
Does Systems Research Measure Up?

Christopher Small, Narendra Ghosh, Hany Saleeb, Margo Seltzer, Keith Smith
Harvard University

{chris,nkghosh,saleeb,margo,keith}@eecs.harvard.edu

We surveyed more than two hundred systems research
papers published in the last six years, and found that, in
experiment after experiment, systems researchers
measure the same things, but in the majority of cases the
reported results are not reproducible, comparable, or
statistically rigorous. In this paper we present data
describing the state of systems experimentation and
suggest guidelines for structuring commonly run
experiments, so that results from work by different
researchers can be compared more easily. We conclude
with recommendations on how to improve the rigor of
published computer systems research.

1 Introduction
Systems papers tend to either present new ideas or quan-
titatively report the performance of systems. While it is
reasonable for papers in the former category to contain
no performance measurements, it is crucial that the
results described in the latter share three critical quali-
ties:

• reproducibility: the paper must include enough
information to reproduce the experiments for
independent verification.

• comparability: the experiments run should be
structured in such a way that they allow the
behavior of the system being measured to be
compared with that of other systems and those
described in other papers.

• statistical rigor: the results must be statistically
valid.

In essence, comparability and rigor follow from
reproducibility. If another researcher wants to verify the
experiment, a suitable description of the benchmark,
hardware, software, and system conditions must be
given so that the experiment can be recreated. This is the
property of reproducibility. To allow the reader to under-
stand the published results in the context of related
research, commonly reported metrics should be mea-
sured in similar ways on similar systems. This is the
property of comparability. In order to validate the pub-
lished results, an independent researcher not only has to
know the result, but also the expected range of values,

the measured deviation (or confidence intervals), and the
experimental error. A meaningful comparison of experi-
mental results cannot be made without this information,
which we call statistical rigor. When experiments and
their results are sufficiently explained as to be reproduc-
ible, a paper’s results are much more convincing since
the evidence is far more credible.

We surveyed the proceedings from ten recent com-
puter systems conferences. We set a minimum standard
for reproducibility and calculated the percentage of
papers that included results that were reproducible by
these standards, assuming the availability of appropriate
hardware and software.

We then checked the results for comparability,
determining which results could be reasonably com-
pared with the results of other research. In cases where
the authors used well-known benchmarks, or widely
available code, we found that the reported results usu-
ally were easily compared. However, in more than 80%
of the cases we found that the authors designed their
own ad hoc method for benchmarking a commonly mea-
sured quantity, be it null system call time, UDP through-
put, or context switch time. In these cases, we found that
it was virtually impossible to compare results reported
in different papers.

The third critical quality of any result reported is
statistical rigor; in more than 40% of the results, the
authors did not includeany information about the statis-
tical validity of their results, not even the number of test
runs. In 64% of the results reported, the authors did not
indicate whether the result was a mean, minimum, max-
imum, or the only measured value, the distribution of
results, or any measure of confidence or error.

We find this distressing. Given our minimal criteria
for reproducibility, comparability, and rigor, we con-
cluded that most quantitative systems papers provide
inadequate information about the experimental data
used to support the paper’s claims.

We observed that there are a small number of com-
monly reported metrics, but researchers repeatedly cre-
ate individualized tests to measure quantities such as
system call overhead, network latency, and file system
throughput.

In the following section, we argue for well-
designed, common benchmarks. Section 3 discusses the
conference proceedings that we surveyed and the data

that we collected; Section 4 presents the results of the
survey. In Section 5 we include suggestions for design-
ing and choosing tests. Section 6 discusses statistical
rigor, and Section 7 lists guidelines for how to present
experimental results. Section 8 includes a discussion of
related work on constructing and evaluating bench-
marks, and we conclude in Section 9.

2 The Argument for Standard Tests
Designing robust, meaningful tests is challenging. Small
differences in the test code or in the test environment
can cause substantial changes not only in the test results,
but even in what is being measured by a test. We argue
against this practice on the following grounds:

• It is difficult to write tests that actually measure
what they are intended to measure. There are
pitfalls associated with even the simplest
benchmarks.

• However well intentioned the author, and however
carefully designed, two different tests will perform
different measurements. Reusing a standard test
greatly increases the comparability of results.

• It is a waste of effort to re-create tests. Test code
should be written once and shared. It should change
slowly, if at all.

• It is difficult to statistically analyze and present
results so that they are meaningful. The techniques
commonly used (e.g., computing the standard
deviation for normal distributions) are not
applicable in all cases.

To demonstrate these challenges, we consider the
difficulties involved in creating a simple benchmark pro-
gram. One of the most frequently cited numbers in oper-
ating systems research literature is system call overhead.
This quantity is usually calculated by measuring the
time required to make a trivial or “null” system call.
Even this simple test is fraught with ambiguities.

First, the candidate “null” system call is often the
getpid() call, which should do almost no work in the
kernel (typically a few cycles to copy the process ID
from a structure into a return argument). However, on
some systems, the value returned bygetpid() is
cached at user level, so only the first invocation actually
performs a system call.

In order to usegetpid() to measure system call
overhead, a test program might measure the latency of a
single call togetpid(). To achieve statistical signifi-
cance, this program could be executed repeatedly until
enough data points have been acquired. Unfortunately,
on many systems the timing granularity is too coarse to
accurately measure the latency of a single system call.
Timing multiple, successive calls togetpid(), the
usual technique for measuring a short-duration event

with a coarse-grained timer, will not work in this case,
since the result ofgetpid() is cached after the first
call.

The lmbench suite [McVoy96] avoids theget-
pid() pitfall in its null system call benchmark by writ-
ing a single byte to/dev/null, under the assumption
that it is unlikely that a system would check (at user
level) to see if a write is directed to/dev/null, and if
so, not perform the write. However, on some systems
(notably Linux), the kernel determines that the target is
/dev/null substantially earlier in the path through
the file system than on others (e.g., FreeBSD). In an
attempt to remove one bias from the test (caching of
process IDs), this test introduces another (the path
length required to identify/dev/null). Neither test
accurately captures the sought after quantity: the cost of
changing protection domains in a particular operating
system.

Other problems in designing a meaningful test are
not specific to measuring system call overhead. One
commonly used benchmarking technique is to measure
an individual call, but to issue the call repeatedly in a
tight loop to determine its average duration. If the code
path through the user and kernel code is sufficiently
small, this technique allows the code in the tested path
to remain in the cache, hence measuring only the time
required to run the code when it is already in cache. In
the common case it is unlikely that a short code
sequence will always be found in the cache, so results
gathered in this way are unrealistic. In some cases, but
not all, it is acceptable to report “hot cache” results; a
test should take this into account.

In addition to enhancing the scientific rigor of mea-
suring computer systems, benchmark standardization
would save many researchers a great deal of time. One
recent trend is for researchers to make their test code
and data available on the internet. While this is a step in
the right direction, it is not a substitute for standardized
benchmarks. Test code written for a single platform may
not run on other platforms, or may, like the lmbench null
system call test, not really measure what it is intended to
measure.

Through our survey of past quantitative system
papers we have identified existing benchmarks that are
implemented well, qualities that experimental results
often lack, and general properties that benchmarks need.
In this paper we are advocating a general method for
systems experimentation and presentation, not propos-
ing a new set of benchmarks or insisting that particular
ones be used. The first component of this method is the
use of existing, standard benchmarks. However, this is
not always possible since appropriate benchmarks may
not exist for new system ideas. Therefore the second
component of our method is the creation of new bench-

marks according to certain principles we describe. After
presenting our survey and conclusions drawn from it,
we explain our method for designing new benchmarks,
interpreting experimental results, and presenting the
results in a meaningful way.

3 Experimental Setup
We surveyed ten systems conference proceedings: the
13th, 14th, and 15th Symposia on Operating Systems
Principles [SOSP91, SOSP93, SOSP95], the First and
Second Symposia on Operating Systems Design and
Implementation [OSDI94, OSDI96], the Fifth and Sixth
Conferences on Architectural Support for Programming
Languages and Operating Systems [ASPLOS92,
ASPLOS94], and the 1994, 1995, and 1996 USENIX
Technical Conferences [USENIX94, USENIX95,
USENIX96]. We reviewed 235 papers in all. There were
between 280 and 311 measurements reported in each
conference (see Table 2).

22 of the papers (9%) did not include any measure-
ments. The remaining 213 include the results of a total
of 1163 experiments. For each experiment1, we
recorded:

• The area of the experiment.

• The test that was run or quantity that was being
measured.

• The characteristics of the experimental setup.

• The attributes of the presentation of the results.

The categories that we used may not be appropriate
for all systems papers. These categories were chosen
after we performed an initial review of the ten confer-
ence proceedings, to describe our sample set of papers.
Although not all work in systems is presented at these
conferences, these papers, and the areas they represent,
are a good indication of what work is being done in sys-
tems and what the systems community thinks of as its
best work.

The data collected from this survey were used to
derive the statistical results found in Section 4 and to
determine the Common Tests listed there.

3.1 Areas and Tests
First, we organized the measurements into the test cate-
gories described in Table 1. Within each category, there
were two general types of tests: standard benchmarks
(or well-known programs), and ad hoc benchmarks (not
in common use). When ad hoc benchmarks were used,
the comparability and reproducibility of the results suf-
fered. For example, results from two papers reporting

1. We group multiple runs of a test as a single experiment. For
example, if a test is run twenty times, varying a parameter, we
report this as a single experiment.

null system call times cannot be compared if they used
different techniques for measuring the null system call,
such as those described in Section 2.

At this stage we did not attempt to determine the
rigor or value of any particular test or benchmark, but
instead generated a list of commonly used tests. Tests
that were not represented in the list of commonly used
tests were identified as ad hoc. The tests and ad hoc cat-
egories are listed in Table 6, in the appendix.

3.2 Test Details
For each test, we gathered information on how the
experiment was run and how the results were presented.
The test details fall into three categories: comparability,
reproducibility, and statistical rigor.

3.2.1 Comparability
In conducting our survey, we found that results were
most easily compared when researchers used standard
benchmarks. In general, each area included a small
number of well-known tests, which were rarely used,
and a larger number of ad hoc benchmarks, which were
frequently used. This was distressing because it was
often difficult or impossible to compare results in papers
that reported the same quantity (e.g., null system call
time), but measured it in different ways.

In Section 4.1, we discuss the results in more detail,
and in Section 5.3, we discuss how to construct a good
benchmark, when no standard benchmark exists for the
quantity that a researcher needs to measure.

3.2.2 Reproducibility
In evaluating for reproducibility, our goal was to deter-
mine whether a researcher in the field could, given the
information found in the paper, reproduce the results
presented there.

Area Description Example

general general-purpose standard bench-
marks that measure quantities
from more than one area.

lmbench

cpu cpu time, instruction count, multi-
programming workload, idle time.

dhrystone

db database benchmarks. TPC/B

fs file system or disk tests. Andrew

mem memory (RAM) tests. bcopy

net network throughput and latency. ttcp

para parallel system and DSM tests. splash

sys system throughput and load. aim

Table 1. Test Areas.After a preliminary review of all the
papers, the experiments were found to be in one of these areas.

Trace-based simulation is often the simplest way to
guarantee that an experiment is reproducible, but it is
not the only way. If a paper includes enough detail about
how an experiment is set up and run, the experiments
can be reproduced by a knowledgeable reader.

In the case of trace-based simulation, making both
the traces and the simulator itself publicly available is
the simplest way to ensure reproducibility. In the
absence of an available simulator (as might be the case
for proprietary simulation environments), the research-
ers must be sure to describe the simulation algorithms in
sufficient detail that another researcher could produce a
comparable simulator. In the absence of available traces,
the researchers must characterize the traces used in suf-
ficient detail that another researcher could determine if
the traces were suitably representative. When traces can-
not be made available, stochastic simulation with a
parameterized workload provides a convenient alterna-
tive.

Simulation is only one way of making an experi-
ment reproducible. Any experiment can be made repro-
ducible if the experimental testbed is described in
sufficient detail. In systems research, this usually
requires describing the hardware and software. A hard-
ware description should usually include the type of pro-
cessor, its clock speed, and the system in which the
processor resides (e.g., the motherboard for a Pentium
processor.) It is often important to include information
about the memory system (main memory size and cache
sizes) and details about the I/O subsystem as well. The
software description should identify a specific version
of the operating system and application (where rele-
vant).

3.2.3 Statistical Rigor
Many authors provide only a single number as a mea-
sure of the performance of a system or a component of a
system, without a detailed description of how the num-
ber was computed or measured. Without this informa-
tion, readers cannot accurately interpret results. It is not
our intention to cast aspersions on the validity of results
presented without this information, just to point out that
data collected or computed in different fashions should
often be interpreted differently.

In systems research, we measure the performance
of systems in the real world, and the real world is neither
perfectly consistent nor perfectly predictable. A lack of
statistical rigor does not necessarily lead to unbelievable
numbers, but without information on the number of
measurements taken, the distribution of the measured
results, error bars, or variance, we, as readers, can not
know how to interpret the results.

Not everything listed here is necessary for rigor,
but, in general, the more detail the better. It is important

to note that inclusion of detail does not require burying
noteworthy results. It is not difficult to include both the
important details of how a measurement was taken and a
summary of the importance of the major result.

In addition, statistical rigor can highlight additional
ramifications of the data collected from a system. If the
authors find that the distribution of a set of measure-
ments is exponential, where a normal (bell shaped) dis-
tribution might be expected, this is in itself an
interesting result. In fact, this will frequently reveal
either an error in the test or a particularly noteworthy
effect.

For example, in recent work, we measured a reason-
able mean (x), but a large standard deviation (nearly
100% of the mean) in a test that we were running.
Although we had a (somewhat) plausible explanation
for the large deviation, we went back and examined the
data more closely. We discovered that the measurements
formed a classic bimodal distribution, caused by a prob-
lem in the test where twodifferent quantities were being
measured, one with meanx/2, the other with mean3x/2.
If we had not examined the data in more detail, we
would not have noted the problem with our test code.
Furthermore, had we published the mean,x, without
noting the high standard deviation, the reader would
have been none the wiser.

The characteristics that determine statistical rigor
vary with the experimental setup. When the quantity
being measured isfixed (e.g., the number of instructions
an application executes on a particular input or the num-
ber of occurrences of an operation in a trace) there is lit-
tle need for statistical analysis. However, when the
experimental setup produces variation (e.g., you are
measuring an actual system) or there is an aggregation
of data, the need for statistical rigor increases.

In the presence of aggregated data, it is imperative
to report the number of measurements that are being
aggregated and the quantity that is being reported (e.g.,
mean, median, mode). Next, it is useful to present an
indication of the variability of the data. Standard devia-
tion, minimum, maximum, and distribution information
are all useful tools for indicating how accurately the
aggregate represents the entire data sample.

Timer resolution is closely tied to statistical rigor;
coarse grain timing leads to greater margins of error. In
conducting our survey, we looked for the use of high-
resolution counters or timers to reduce the probable
margin of error in experiments.

4 Results
In this section, we present the data and analysis from our
survey. Wherever possible we attempted to err on the
side of generosity, hence the results summarized here

are a best-case estimate of the comparability, reproduc-
ibility, and statistical rigor of the measurements
reported.

4.1 Standard and ad hoc tests
We were astonished to discover that more than 80% of
the tests run were ad hoc, i.e., did not use standard
benchmark tests.

The type of test varied by conference (see Table 2),
but the results were not substantially different. We found
it surprising that papers published at USENIX, which is
often considered to be a less prestigious conference,
more often used standard benchmarks than papers pub-
lished in SOSP or OSDI.

Across the four conferences (ASPLOS, OSDI,
SOSP, and USENIX) 23% of the tests were ad hoc file
system tests and 25% were ad hoc system tests. This dis-
tribution varied somewhat by conference. For example,

as might be expected, ASPLOS had a higher percentage
of ad hoc CPU and memory tests (26%).

Only two of the standard tests listed in Table 6 (in
the appendix) were used for more than 2% of the
reported measurements (lmbench at 2.2%, SPEC at
7.1%). USENIX accounted for the majority of the use of
lmbench while ASPLOS accounted for the majority of
the use of SPEC.

It was surprising how infrequently standard bench-
marks were used. In the SOSP proceedings, it was more
common to find ad hoc measurements of null system
call time (eight times) than it was to see use of the SPEC
benchmarks (five times). This is not just a reflection on
the use of SPEC; it is indicative of the frequency of use
of other standard benchmarks as well.

4.2 Reproducibility and Comparability
Many of the reproducibility and comparability attributes
(see Section 3.2) were rarely seen. The results are out-
lined in Table 3.

Although 75% of the tests included information
about the hardware platform used, only 39% included
enough detail about the software platform to reproduce
the test environment. The papers published in OSDI
most often included information on the hardware plat-
form (93%), and the papers published in USENIX most
often had software information (53%).

As mentioned in Section 3.2.2, simulation and
trace-based tests are the most easily reproduced. We
found that simulation was used most often in ASPLOS
papers (22%) and least often in SOSP (9%). Traces were
used in 12% or more of the measurements reported in
USENIX, OSDI, and ASPLOS, but only 7% of the mea-
surements in the SOSP papers.

Reuse of well-known traces varied from 2% (ASP-
LOS) to 7% (SOSP). Where 11% of the tests (138) used
traces, only 5% (62) used (or reused) commonly avail-

total asplos osdi sosp usenix

number
of tests 1163 280 289 311 283

standard 19% 27% 16% 13% 23%

 ad hoc 81% 73% 84% 87% 77%

Test Breakdown by Area

general 9.6% 23.6% 2.1% 1.9% 12%

cpu 4.2% 12.1% 2.4% 1.0% 1.8%

ad hoc 3.5% 11.1% 1.0% 0.6% 1.8%

db 3.0% 0% 6.2% 4.8% 0.7%

ad hoc 1.5% 0% 4.5% 1.6% 0%

filesys 25.1% 10.0% 19.7% 30.5% 39.6%

ad hoc 22.6% 8.6% 18.3% 28.3% 34.6%

memory 5.3% 14.6% 2.4% 4.5% 0%

ad hoc 5.3% 14.6% 2.4% 4.5% 0%

network 13.5% 6.4% 10.7% 12.5% 24.4%

ad hoc 12.5% 6.4% 10.7% 12.2% 20.8%

parallel 13.2% 9.3% 25.3% 17.4% 0.4%

ad hoc 10.1% 8.2% 18.3% 13.5% 0%

system 26.0% 23.9% 31.1% 27.3% 21.2%

ad hoc 24.7% 23.9% 28.6% 23.4% 21.1%

Table 2. Summary of Test Statistics, Areas.Tests from each
area, broken out by conference and category. Below the
percentage of tests from each area we report the percentage of
tests from that area that were ad hoc. The sum of the
percentage of tests in each area is 100%. The sum of thead hoc
rows of a column is the percentage in thead hoc row of that
column. Note that there are no ad hoc general tests; all general
tests were standard benchmarks.

total asplos osdi sosp usenix

hard-
ware 75% 76% 93% 65% 67%

soft-
ware 39% 21% 42% 40% 53%

simula-
tion 15% 22% 16% 9% 11%

trace 11% 15% 12% 7% 12%

trace
reuse 5% 2% 6% 7% 4%

Table 3. Summary of Test Statistics, Reproducibility and
Comparability. Details of the test results surveyed, reported
as a percentage of the number of tests.

able traces. Traces are extremely useful things; Baker et
al.’s Sprite filesystem traces [Baker91] have outlived
both the operating system and hardware on which they
were gathered. The traces themselves have been used in
several subsequent studies. Although an argument can
be made that the applicability of these traces has faded
with time, reuse of these traces allows studies of differ-
ent file systems, different cache designs, and so on, to be
directly compared.

4.3 Rigor
We were surprised by how little statistical rigor is

evident in the literature (see Table 4). 24% of the mea-
surements reported the output of fixed runs and needed
little other supporting data. However, of the remaining
76% of the measurements, only 33% of the results
reported the mean of multiple test runs; only five of the
reports included the median, and only one included the
mode. In the rest of the experiments (67% of them), a
single number is presented as the result of the measure-
ment without any additional information specifying the
number of times that the test was run or how the
reported result was derived from these tests.

Few of the non-fixed value results (15%) include
the standard deviation, or some other measure of the
variance of the measurements. Only three of the 1163
measurements included information on the type of dis-
tribution observed.

High-resolution counters are now available on sev-
eral commonly used hardware platforms (e.g., Alpha,
Pentium, and SuperSparc). The systems community
should use them where possible, and encourage hard-
ware developers to make them available on the plat-
forms that have not yet adopted them.

4.4 Common Tests
In Table 5 we list the quantities most commonly mea-
sured in ad hoc tests2. Several of the tests we list here
are found in existing benchmark sets (e.g., lmbench
[McVoy96] and Ousterhout’s microbenchmark suite
[Ousterhout90]). Our goal here is to encourage the com-
munity to standardize on a common set of tests for these
measurements, not to endorse one test suite or another.

5 How To Build Good Tests
The goal of this section (and this paper) is to provide
advice about designing, selecting, analyzing, and using
good benchmarks. First we discuss the types of bench-

2. Note to program committee: We do not currently have an
accurate measure of which ad hoc tests were most frequently
run. We plan to make another pass over the surveyed
proceedings to more formally generate this list of common
tests for the final paper.

marks available and how to determine which are appro-
priate for the task at hand. Next we describe how to
design a benchmark if the standard benchmarks are
unsuitable. Once the benchmark is selected, we discuss
how to properly run a benchmark and verify that the
results are meaningful and accurate. Finally, we discuss
how to present the experiments so that others will find
the results useful and informative.

5.1 Types of Benchmarks
There are two major classes of benchmarks—micro-
benchmarks and macro-benchmarks. Micro-bench-
marks are used to measure the performance of specific
features of a system, such as system call overhead, RPC
latency or file system throughput.

Macro-benchmarks, in contrast, are used to mea-
sure the overall performance of a system under different
workloads. Macro-benchmarks can be divided into two
broad classes. Some macrobenchmarks reproduce real
workloads, such as a large kernel build, or the replay of
a file system trace. Other macro-benchmarks such as
dhrystone [Weicker84] and LADDIS [Wittle93] use
synthetically generated workloads. Synthetically gener-
ated workloads strike a balance between reproducibility
and relevance. Real traces or measurements of actual
system activity provide good relevance, but are often
difficult to precisely reproduce. Additionally, they
model only a single point in the spectrum of workloads.
In contrast, synthetic workloads may not be representa-

total asplos osdi sosp usenix

fixed
results 24.0% 49.3% 19.7% 13.8% 14.5%

no stats
reported 42.5% 23.6% 50.5% 56.6% 37.5%

stats
reported 33.5% 27.1% 29.8% 29.6% 48.1%

Stats Reported

num runs 32.8% 57.7% 21.6% 20.1% 43.0%

mean 35.3% 30.3% 35.8% 35.4% 37.6%

std dev 14.7% 8.5% 17.2% 15.3% 15.3%

Table 4. Summary of Test Statistics, Statistical Rigor.Tests
with fixed results include trace-based simulation and counts of
fixed quantities (e.g., memory references), reported as a
percentage of the number of tests. Of the remaining tests,
fewer than one-third of the results included information on the
number of runs, and less than 15% included the standard
deviation. Of papers without fixed results, we break out the
stats reported by each test in the bottom half of the table. For
each statistic, the value reflects the percentage of the tests
without fixed results that report the statistic. Due to round-off,
the percentages may not sum to 100% in all cases.

tive of any authentic workload, but are easily repro-
duced. With proper tuning and parameterization, it can
also be argued that synthetic workloads can be made to
model a wide range of authentic workloads.

There is a natural interplay between the use of
micro- and macro-benchmarks. Micro-benchmarks are
illustrative, and can be used to highlight specific differ-
ences between systems. Macro-benchmarks can then be
used to evaluate the effect these differences have on
overall performance. If macro-benchmarks are run first,
micro-benchmarks can be used to explain the differ-
ences in the macro-benchmark results. Micro-bench-
marks are also useful as diagnostic tools. A number of
the tests that comprise the lmbench suite were derived
from performance problems observed by customers
[McVoy96].

5.2 What to Measure
The first step in benchmarking a system is determining
what should be measured. A good way to decide what to
measure (and how to measure it) is to consider the
known differences between the systems under test. If the
differences are relatively minor (such a modified file
system, or an improved protocol stack), start with
micro-benchmarks designed to highlight the expected
differences between the systems. Then run macro-
benchmarks to show the effect of these changes on real-
workloads.

If systems are being compared that have substantial
differences, such as entirely different operating systems,
file systems, or hardware platforms, one may want to
start by running macro-benchmarks. These results will
suggest the key differences between the systems. These
differences can then be quantified using the appropriate
micro-benchmarks.

Once the author has determined what kind of
benchmark to use, the next question to consider is
whether to use an existing benchmark or to design a new
one. Our hope is that over time the systems community
will come to repeatedly use a small set of standard
benchmarks. As we have seen from our survey, there are
a small number of commonly measured quantities (see
Section 4.4). Therefore, the need to design a new bench-
mark should not arise often. However, new ideas will
sometimes require measuring original quantities.

5.3 Designing a Benchmark
In designing a micro-benchmark, it is vital to make sure
that its results reflect the time spent in the part of the
system being measured. If the goal is to measure null-
RPC time, but a benchmark spends most of its time pag-
ing, then the results are not indicative of null-RPC time.

Similarly, if the benchmark only spends 5% of its time
actually executing the RPC, there may be a problem
with the benchmark.

For macro-benchmarks, there are different con-
cerns. Macro-benchmarks should reproduce or represent
real-world workloads. This is easy to do if the macro-
benchmark runs actual applications, or is driven by
traces of real workloads. Unfortunately, there are few
standard macro-benchmarks based on real workloads.
Many researchers use ad hoc macro-benchmarks based
on applications that are available or are of interest to
them. Thus many kernel builds and video players are
used in different publications. It would be a great ser-
vice to the research community if these tests were
clearly documented, and their data sets made publicly
available so that these benchmarks can be reused by
other researchers.

Many macro-benchmarks use artificially generated
workloads. The goal of using a synthetic workload is
usually to create a benchmark that is meaningful to a
wider range of users than a specific application’s work-
load. An artificial workload introduces the danger, how-
ever, that it is not representative of any user’s workload,
or worse, that the benchmark results will not map to the
results observed by users in their applications.

The key issue in designing a synthetic macro-
benchmark is the relevance of the workload that is used.
Benchmarks that use a completely random mix of oper-
ations are highly suspect. A more reasonable approach
is to base the distribution of various operations in the
synthetic workload on observed distributions in a real
workload. (The LADDIS benchmark [Wittle93] is an
example of a synthetic workload based on actual data.)
Better yet is a benchmark that captures the dependencies
between successive operations that are observed in the
real world.

Another concern when writing both micro- and
macro- benchmarks is eliminating system dependencies.
Consider file system benchmarks. In order to ensure that
measurements reflect the performance of the file sys-
tem, rather than the buffer cache, it may be desirable to
explicitly flush the buffer cache to ensure that the
benchmark is utilizing the file system. One way of doing
this might be to read ten megabytes of “junk files”
before each benchmark run. This technique introduces
two assumptions about the underlying buffer cache—
that it is no larger than ten megabytes, and that it uses an
LRU replacement policy. These dependencies are unde-
sirable because the benchmark will give invalid results
on systems that violate these assumptions. Even worse,
it may be difficult for other users of the benchmark to
determine whether these assumptions hold on their sys-
tems. A better way to flush the file cache is to unmount
and then remount the file system. Another sure fire way

to flush the buffer cache is to run the benchmark on a
newly booted system.

A final point about designing a new benchmark is
the question of how it actually performs measurements.
Many benchmarks fail to factor out the cost of their
measurement techniques (e.g., the overhead of calling
gettimeofday()). This is especially important when
measuring short duration events, because the measure-
ment overhead can have a large effect on the measured
times.

5.4 Running a Benchmark
There are two important issues to keep in mind when
setting up the environment in which to run a bench-
mark—control and relevance.

When we run benchmarks, we are usually attempt-
ing to evaluate the effect of some change in system
design on the performance of the system in question. By
controlling the environment in which we run a bench-
mark, we ensure that any performance differences
reported by the benchmark can be attributed to the par-
ticular design change that we are studying. Thus, all
aspects of the test environment—the hardware platform,
the operating system configuration, network connectiv-
ity, versions of software tools, etc.—should be the same
during all of the benchmark tests. The only things that
should change between benchmark runs are the parts of
the test system that are being compared.

The other issue to consider when setting up a
benchmarking platform is that, ideally, the benchmark
environment should mimic the environment in which the
test systems would actually be used. In benchmarking
process switch times, for example, the easiest course is
to run the system with a small number of processes
belonging to the test suite. In real-world usage, however,
there are often a mixture of processes in the system,
some ready, others blocked. A better way to run a con-
text switch benchmark would be in the context of a real-
istic number of ready and blocked processes. Of course,
in order to guarantee a controlled and reproducible test
environment, the processes must be created in a deter-
ministic and reproducible manner.

5.5 Understanding Results
After running a benchmark, it is vitally important to val-
idate the results that it gives. Initially the question will
be whether the change in the system improved some
facet of system performance. However, the questions
cannot end there. Understanding benchmark results is a
microcosm of the scientific method. In looking at the
results from a benchmark, it is imperative that all of the
results can be explained (e.g., “Why does this test get
slower as the size of the buffer increases?”). This may
require forming a new hypothesis that explains the

observed behavior (e.g., “With a larger buffer size, there
is worse cache locality”). Finally, test this new hypothe-
sis to see if it does indeed explain the results (e.g., use
CPU-based performance counters to determine the num-
ber of cache misses during the benchmark.)

Although it is easy to focus exclusively on the
results that do not match expectations about the systems
under measurement, it is important to scrutinize all mea-
surements with equal vigor. Implicit in each “expected”
result is a hypothesis about what is causing it. These
hypotheses also need to be validated.

Examining results in this manner also provides an
opportunity to shake out potential flaws in the bench-
mark. Flaws may include programming bugs as well as
unexpected behaviors of the benchmark. As mentioned
above, usinggetpid() may be an easy way to mea-
sure the system call overhead of an operating system.
Since some systems cache the results from the first time
a program callsgetpid(), this technique may not
work. Comparing the results to other simple system
calls or performing back-of-the-envelope [Bentley84]
calculation of the number of cycles it took to execute a
getpid() call are two ways to check that the results
are reasonable.

Another advantage to using standardized bench-
marks is that they are (ideally) less likely to include
these types of flaws. A standard benchmark allows the
researcher to concentrate on changing the system, rather
than worrying about the validity of the benchmark
results.

5.6 Describing a Benchmark
The goal in describing a benchmark is to provide
enough information so that another researcher can
reproduce the experiment. Further, the description
should convince the reader that the benchmark was
appropriate for the measurement, well-designed, and
properly run. In other words, it should address the very
questions we have discussed in the last five sub-sections.

It is not necessary to provide a detailed walk-
through of the benchmarking code. Instead, it is essen-
tial to provide a description of the purpose of the bench-
mark (i.e., what is it designed to measure), how the
benchmark measures the quantity, any subtleties that
arose in designing the benchmark, and how the bench-
mark was run. For example, it is important to indicate
the cache state (hot or cold), the congestion of the test
network, the utilization of the file system, and any other
factors that might affect the outcome. Making the code
available on-line also provides another level of repro-
ducibility. Finally, the standardization of benchmarks
eases this task since the benchmark itself will not be in
question, although it is still necessary to accurately
describe the conditions under which the test is run.

6 Statistical Rigor
Understanding common statistical methods is invaluable
in being able to represent results coherently and accu-
rately. In this section we provide an overview of the sta-
tistical tools that a systems researcher should have
available when analyzing data and motivate their use.

6.1 Mean, Median, Mode and Distribution
As we stated in Section 4.3, 35% of all the tests we ana-
lyzed use the mean as the result of a benchmark. In only
15% of the measurements without fixed results did the
authors provided an indication of the variance of the
data values, typically through the inclusion of the stan-
dard deviation. In over 40% of the cases without fixed
results, no information was provided by the authors
about the statistical rigor of the results.

If a researcher does not use sound statistical tech-
niques when gathering data and presenting results,
drawing inferences about the behavior of the measured
system is a guessing game. Sound statistical techniques
must be used to ensure that the results presented in a
paper truly represent the behavior of the underlying sys-
tem.

It is important to note that if the behavior that is
being measured does not vary, statistical analysis is not
necessary. For example, if we are measuring the number
of instructions generated by a compiler for a particular
program, or the number of disk blocks needed to store a
fixed data set, we only need to measure the quantity
once.

When measuring a system that does not have fixed
behavior, the best technique for developing an accurate
model of the system is to perform multiple measure-
ments, analyze them, and distill them to one (or a small
number of) representative values.

When doing this, themost important datum to
include is the number of measurements taken. Without
this quantity, the validity and significance of the other
results reported is difficult or impossible to discern. The
larger the number of measurements taken, the greater
the confidence that the results shown are meaningful.

Second, when dealing with a large data set, it is
often useful to choose a single representative. For a
given data set, there are several differentmeasures of
centrality, or values that represent an “average” value
for the data set.

The most commonly used measure of centrality is
the (arithmetic) mean(the sum of the data points
divided by the number of points). When data are distrib-
uted according to a normal (bell shaped) distribution,
the mean is a reasonable representative for the data set.

The median is the central point in the data, where
half the measured values are above the median and half
are below the median. The median tells the reader where

the midpoint of the data is, and is a coarse way to esti-
mate the distribution of the data.

The mode is the measurement that appears most
often in the data set. The mode gives a feeling for what
value is most likely to occur if the experiment is run
again.

When data follows a normal (bell shaped) distribu-
tion, the mean, median, and mode all have the same
value (see Figure 1a), so all three are equivalently valu-
able as measures of centrality. Unfortunately, many
experimental data sets do not follow a normal distribu-
tion, and the mean, median, and mode of other distribu-
tions do not line up so neatly. Just reporting the mean in
this case can be misleading.

For example, on a computer with a multi-level
cache, timing of individual memory accesses will yield
data with multiple clusters, each cluster representing the
time required to service a request from one level of the
cache. In this case, the mean describes the average
memory access time, but in all likelihood does not rep-
resent the latency of any actual memory access. Because
of the increased availability of high-resolution timers on
modern processors, it has become easier for researchers
to time individual short-term events, thus uncovering the
underlying distribution of event latencies.

Normal distributions are more often seen in nature.
For example, monthly rainfall over a period of years,
heights of individuals in a population, and results of IQ
tests for a population are likely to exhibit normal distri-
butions. Additionally, the sums or differences of random
numbers are likely to exhibit a normal distribution.
However, computer measurements are not naturally
occurring phenomena, nor are they completely random.

Additionally, most experimental data sets exhibit a
phenomenon known as aleft wall. That is, there is some
minimum value, below which it is impossible for the
values in the data set to reside [Gould96]. The presence
of such a wall can introduce a distribution that is skewed
in one direction or another (not symmetrical about the
mean). For example, when measuring network transfer
time, the speed of light imposes a lower bound (left
wall). Transfer time could, theoretically, take infinitely
long (and often seems that way), so there is no right wall
to the distribution. This is likely to introduce a skewed
distribution.

Skewed distributions are not well-represented by
the mean data value. In the words of Stephen J. Gould,
“means can be grossly misleading ... when variation can
expand markedly in one direction and little or not at all
in the other” [Gould96].

In these cases, it is often useful to include the
median and mode along with the mean. The median and
mode, in combination with the mean, give the reader a

sense of how the data is distributed and what the
expected behavior of the system will be.

In general, if the mean and median are rather close,
but the mode is vastly different (or there are two candi-
dates for the mode), abimodal or multi-modal distribu-
tion is suggested (see Figure 1b). As described above in
Section 3.2.3, the standard deviation of a bimodal distri-
bution can be quite large, which can serve as a check on
the assumption that a distribution is normal.

It is important to note that these guidelines are not
fool-proof; comparing the mean, median, and mode can
only suggest the type of distribution from which data
was collected. Unfortunately, there is no rule of thumb
that always works, and when in doubt, the best course of
action is to plot the data, look at it, and try to determine
what is happening.

It is critical to select the appropriate metric of cen-
trality in order to properly present data. “No mathemati-
cal rule can tell us which measure of central tendency
will be most appropriate for any particular problem.
Proper decisions rest upon knowledge of all factors in a
given case, and upon basic honesty” [Gould96].

6.2 Expressing Variation
Measures of centrality are not sufficient to completely
describe a data set. It is often helpful to include a mea-
sure of the variance of the data. A small variance implies
that the mean is a good representative of the data,
whereas a large variance implies that it is a poor one. In
the papers we surveyed, we found that fewer than 15%
of experiments included some measure of variance.

The most commonly used measure of variance is
the standard deviation, which is a measure of how
widely spread the data points are. As a rule of thumb, in
a normal distribution, about 2/3 of the data falls within
one standard deviation of the mean (in either direction,
on the horizontal axis). 95% of the data falls within two
standard deviations of the mean, and three standard
deviations account for more than 99% of the data.

For example, in Figure 1a, which follows a normal
distribution, the mean, median, and mode are equal, and
the standard deviation is approximately 40% of the
mean. However, in Figure 1b, which shows a bimodal
distribution, the mean, median, and mode are quite dif-
ferent, and the standard deviation is 75% of the mean3.
Figure 1c shows an exponential distribution where the
median and mode are close, but rather different than the
mean. (We discuss techniques for determining the distri-
bution of a data set in Section 6.3.)

3. The large standard deviation here is because the distribution
is bimodal, but bimodal distributions do not necessarily have
to have a large standard deviation. The peaks of a bimodal
distribution can be close together; in this example they are not.

Another metric for analyzing the usefulness of the
mean in an experiment is themargin of error. The mar-
gin of error expresses a range of values about the mean
in which there is a high level of confidence that the true
value falls. For example, if one were concluding that the
latency of a disk seek is within four percent of the mean,

Figure 1. Sample distributions. The relationship
between the mean, median, and mode give hints about the
distribution of the data collected. In a normal distribution,
the mean is representative of the data set, while in an
exponential distribution, the mode and median are more
representative. In a bimodal distribution, no single metric
accurately describes the data.

A: Normal Distribution

B: Bimodal Distribution

C: Exponential Distribution

0

20

40

60

80

100

120

0 5 10 15 20

Mean
Median

Mode

0

30

60

90

120

150

180

0 5 10 15 20 25 30 35 40

Mean
Median

Mode

0

50

100

150

200

250

0 2000 4000 6000 8000

Mean
Median

Mode

the margin of error would be four percent. Assuming
that this margin of error had been computed for a 0.05
level of significance, then if the experiment were
repeated 100 times, 95 of those times the observed
latency would be within four percent of the value com-
puted in the corresponding experiment.

Figure 2 is an example of the importance of show-
ing the margin of error. In our example, Figure 2a is put
forward to support a claim that a new technique has
reduced latency by 10%. However, this graph does not
include any indication of the margin of error, or confi-
dence intervals on the data. If the margin of error is
small, as in Figure 2b, it is reasonable to believe that
latency has been reduced. Figure 2c, however, shows a
margin of error that is as large as the stated improve-
ment. The 10% reduction in latency falls within the
error bars, and might have arisen from experimental
error.

It is very useful to be able to place results in the
context of an error margin, and it is essential to be able
to do so when trying to determine the value of a new
technique.

A related problem, which appears when measure-
ments are taken, is mistaking measurementprecisionfor
measurementaccuracy.For example, on many versions
of Unix, gettimeofday() returns the current time in
microseconds (its precision), but is only updated every
ten milliseconds (its accuracy). Timing measurements
taken usinggettimeofday() on these systems will be
rounded up (or down) to nearest multiple of ten millisec-
onds. In situations such as these, it is critical to be aware
not only of how precise a measurement is, but also how
accurate. On a system with a 10ms clock granularity, it
is a waste of time to attempt to make distinctions at the
microsecond level.

6.3 Probability Distributions and Testing
As stated above, normal distributions are commonly
found in nature, but rarely found in computer science.
When measuring experimental systems, one is more
likely to encounter other types of distributions. Unfortu-
nately, it is not a trivial task to correctly identify which
distribution best models a given a dataset. From a statis-
tical point of view, anestimate of the mean and standard
deviation of can be calculated from measured data, but
without knowing the actual distribution, it is impossible
to calculate thetrue mean and standard deviation. Fortu-
nately, there are simple methods for determining the dis-
tribution of a dataset.

Plotting a histogram of the values in a sampled data
set is easy way to get an idea of what type of distribution
the data follows. Figure 1 shows examples of several
common distributions with noticeably different shapes.
Normal distributions (Figure 1a) are common in the nat-

ural sciences, and often represent the characteristics of
repeated samples of a homogenous population. As men-
tioned in Section 6.1, skewed distributions often occur
when some phenomenon limits either the high or low
values in a distribution. Personal income is an example
of a skewed distribution. An exponential distribution
(Figure 1c) might be seen when modeling a continuous
memoryless system, such as inter-arrival time of net-

Figure 2. Graphing and Error Margins. The value of
the error margins will depict the results in completely
different ways.

A: Latency Improvement without error margins

B: Latency Improvement with small error margins

C: Latency Improvement with large error margins

60

80

100

120

140

0 2 4 6 8 10 12

La
te

nc
y

(m
s)

Number of packets

Graph1
Graph2

60

80

100

120

140

0 2 4 6 8 10 12

La
te

nc
y

(m
s)

Number of packets

Graph1
Graph2

60

80

100

120

140

0 2 4 6 8 10 12

La
te

nc
y

(m
s)

Number of packets

Graph1
Graph2

work packets, while a Poisson distribution results from a
discrete rare occurrence. (Poisson distributions are sel-
dom seen in computer systems research.)

Theχ2 (chi squared) test can be used to determine if
sampled data follows a specific distribution. Given the
sampled data points and the expected distribution of
data points4, the square of the difference between the
number of points seen and the number of points
expected, at each sampled value, is computed and
summed. The smaller the sum, the better the two distri-
butions match. Formally,

X2 can be used to obtain ap-value from a family of
χ2 distributions. The larger the p-value, the higher the
probability that the measured distribution matches the
candidate distribution.

6.4 Summary
By presenting a single value, with no explanation, an
author gives almost no information about the behavior
of the system measured. At a minimum, by providing
the number of samples taken, the mean value, and the
standard deviation, the author allows the reader to begin
to understand the data. By including more detail (e.g.,
mode, median, and distribution information), the author
gives the reader more powerful tools to analyze and
understand the behavior of the system.

However, without confidence intervals or error bars,
it is difficult to compare sets of data. It is important for a
reader to know not just the measured difference, but also
the relative size of the margin of error. If the margin of
error is smaller than the measured difference, the results
show a true difference; if the margin of error is larger
than the measured difference, the difference may just be
due to experimental error.

Statistical analysis of results can be arcane. Often
the simplest and most revealing thing to do is to plot the
measured data; if the data forms a normal or multi-
modal distribution, it will be clear from a graphical
depiction.

7 Presentation of Results
Performing a good experiment, collecting statisti-

cally sound data, and properly analyzing the results are
three of the four important steps in conducting quantita-
tive research; presenting the data in a coherent and illus-
trative manner is the final step. It is also, perhaps, the
most important step, in that poorly presented data can
result in misleading or misinterpreted results.

4. Methods for computing sample expectations can be found in
any probability textbook (e.g., Larsen and Marx [Larsen86]).

The graphs shown in Figure 3 present the same
data, but encourage dramatically different interpreta-
tions. In reality, the two different data sets have very
similar values (within 3% of each other for all cases),
yet this difference can be magnified by limiting the
range of the dependent variable. Although the 3% differ-
ence here may be a genuine improvement, it is impor-
tant to not misrepresent the magnitude of the
improvement. In many cases, a 3% difference in perfor-
mance is not interesting to systems researchers.

In order to clearly and accurately represent data,
common sense dictates the following rules for graphical
presentation:

• Use 0-based axes when data is plotted on a linear
scale.

• Use log scales to depict values that range over
several orders of magnitude.

• Label all axes clearly (noting the units shown and
the scale if it is not linear).

• Use consistent graphical representation throughout
a publication.

• Be wary of graphing packages that will put any
value you specify on an axis; this can lead to
meaningless scales on the axes.

As with any set of guidelines, there are exceptions.
For example, in Figure 1c, the x-axis is linear although
the data values span four orders of magnitude. Since the
purpose of the graph is to show the shape of an expo-
nential distribution, plotting it on a linear, rather than
logarithmic scale makes sense. Similarly, we have omit-
ted axis labels in Figure 3, to draw attention to the data
values themselves and how the selection of Y values
leads to dramatically differently-shaped graphs.

Even after applying common sense, selecting an
appropriate representation for data is not always trivial.
Edward Tufte’s prime directive of graphical representa-
tion is “above all else show the data” [Tufte83]. There
are two components to this: selecting an appropriate
representation for the data and then using that represen-
tation in a clear and effective manner. Every graphical
element (e.g., a pie-chart, bar graph, line graph, scatter
plot) encourages a particular interpretation. For exam-
ple, it is far too common to see graphs such as that
shown in Figure 4. In this example, the selection of a
line graph to represent three unrelated data values leads
the reader to believe that the y value is some function of
x. A bar graph would be a better way to present this
data. Table 5 lists some guidelines for the selection of an
appropriate graphical representation.

Once a suitable representation has been selected, it
is important to display the data well. Again, we turn to
Tufte who encourages the maximization of data ink (ele-

X
2 sampled ectedexp–()2

ectedexp
---∑=

ments on the graph that depict the actual data) and the
minimization of chart ink (e.g., grid lines, labels, shad-
ing) [Tufte83]. A second suggestion is to use the “mini-
mum effective difference.” He suggests using varying
shades of the same color (grey in most systems publica-

tions) as opposed to different colors or stipple patterns.
Variations in shade are easily detected by the eye, and
provide a much wider range of variation with greater
simplicity [Tufte90].

8 Previous Work
The problems we discuss here are not limited to com-
puter science systems research. Cohen performed a sur-
vey of the 1990 AAAI conference [Cohen91], where he
found that 41% of systems-centered papers (papers that
discussed the behavior of a system that had been built)
described only a single illustrative example of the sys-
tem, without applying the system to any well-defined
benchmark. His later book on empirical methods for
Artificial Intelligence research [Cohen95] includes
information on experimental design, statistical methods,
and hypothesis testing.

Performing sound experimental systems research
requires a firm grounding in statistics, available in any
undergraduate statistics text [Walpole93, Larsen86].
“Back-of-the-envelope” calculations [Bentley84,
Bentley86] provide a useful method for sanity checking
results. Presenting data in a clear and effective manner is
equally important. Tufte’s books on information presen-
tation [Tufte83, Tufte90] are widely regarded as the pre-
mier references on this topic.

We found that many of the problems that arise in
the analysis of computer systems data occur in evolu-
tionary biology as well. We found a kindred spirit in nat-
ural scientist Steven Jay Gould. His book,Full House
[Gould96], clearly and entertainingly discusses how
seemingly reasonable statistical arguments can be far off
the mark. The book uses some of Gould’s favorite exam-
ples, including the disappearance of .400 hitting in

Figure 3. Misleading and Well-Labeled Y Axes.By
limiting the Y axis to a narrow range of values, there
appears to be a large difference between the two data sets
in the top figure. The same data is shown in the lower
with better Y axis selection. The data sets differ by only a
small amount.

88

90

92

94

96

98

100

1 2 3 4 5 6 7 8 9 10

0

20

40

60

80

100

1 2 3 4 5 6 7 8 9 10

Figure 4. Improper graph selection. In this example,
the three data points represent three unrelated values that
are implicitly being compared. By representing this data
as a line graph, we suggest that we are presenting y as a
function of x.

0

2

4

6

8

10

Oranges Apples Bananas

Graph Type When To Use

line graph The datapoints represent a continuum of
values on the X axis and the Y values are
a function of the X values. It is instructive
(and valid) to interpolate the values for
points that have not been explicitly mea-
sured.

scatter plot The interesting feature is the pattern or
clustering (or lack thereof) of the data.

bar graph Discrete values are being presented.
Comparison between values is useful, but
there is no constant relationship between
the values presented.

pie chart The issue of interest is how something
decomposes into its constituent elements.

Table 5. Hints on Graph Selection. These are general
guidelines for selection of an appropriate representation of
data.

major league baseball. The idea that some distributions
have an implicit “left wall” or “right wall” is clearly and
concisely explained.

Obtaining accurate and quantitatively useful data on
a system is quite invaluable. It allows one to locate the
bottlenecks limiting performance and monitor system
resources [Lucas71]. Monitoring requires an analysis of
vast amounts of statistics and data. In order to accom-
plish this effectively, a rigorous experimental procedure
is required.

Rather than instrument separate benchmark pro-
grams, the system itself can be instrumented and contin-
uously monitored. The Multics operating system
[Saltzer70] was an early example of a system that was
designed from the ground up for continuous monitoring
and profiling, with the goal of regular analysis of the
data and feedback into the design and tuning of the sys-
tem.

We are not suggesting a radical change in systems
research. Our work here can be considered a follow-on
to, and a reiteration of, Levin and Redell’s analysis of
the 9th SOSP submissions [Levin83], which offered
guidelines for constructing a submission to SOSP. Our
goal is to induce authors to concentrate on statistical
rigor and repeatability of experiments.

9 Summary
Computer Science should live up to its name—it should
be a research science. This is especially true of com-
puter systems research. Results of scientific research
must, by definition, include a description of the experi-
ments performed that is clear enough that others can
repeat the experiments, and must perform sufficient sta-
tistical analysis that the numbers reported are believable.

Upon analyzing the proceedings of ten recent sys-
tems conferences, we were dismayed at the lack of rigor
and comparability of the published work. In this paper
we have outlined a suggested minimum set of require-
ments for systems research, and believe that the research
produced by the community would be greatly improved
by their adoption.

10 References
[ASPLOS92]Fifth International Conference on Archi-

tectural Support for Programming Languages and
Operating Systems, Boston, MA, October 1992.

[ASPLOS94]Sixth International Conference on Archi-
tectural Support for Programming Languages and
Operating Systems,San Jose, CA, October 1994.

[Baker91] Baker, M., Hartman, J., Kupfer, M., Shirriff,
K., Ousterhout, J., “Measurements of a Distributed

File System,” Proceedings of the Thirteenth SOSP,
Pacific Grove, CA, pp. 198–212, October 1991.

[Bentley84] Bentley, J., “The Back of the Envelope,”
Communications of the ACM, 27, 3, pp. 180–184,
March 1984.

[Bentley86] Bentley, J., “The Envelope is Back,”Com-
munications of the ACM, 29, 3, pp. 176–182, March
1986.

[Cohen91] Cohen, P., “A Survey of the Eighth National
Conference on Artificial Intelligence: Pulling
Together or Pulling Apart?”AI Magazine, 12,1, pp.
16–41, 1991.

[Cohen95] Cohen, P.,Empirical Methods for Artificial
Intelligence,MIT Press, Cambridge, MA, 1995.

[Gould96] Gould, S. J.,Full House, Harmony Books,
New York, NY, pp. 36–37, 1996.

[Larsen86] Larsen, R., Marx, M.,An Introduction to
Mathematics Statistics and Its Applications, Pren-
tice-Hall, Englewood Cliffs, NJ, 1983.

[Levin88] Levin, R., Redell, D., “An Evaluation of the
Ninth SOSP Submissions,”Operating Systems
Review, 17,3, pp. 35–40, July 1983.

[Lucas71] Lucas, Henry C., “Performance Evaluation
and Monitoring,”ACM Computing Surveys, 3, 3, pp.
79–91, September 1971.

[McVoy96] McVoy, L., Staelin, C., “lmbench: Portable
Tools for Performance Analysis,”Proceedings of the
1996 USENIX Conference, San Diego, CA, pp. 279–
294, January 1996.

[OSDI94] Proceedings of the First USENIX Symposium
on Operating Systems Design and Implementation
(OSDI), Monterey, CA. USENIX Association, Ber-
keley, CA, November, 1994.

[OSDI96] Proceedings of the Second USENIX Sympo-
sium on Operating Systems Design and Implementa-
tion (OSDI), Seattle, WA. USENIX Association,
Berkeley, CA, November, 1996.

[Ousterhout90] Ousterhout, J., “Why Aren’t Operating
Systems Getting Faster As Fast As Hardware,” Pro-
ceedings of the 1990 Summer USENIX Technical
Conference, Anaheim, CA, pp. 247–256, June 1990.

[Saltzer70] Saltzer, J., Gintell, J., “The Instrumentation
of Multics,” Communications of the ACM, 13, 8, pp.
495–500, August 1970.

[SOSP91]Proceedings of the Thirteenth ACM Sympo-
sium on Operating Systems Principles, Pacific
Grove, CA, October 1991.

[SOSP93]Proceedings of the Fourteenth ACM Sympo-
sium on Operating Systems Principles, Asheville,
NC, December 1993.

[SOSP95]Proceedings of the Fifteenth ACM Sympo-
sium on Operating Systems Principles,Copper
Mountain, CO, December 1993.

[Tufte83] Tufte, E., “The Visual Display of Quantitative
Information,” Graphics Press, Cheshire, CT, 1983.

[Tufte90] Tufte, E., “Envisioning Information,” Graph-
ics Press, Cheshire, CT, 1990.

[USENIX94] Proceedings of the Summer 1994 USENIX
Conference, Boston, MA, June 1994.

[USENIX95] Proceedings of the 1995 USENIX Techni-
cal Conference,New Orleans, LA, January 1995.

[USENIX96] Proceedings of the 1996 USENIX Techni-
cal Conference,San Diego, CA, January 1996.

[Walpole93] Walpole, R., Myers, R.,Probability and
Statistics for Engineers and Scientists, 5th ed.,Mac-
millan Publishing Company, New York, New York,
1993.

[Weicker84] Weicker, R. P. “Dhrystone: A Synthetic
Systems Programming Benchmark,”Communica-
tions of the ACM, 27,10, pp. 1013–1030, October,
1984.

[Wittle93] Wittle, M., Keith, B. “LADDIS: The Next
Generation in NFS File Server Benchmarking,”Pro-
ceedings of the Summer 1993 USENIX Conference,
Cincinnati, OH, pp. 111–128, June 1993.

11 Appendix

Test Type Test Name Occurrences
of Test Test Description

general spec 82 (7.1%) any SPEC test

lmbench 26 (2.2%) any of the lmbench test (fs, mem, net, sys)

ouster 4 (0.3%) any of the Ousterhout benchmarks (fs, sys)

cpu dhrystone 8 (0.7%) dhrystone test

md5 0 (0.0%) computing md5 checksum

adhoc-cpu 41 (3.5%) any other cpu measurement test

db OO 8 (0.7%) OO1 or OO7 benchmark

postgres 5 (0.4%) postgres or Sequoia 2000 benchmark

tpc 4 (0.3%) tp1, tpc-a, tpc-b, tpc-c, tpc-d

adhoc-db 18 (1.5%) any database microbenchmark (join, checkpoint, read, write)

fs andrew 14 (1.2%) (modified) andrew benchmark

bonnie 4 (0.3%) bonnie fs benchmark

connect 1 (0.1%) Connectathon benchmark

laddis 10 (0.9%) laddis or nhfsstone

adhoc-fs 263 (22.6%) any create, read, write, copy, find

mem adhoc-bcopy 3 (0.3%) any bcopy test

adhoc-mem 59 (5.1%) cache miss, tlb miss, cpi, stall cycles, num page faults, mem throughput

net netperf 5 (0.4%) the NetPerf tool

ttcp 6 (0.5%) tcp throughput measurement tool

adhoc-rpc 15 (1.3%) any ad hoc RPC measurement (null rpc, one byte, whatever)

adhoc-packet 5 (0.4%) any ad hoc packet filter test

adhoc-net 126 (10.8%) any ad hoc network measurement (latency, throughput)

para dsm 15 (1.3%) any subset of (FFT, SOR, TSP, Water, Barnes-Hut)

nas 8 (0.7%) NASA Ames parallel benchmark suite

splash 13 (1.1%) SPLASH suite (raytrace, ocean, etc.)

adhoc-para 118 (10.1%) any ad hoc parallel benchmark (matrix invert or multiply, FFT)

sys appel 4 (0.3%) the Appel-Li VM benchmarks (usually hand-implemented)

dinero 2 (0.2%) dinero simulator run

kernel-build 5 (0.4%) building a (well-specified) kernel

aim 2 (0.2%) AIM benchmark (simulation of multiple concurrent users)

smalltalk-macro 1 (0.1%) the Smalltalk “macro” benchmark

webstone 0 (0.0%) SGI’s webstone benchmark

adhoc-ipc 6 (0.5%) any ad hoc ipc test

adhoc-syscall 11 (0.9%) any ad hoc (null) system call

adhoc-http 2 (0.2%) any ad hoc web server test (other than Webstone)

adhoc-sys 269 (23.1%) any ad hoc system performance test

Table 6. Tests:the benchmarks and tests, and how may times each was used in the 1163 reports of the 213 papers surveyed.

