
COMMUNICATIONS OF THE ACM November 2007/Vol. 50, No. 11 27

EXPERIMENTAL
ALGORITHMICS

By Catherine C. McGeoch

Research on algorithms embraces two
fundamental goals: algorithm design and
algorithm analysis. Algorithm analysis is
concerned with predicting how well a given
algorithm will perform in a given scenario under
given conditions and assumptions. Algorithm
design is concerned with building better
algorithms: in this context, “better” usually
means faster but can also mean returning
higher-quality (preferably optimal) solutions to
a given problem. Algorithms that are both
efficient and optimal are surprisingly difficult to
find in a large number of application areas (such
as sequencing the human genome, building
better Internet services, scheduling airlines, and

Theoretical
questions and

motivations,
combined with

empirical research
methods, produce

insights into
algorithm

and program
performance.

28 November 2007/Vol. 50, No. 11 COMMUNICATIONS OF THE ACM

routing fleets of delivery trucks). Because time is
money, the quest for faster algorithms and the funda-
mental trade-off between “speed” and “quality” in
applications important to industry, government, and
science drives modern research in algorithm design.

Traditionally, algorithm design and analysis have
been conducted using the tools of abstraction and
mathematical proof. An algorithm is typically
described in pseudocode, intended to run only on a
generic and abstract model of a modern computer.
The first goal of analysis is to find an asymptotic
upper bound on algorithm performance using this
model (such as “Quicksort is O(n2) in the worst case”).
This kind of bound guarantees that no matter what
programming language or platform is used, Quick-
sort will perform no more than cn2 generic machine
instructions (for some unspecified constant c) to sort
a list of n numbers.

The abstract approach to design and analysis
allows us to discover universal truths about
fundamental algorithmic properties. The
result is insight into what makes algo-
rithms more and less efficient, which can
lead to the discovery of even better algo-

rithms. When adopted by the software engineer, bet-
ter algorithms become faster programs that produce
higher-quality results. However, it is quite difficult to
translate an asymptotic time bound into an accurate
time prediction. One difficulty is the dependence on
“worst case” assumptions. For example, Quicksort’s
performance depends significantly on the input order
of the n numbers to be sorted. On an input of 1,000
numbers, Quicksort might run hundreds of times
faster than the worst-case prediction. Furthermore,
the gap increases with n: on an input of one million
numbers, Quicksort can run thousands of times faster
than the worst-case prediction. A second difficulty
arises when we try to translate “cn generic machine
instructions” into microseconds; unlike an algorithm,
a real program encounters compiler optimization,
pipelining, caching, and other platform-specific phe-
nomena that dramatically reduce the predictive power
of simple instruction counts.

Where theoretical analysis may fall short, compu-
tational experiments have long been used to measure
program performance under real-world conditions.
The classic “field experiment,” which might involve
CPU runtime measurements taken on specific plat-
forms using input instances from real applications,
can give much more precise information about pro-
gram performance in practice.

In addition, in the past few decades, experimental
methodology in this context has evolved into some-
thing resembling a classic “laboratory experiment” for
analyzing algorithms. This approach emphasizes
highly controlled parameters, carefully placed data-
collection probes, and sophisticated data analysis.
Rather than simply measure performance, the goal of
the experiment is to generalize away from context-
specific measurements and build insight into funda-
mental structures and properties.

Indeed, since experiments can be used to measure
any aspect of algorithm/program performance, not
just CPU times, this approach can stimulate new
forms of interplay between theory and practice. The
term “experimental algorithmics” describes this new
approach to algorithm design and analysis, combin-
ing theoretical questions and motivations with empir-
ical research methods. The related term “algorithm
engineering” is almost synonymous but emphasizes
design over analysis.

THREE EXAMPLES

Here, I describe three example areas in which exper-
imental algorithmics has produced new results and
significant progress in algorithm research. They also
illustrate the variety of research questions that can be
investigated through experimental methods. (For
several more examples and methods of experimental
algorithmics, see the references in the sidebar
“Resources.”)

Memory-efficient models of computation. The
traditional theoretical approach to analysis involves
counting basic operations performed on an abstract
computer. These operations are generic abstractions
of CPU instructions, each assumed to have some unit
cost. However, on modern architectures, instructions
have varying costs; in particular, a memory access can

If a problem is NP-complete, finding an algorithm for it
that is always both fast and optimal, or showing that no such
algorithm can exist, WOULD BE ANALOGOUS TO FINDING A CURE

FOR THE COMMON COLD: fame and fortune would be yours.

be several orders of magnitude more time consuming
than any single machine instruction, depending on
where the operands are located. New abstract models
are needed to describe these new types of costs. Recent
progress in the development of memory access mod-
els has been greatly stimulated and guided by experi-
mental research.

For example, experiments have guided the devel-
opment of new analytical models of computation to
describe the cache performance of several sorting algo-
rithms [4]. These new analyses produced more accu-
rate predictions of program running times and turned
some conventional wisdom about best programming
practice on its head. For example, Quicksort’s cache
performance depends closely on how the partitioning
code is structured and at what time during algorithm
execution small sublists are processed. It turns out that
the well-established design goal of minimizing
instruction counts may in fact be counterproductive if
it produces poor cache behavior.

Subsequently, many researchers have combined
experiments and theory in this way to analyze mem-
ory access patterns and engineer better algorithms and
programs for a variety of problem domains, including
search, dynamic tree and trie structures, matrix oper-
ations, and permutation problems. These new algo-
rithms are “cache-efficient,” which can mean
“cache-aware,” able to adjust to and exploit known
cache properties, or “cache-oblivious,” robust with
respect to variations in caches. These ideas have been
exploited to engineer sorting programs that are very
fast indeed [1].

Phase transitions in combinatorial problems.
Another area that has seen much recent growth is the
study of “phase transition behaviors” in algorithms for
a large variety of NP-complete problems. If a problem
is NP-complete, finding an algorithm for it that is
always both fast and optimal, or showing that no such
algorithm can exist, would be analogous to finding a
cure for the common cold: fame and fortune would
be yours. Like the Quicksort example, a given algo-
rithm for an NP-complete problem may run fast or
slow depending on properties of individual inputs,
but these properties are poorly understood. Further-
more, the gap between worst case and typical case for
these problems is enormous. In some practical situa-
tions, we cannot reliably predict algorithm perfor-
mance to within years.

The phase-transition phenomenon was first
observed in the late 1980s/early 1990s by several
researchers; subsequently, both experimental and the-
oretical tools were used to develop new ways to clas-
sify input difficulty in these domains.

A single example problem serves to illustrate the

larger questions. In the K-satisfiability problem, we
are given a Boolean formula B in conjunctive normal
form, containing n variables, m clauses, and k vari-
ables per clause. Here is an example formula with five
variables, four clauses, and three variables per clause:

The problem is to determine whether truth
values can be assigned to the variables in
such a way that B evaluates to True. If it
does, the instance B is “satisfiable,” and if
not, it is “unsatisfiable.” In this case, B can
be satisfied by setting x1, x3 to True, and x2,

x4, x5 to False. (When k is greater than or equal to 3,
this problem is NP-complete; when k is less than 3 an
efficient algorithm is known.)

K-satisfiability is a universal problem in the sense
that an efficient algorithm for it can be translated by
a simple process into an efficient algorithm for any
NP-complete problem. To date, the best algorithm
known for determining K-satisfiability is simply to
check all 2n possible truth assignments. This is
extremely inefficient. For example, assuming one
check per microsecond, checking a formula with a
mere 50 variables would require about 435 years of
computation.

Now consider generating problem instances Bnmk
uniformly at random, for given parameter values n, m,
and k. What is the probability that Bnmk is satisfiable?
What is the probability that a solution for Bnmk can
be found efficiently? As it turns out, these two ques-
tions are closely related. Let x be the ratio m/n. Exper-
iments performed by a number of researchers
demonstrate convincingly that for each k greater than
or equal to 2 there is a transition value xk such that the
following property holds: when x is well below xk, the
probability that Bnmk is satisfiable is near 1; when x
is well above the threshold, the probability is near 0;
and that probability makes a sharp change—a phase
transition—when x is near xk.

Furthermore, the parameter x can be used to pre-
dict the difficulty of solving Bnmk. Heuristic algo-
rithms for satisfiability have little trouble solving
instances that are far from the threshold value xk, and

COMMUNICATIONS OF THE ACM November 2007/Vol. 50, No. 11 29

Boolean formula (11/07)

Footnote (11/07)

B = (x1 x2 x3)
(x1 x2 x5) (x3 x4 x5).

In this formula, represents the logical AND function, represents
the logical OR function, and represents the logical NOT function
applied to variable .

(x1 x2 x4)

1

Boolean formula (11/07)

Footnote (11/07)

B = (x1 x2 x3)
(x1 x2 x5) (x3 x4 x5).

In this formula, represents the logical AND function, represents
the logical OR function, and represents the logical NOT function
applied to variable .

(x1 x2 x4)

1

great difficulty solving instances that are near it. Intu-
itively, it is easy to find a satisfying truth assignment
when x is low, because there are many more variables
than clauses and therefore few conflicts among the
variables; many satisfying truth assignments exist.
Similarly, it is easy to demonstrate unsatisfiability
when x is large, because the clauses impose too many
conflicts on the variables. It is remarkable, however,
that the difficulty of solving a given random instance
can be predicted so precisely based on just the simple
parameter x.

Put another way, random satisfiability
instances that tend to be difficult to solve
may be found in a fairly localized region
in the space of random instances—specif-
ically the region near m/n = xk. Much
experimental effort has focused on locat-

ing the threshold values xk for k ≥ 3 and quantifying
the difficulties of specific algorithms solving these
parameterized instances.

In 1991, the extensive experimental results in [2]
demonstrated that this easy-hard-easy phenomenon
can be observed in a variety of NP-complete prob-
lems, and for each problem a simple input parameter
with threshold behavior (such as x for K-satisfiability)
can be found. The authors conjectured that this type
of phase transition for random instances may in fact
be a property of all NP-complete problems. Subse-
quently, a large body of experimental research has
emerged to guide and inspire new theoretical results,
and conversely, new theorems have been used to
guide more experiments.

The existence of a simple parameter (such as x), a
threshold value, and an easy-hard-easy transition in
problem difficulty that depends on the parameter has
been observed for many problems besides satisfiabil-
ity, including Graph Coloring, Number Partitioning,
and Traveling Salesman. This vigorous interaction
between experimental and theoretical analysis has led
to the development of new classification schemes for
“hard instances” for combinatorial problems, with
deep implications for both theory and practice.

Algorithm engineering. The third example con-
cerns contributions to research in algorithm engineer-
ing, which emphasizes the design aspect of
algorithmic research. The aim is to transform abstract
algorithms into well-implemented programs with an
emphasis on efficiency and generality.

The DIMACS Implementation Challenge has
stimulated much research in algorithm engineering.
Since 1990, the Center for Discrete Mathematics and
Theoretical Computer Science at Rutgers University
in New Jersey has sponsored a quasi-annual Imple-
mentation Challenge that identifies a small set of
problem areas and invites researchers to carry out
design and analysis projects for algorithms that
address the problems.

Participants (in research groups worldwide) adopt
a common input format and common sets of input
instances to test their implementations. Each Chal-
lenge involves a year-long cooperative research effort
to find algorithms and implementations that are most
efficient in general, most robust with regard to partic-
ular input categories, and most highly tuned for prac-
tical use. In addition to the testbed experimental
results, participants produce new analyses, data struc-
tures, and implementation strategies for these algo-
rithms.

Most Challenges culminate with a workshop
(dimacs.rutgers.edu/Challenges) where participants
present their results and conclusions. This novel
cooperative approach to algorithm research has gen-
erated much more new information—and software—
than could ever by produced by researchers working
in isolation. Two recent challenges are discussed here.

The Ninth Challenge, 2005–2006, was organized
by Camil Demetrescu of the University of Rome “La
Sapienza,” Andrew Goldberg of Microsoft Research,
and David S. Johnson of AT&T Labs-Research to
address variations in shortest-path problems. At the
workshop held in November 2006, participants pre-
sented practical and efficient algorithms for solving
K-shortest paths, techniques for exploiting precom-
putation in memory-restricted applications, and effi-
cient strategies for dynamic query-based problems.
These types of algorithms are used in, for example,

30 November 2007/Vol. 50, No. 11 COMMUNICATIONS OF THE ACM

The well-established design goal of minimizing
instruction counts MAY IN FACT BE COUNTERPRODUCTIVE

if it produces poor cache behavior.

mapping and direction-finding systems for automo-
biles and other consumer applications. Comparing
them revealed much new information about effective
design strategies for the problems.

The Eighth Challenge, 2000–2001, was organized
by David S. Johnson, Lyle McGeoch of Amherst Col-
lege, Fred Glover of the University of Colorado, and
Cesar Rego of the University of Mississippi to evalu-
ate a collection of algorithms for the Traveling Sales-
man problem. Participants contributed experimental
results involving more than 150 implementations of
state-of-the art algorithms. A companion Web site
(www.research.att.com/~dsj/chtsp/) allows the visitor
to perform direct comparisons (of both time and tour
quality) using a large collection of input instances.
Based on this experimental data, the organizers [3]
presented a detailed discussion of how to select the
best algorithms for solving real-world applications of
the Traveling Salesman problem. These applications
arise in, for example, delivery truck routing and fleet
scheduling.

CONCLUSION

Experimental analysis of algorithms is an evolving
discipline. Together with a growing body of experi-
mental results on algorithm performance, a collec-
tion of articles addressing methodological issues has
also emerged. Since the experimental subject and the

research questions are somewhat unusual compared
to other problem domains (for example, doing
experiments on Dijkstra’s algorithm is very different
from doing experiments on, say, a microprocessor
architecture) much more work is needed to identify
the statistical and data analysis tools most appropri-
ate to these types of problems.

References
1. Brodal, G., Fagerberg, R., and Vinther, K. Engineering a cache-oblivious

sorting algorithm. Journal of Experimental Algorithmics 12 (2007).
2. Cheeseman, P., Kanefsky, B., and Taylor, W. Where the really hard

problems are. In Proceedings of the 12th International Joint Conference on
Artificial Intelligence, J. Mylopoulos and R. Reiter, Eds. (Sydney, Aus-
tralia, Aug. 24–30). Morgan Kaufman, San Mateo, CA, 1991, 331–337.

3. Johnson, D. and McGeoch, L. Experimental analysis of heuristics for the
STSP. In The Traveling Salesman Problem and Its Variations, G. Gutin
and A. Putin, Eds. Kluwer Academic Publishers, Boston, 2002,
369–443.

4. LaMarca, A. and Ladner, R. The influence of caches on the performance
of sorting. Journal of Algorithms 31, 1 (Apr. 1999), 66–104.

Catherine C. McGeoch (ccm@cs.amherst.edu) is a professor of
computer science and chair of the Department of Mathematics and Com-
puter Science at Amherst College, Amherst, MA.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

© 2007 ACM 0001-0782/07/1100 $5.00

c

COMMUNICATIONS OF THE ACM November 2007/Vol. 50, No. 11 31

RESOURCES

Here’s a primer on experimental algorithmics, including articles with commentary on methodology and
meetings and publications with examples of high-quality research:

• Demetrescu, C. and Italiano, G. What do we learn from experimental algorithmics? In Proceedings of the
Mathematical Foundations of Computer Science 25th International Symposium, LNCS 1893 (Bratislava, Slovak
Republic, Aug. 28–Sept. 1). Springe LNCS Computer Science Editorial, Heidelberg, Germany, 2000, 36–51.

• Johnson, D. A theoretician’s guide to the experimental analysis of algorithms. In Data Structures, Near
Neighbor Searches, and Methodology: Fifth and Sixth DIMACS Implementation Challenges DIMACS Series in
Discrete Mathematics and Theoretical Computer Science, Vol. 59, M. Goldwasser, D. Johnson, and C. McGeoch,
Eds. American Mathematical Society, Providence, RI, 2002, 215–250.

• McGeoch, C. Toward an experimental method for algorithm simulation. INFORMS Journal on Comput-
ing 8, 1 (Winter 1995), 1–15.

• The DIMACS Challenges, since 1990, have been sponsored by the Center for Discrete Mathematics and
Theoretical Computer Science. Proceedings are published by the American Mathematical Society (dimacs.rut-
gers.edu/Volumes/index.html) as part of the DIMACS Series in Discrete Mathematics and Theoretical Com-
puter Science; dimacs.rutgers.edu/Challenges.

• Three annual workshops cover research in experimental algorithmics and algorithm engineering: The
Workshop on Algorithm Engineering (1997–2001) became (in 2002) the European Symposium on Algo-
rithms, Engineering, and Applications Track. The Workshop on Algorithm Engineering and Experiments has
been held since 1999. And the Workshop on Efficient and Experimental Algorithms has been held since 2001.

• The Journal of Experimental Algorithms is published by ACM; www.jea.acm.org.

