation, and their interactions using
several real applications. We are also in the process of
studying and refining our predicated cost model. Work is
underway to provide dynamic instrumentation on the Intel
Paragon and clusters of workstations (using PVM[3]).

7. Acknowledgements
We thank Adam Greenberg of TMC for helping to

benchmark the CMOS timers, and Babak Falsafi for pro-
viding the memory mapped timers for the CM-5. We also
thank the authors of the applications used in our study:
Mark Hill and Madhusudhan Talluri (Tycho), Spyros
Kontogiorgis (Decomp), Tia Newhall (Hash-join), and
Gary Schultz (MultiComm).

References
1. T. Ball and J. R. Larus, Optimally Profiling and Tracing Programs,

in 19th ACM Symposium on Principles of Programming
Languages, (Albuquerque, NM, January 19-22, 1992), 1992, 59-70.

2. J. S. Brown, The Application of Code Instrumenation Technology
in the Los Alamos Debugger, Los Alamos National Laboratory,
October 1992.

3. J. Dongarra, G. A. Geist, R. Manchek and V. S. Sunderam,
"Integrated PVM framework supports heterogeneous network
computing.", Computers in Physics 7, 2 (March-April 1993), pp.
166-74.

4. A. J. Goldberg and J. L. Hennessy, "Performance Debugging
Shared Memory Multiprocessor Programs with MTOOL",
Supercomputing’91, Albuquerque, NM, Nov. 1991, pp. 481-490.

5. J. K. Hollingsworth, R. B. Irvin and B. P. Miller, "The Integration
of Application and System Based Metrics in A Parallel Program
Performance Tool", 1991 ACM SIGPLAN Symposium on Principals
and Practice of Parallel Programming, April 1991, pp. 189-200.

6. J. K. Hollingsworth and B. P. Miller, "Dynamic Control of
Performance Monitoring on Large Scale Parallel Systems", 7th
ACM International Conf. on Supercomputing, Tokyo, July 1993,
pp. 185-194.

7. P. B. Kessler, "Fast Breakpoints: Design and Implementation",
ACM SIGPLAN’90 Conf. on Programming Language Design and
Implementation, White Plains, NY, June 20-22, 1990, pp. 78-84.

8. H. Massalin and C. Pu, "Threads and Input/Output in the Synthesis
Kernel", ACM Symp. on Operating Systems Principles, Litchfield
Park, AZ, Dec 3-6 1989, pp. 191-201.

9. J. K. Osterhout, USENIX Winter Conf., Jan. 1990, pp. 133-146.
10. B. Ries, R. Anderson, W. Auld, D. Breazeal, K. Callaghan, E.

Richards and W. Smith, "The Paragon Performance Monitoring
Environment", Supercomputing’93, Portland, OR, Nov 15-19,
1993, pp. 850-859.

11. D. A. Schneider and D. J. DeWitt, A Performance Evaluation of
Four Parallel Join Algorithms in a Shared-Nothing Multiprocessor
Environment, Tech. Report 836, Dept. of Comp. Sci., University of
Wisconsin, April 1989.

12. R. L. Sites, ed., Alpha Architecture Reference Manual, Digital
Press, 1992.

13. R. Wahbe, L. Lucco and S. L. Graham, "Practical data breakpoints:
design and implementation", ACM SIGPLAN’93 Conf. on
Programming Language Design and Implementation, Albuquerque,
NM, June 23-25, 1993, pp. 1-12.

