
38 November 2007/Vol. 50, No. 11 COMMUNICATIONS OF THE ACM

EXPERIENCE-DRIVEN
EXPERIMENTAL

SYSTEMS RESEARCH

By Larry Peterson and Vivek S. Pai

PlanetLab is a global platform for experimentally
evaluating wide-area network services [6]. As of
September 2007, it included roughly 800 nodes
spanning 400 sites and 39 countries and hosted
more than 600 experimental research projects
investigating content distribution, anycast,
anomaly and fault diagnosis, publish-subscribe,
routing overlays, and peer-to-peer networks.
PlanetLab also helps motivate and demonstrate
the feasibility of a research facility for catalyzing
future Internet design [1], as exemplified by the
National Science Foundation’s Global Environ-
ment for Network Innovation (www.geni.net).

The most direct
way toward

understanding
whether PlanetLab

and other such
systems serve

their purpose is to
build, deploy, and

use them.

I L L U S T R A T I O N B Y P E T E R H O E Y

Peterson_November 11/28/07 3:11 PM Page 38

COMMUNICATIONS OF THE ACM September 2007/Vol. 50, No. 9 39

Peterson_November 11/28/07 3:11 PM Page 39

40 November 2007/Vol. 50, No. 11 COMMUNICATIONS OF THE ACM

This makes PlanetLab an interesting experi-
mental system for new services at scale and
as a wide-area hosting service. The main
lesson from our experience with Pl a n e t L a b
and the services it hosts is that it is only
t h rough building, deploying, and using

experimental systems that we are able to fully under-
stand the important issues that influence their design.
Such deployment studies lead to systems that evo l ve
i n c rementally based on experience gained from sup-
p o rting an active and size a b l e user community. These
studies complement experimental evaluations under
c o n t rolled conditions using synthetic workloads. Sy n-
thetic workloads permit the thorough evaluation of
trade-offs within a systems domain defined by a set of
assumptions. Su p p o rt for an active user population is
n e c e s s a ry if we want to expose implicit assumptions
or discover the re l e vant set of assumptions in the first
place.

While a discussion of the breadth of services ru n-
ning on PlanetLab would be va l u a b l e ,1 our goal here
is more modest: explore the value of experimental sys-
tems with real users in the context of PlanetLab itself
and the suite of services developed as part of the Con-
tent Distribution Ne t w o rk, or CoDeeN, project built
on top of it by the Ne t w o rk Systems Group at Pr i n c e-
ton Un i versity (codeen.cs.princeton.edu). We’ve
o r g a n i zed our discussion around three main themes:

• Using a system exposes implicit assumptions that
lead to new research opportunities;

• Real systems often balance competing objectives
rather than optimize along a single dimension;
and

• Simple yet robust systems that scale “well
enough” are better than more complicated sys-
tems that require fragile coordination mecha-
nisms.

One of the most important lessons of PlanetLab is
that making a system real and letting users interact
with it re veals the next set of re s e a rch opport u n i t i e s
that we re not obvious at the outset. Su p p o rting a con-
tinuously running system invo l ves more work than
running a prototype just long enough to produce a
p e rformance number, but the cost is worth it from a
re s e a rch perspective. Our history over the past five
years building and measuring a content distribution
n e t w o rkillustrates this point. We began by trying to
design re d i rection strategies that would scale under
load yet produce response times comparable to the

b e s t - k n own designs. Using the best methodology of
the day, we simulated our algorithms and quantified
the potential improvement in aggregate thro u g h p u t
as 60%–91% over the published state of the art [9].

It was at this point in 2002 that PlanetLab became
operational, deploying it in a realistic setting in hopes
of better understanding the efficacy of the algorithms.
Howe ve r, within days of deploying the first ve r s i o n ,
we learned an important lesson: unanticipated traffic
(such as spam) compromises the security of the sys-
tem, making it unusable. So we augmented CoDe e N
with new mechanisms that took this lesson and oth-
ers into account [10]; our own subsequent experience
led to improvements in the system [4].

Within weeks of deploying the new system, we dis-
c ove red that performance was suffering due to failure s
within the Domain Name System (DNS). Based on
additional observations, we determined the root cause
to be unexpected failure of the client-side DNS
s e rvers, not the server-side DNS infrastru c t u re that is
the focus of most DNS re s e a rch. In response, we
demonstrated how the ideas in CoDe e N — d e s i g n e d
to make Web content more available—could be
adapted to also make DNS resolution more ro b u s t .
This experience resulted in deployment of a compan-
ion system (called CoDNS [5]) on Pl a n e t L a b.

By examining CoDeeN use over time, we next
came to re a l i ze that users benefit not only from the
s y s t e m’s caching of files but also from its selection of
n e t w o rk paths. The caching benefits we re prov i d e d
only for smaller files (such as typical text-based We b
pages), but large files (such as videos and software
releases) we re still being re l a yed (though not cached).
Howe ve r, by introducing a new set of mechanisms on
top of CoDeeN, we we re able to split and collective l y
cache these large files and scalably serve them to large
numbers of clients, even for multi-gigabyte files. On e
of the more interesting lessons of this exe rcise is that
many of the algorithms proposed by other re s e a rc h e r s
to solve this problem do not work well in practice and
that it is only through a thorough evaluation of va r i-
ous engineering trade-offs that we we re able to design
a system (called CoBlitz) with robust perf o r m a n c e
under a range of conditions [2]. Howe ve r, we had to
s u c c e s s i vely refine the system as we improved our
understanding of large file usage, server behavior, and
n e t w o rk congestion.

In addition to discovering and solving the next set
of problems, these running systems we re also a boon
with respect to new data. For example, we discove re d
that many assumptions about DNS name stability
and intelligent DNS re d i rection we re wrong and pro-
duced data that can be used by other re s e a rchers [7].
We also collected data by instrumenting CoDe e N

1For a partial bibliography of articles written by network systems researchers see
www.planet-lab.org.

Peterson_November 11/28/07 3:11 PM Page 40

and observed orders of magnitude more Internet ro u t-
ing failures than have been observed through other
o b s e rvation platforms, resulting in a more accurate
model of Internet failure behavior [12]. Fo l l ow - o n
w o rk to more accurately identify these failures led to
d i s c overies about how often router DNS names we re
w rong and how even a small number of errors could
lead to incorrect calculations of path initiation or ISP
connectivity [11]. This re s e a rch helped develop new
heuristics to automatically identify and fix these pro b-
lems in many scenarios and improve the accuracy of
n e t w o rk mapping and modeling. We are curre n t l y
adapting CoDe e N ’s network failure monitoring to be
a continuously running service that re p o rts In t e r n e t
f a i l u res in real time, helping facilitate more network
f a i l u re re s e a rch and allowing other services and appli-
cations to adaptively route around failures.

An epilogue to this story is that we never bothere d
to return to the issue of the specific algorithms used in
the original system, as they we re in the noise re l a t i ve
to the other factors that actually influence an In t e r n e t
s e rvice. This story likely sounds familiar to deve l o p e r s
t h roughout industry where incrementally improv i n g
d e p l oyed systems is the norm. One could make the
case that industry is best positioned to identify re a l -
world issues, with academic re s e a rchers better posi-
tioned to frame problems and conduct contro l l e d
experiments; one could even argue that much of what
they learn through deployment studies is alre a d y
k n own by their colleagues in industry. Howe ve r, our
experience suggests two counterarguments:

Tendency to be general-purpose. Academic
researchers are much more likely to pursue sys-
tems that do not (currently) have commercial
value, tending to be enabling and general-purpose
(like PlanetLab) rather than address an immediate
commercial customer need; and

Access to generally unavailable data. Deploying and
instrumenting real systems give researchers access
to data not otherwise available; unfettered access
to this data—and the ability to add instrumenta-
tion as needed—spawns follow-on research.

THINK ARCHITECTURALLY

Experimental systems research often focuses on eval-

uating engineering trade-offs in order to improve
one or two quantifiable metrics. The design deci-
sions that shaped PlanetLab—like many real-world
systems supporting real users—were in response to
conflicting requirements. The result is a comprehen-
sive architecture based more on balancing global
considerations than on improving perf o r m a n c e
along a single dimension. PlanetLab’s design was
guided by five major requirements:

Provide a global platform. The platform would have
to support both short-term experiments and long-
running services associated with a client work-
load;

Be available immediately. It would have to be avail-
able immediately, even though no one knew for
sure what “it” would be. This meant we had to
evolve PlanetLab incrementally;

Enlist host nodes. We had to convince sites to host
nodes running code written by unknown
researchers from other organizations;

Minimize centralized components. Sustaining growth
would have to depend on support for autonomy
and decentralized control; and

Scale for users. It would have to scale to support
many users with minimal resources.

PlanetLab supports the re q u i red usage model
t h rough distributed virtualization, with each serv i c e
running within a slice of Pl a n e t L a b’s global re s o u rc e s .
Multiple slices run concurrently on Pl a n e t L a b, where
each slice acts as a networkwide container isolating
s e rvices from one another.

To address the re q u i rement of being ava i l a b l e
i m m e d i a t e l y, PlanetLab adopted an organizing princi-
ple called “unbundled management,” that is, the ser-
vices used to manage PlanetLab should themselves be
d e p l oyed like any other service, rather than bundled
with the core system. The case for unbundled man-
agement follows three principles:

• The system should evolve more easily than stan-
dard server operating systems;

• Third-party developers should be able to build
alternative services, enabling a software bazaar,
rather than rely on a single development team

COMMUNICATIONS OF THE ACM November 2007/Vol. 50, No. 11 41

The resea rch co m m u n i ty ’s reward structure
for experimental systems research IS BIASED

AGAINST ARCHITECTURAL WORK.

Peterson_November 11/28/07 3:11 PM Page 41

with limited resources and creativity; and
• Control over PlanetLab resources and, ultimately,

evolution should be decentralized.

Beyond these principles, what made PlanetLab a
design challenge was having to re s o l ve c o n f l i c t s
among the various requirements outlined earlier. We
do not cover the details of how we resolved them
here (see [6]) but highlight the architectural features
we introduced to address them.

The first conflict-induced issue was how to mini-
m i ze centralized components while maintaining the
n e c e s s a ry trust assumptions among users and hosting
sites. We approached this by architecting Pl a n e t L a b’s
c o n t rol plane to include a minimal trusted core. Both
hosting sites and slice users depend on this tru s t e d
i n t e r m e d i a ry, but multiple trusted entities are able to
peer with one another (using a minimal interface) to
s u p p o rt a federation of systems.

The second issue was isolating slices from one
another while allowing some slices to manage other
slices for the sake of unbundled management. Pl a n e t-
Lab includes a mechanism (called “Pro p e r”) that
grants slices narrowly defined privileged operations,
s e l e c t i vely “poking holes” in the isolation mechanism.

The third issue was balancing the need for slices to
a c q u i re the re s o u rces they need while coping with
s c a rce re s o u rces. Pl a n e t L a b’s arc h i t e c t u re thus
includes two features:

Decoupling slice creation from resource acquisition.
Slices hold resources only when required by a ser-
vice or experiment (rather than for the lifetime of
the slice), and slices can use alternative resource
allocators to acquire the resources they need; and

Depending on “fair share” resource allocation as the
default mechanism, augmented with “recovery”
mechanisms that deal with potential resource
thrashing. One such mechanism kills the slice
with the largest physical memory use on a given
node when that node’s swap space is 90% uti-
lized. It has given users an incentive to be careful
about memory consumption, nearly eliminating
memory as a bottleneck resource.

The re s e a rch community’s rew a rd stru c t u re for
experimental systems re s e a rch is biased against arc h i-
tectural work. That is, re s e a rchers are more often
rew a rded for innovations that yield an x% improve-
ment along some quantifiable dimension than they
a re for synthesizing known techniques to produce a
w o rking system that balances conflicting re q u i re-
ments. Mo re ove r, fostering an environment that
encourages re s e a rchers to build and support continu-
ously running services has long-term implications.
Su p p o rting such services provides an incentive to
build general-purpose “helper” and “building block”
s e rvices that are, in turn, of value to other re s e a rc h e r s .
The user community then comes to depend on these
s u b s e rvices, which now must be maintained, re s u l t i n g
in an ongoing funding challenge for the re s e a rc h
c o m m u n i t y.

KEEP IT SIMPLE

In many instances of system development, we
adopted a simple approach as an initial stepping
stone, only to find it is also more desirable long-
term than other approaches. In others, we inten-
tionally chose a simple approach to gain robustness.
While most testbeds expect only one user at a time,
PlanetLab was designed to allow multiple users to
s h a re its re s o u rces and support long-running distrib-
uted services. For simplicity, Linux was chosen as the
per-node operating system, expecting to revisit the
decision later when virtual machines and other oper-
ating systems would be more of an issue. In re t ro-
spect, choosing a single operating system re d u c e d
management overhead while allowing us to deve l o p
the kernel customization needed to scale with Pl a n e t-
L a b’s growth. Nodes now regularly run 50 to 100
simultaneous experiments, enabled in part by the use
of the VSe rver mechanism, which virt u a l i zes the
filesystem and userspace while running only one OS
kernel [8].

Pl a n e t L a b’s popularity motivated the case for more
c o n t rol over re s o u rce allocation, with several compet-
ing proposals. We chose Sirius [6], a system for han-
dling re s o u rce re s e rvations, to allow any slice on
PlanetLab to request a one-hour re s e rvation of guar-

42 November 2007/Vol. 50, No. 11 COMMUNICATIONS OF THE ACM

The st ra tegy with PlanetLab has been to
a rc h i tect the system so THE CO M M U N I T Y CAN ADD ENHANCEMENTS

(t h rough unbundled management and fe d e ra t i o n) and,
in turn, define a minimal set of inte r fa ces.

Peterson_November 11/28/07 3:12 PM Page 42

anteed CPU and link re s o u rces across Pl a n e t L a b.
C o n ventional wisdom suggests that such a scheme
would lead to a tragedy of the commons, since there
is no charge for the extra CPU. In practice, this mech-
anism works well and is rarely even 50% subscribed.
Mo re ove r, the continuously running services on Pl a n-
etLab do not need this mechanism, since each has its
own adaptation mechanism to handle a range of node
capacities, including heavily subscribed nodes. The
s h o rt-term experiments sometimes use it but generally
d o n’t run often enough to oversubscribe Sirius. As
PlanetLab grows, we may look to enhance Si r i u s ,
since it provides a boost across all PlanetLab nodes,
with most of its users running on only a subset of
nodes.

Simplicity has also guided the longest-ru n-
ning monitoring service on Pl a n e t L a b,
called CoMon [3], which centrally collects
and analyzes node activity. While it may
seem odd to not use a distributed system
to monitor a distributed platform, the cen-

t r a l i zed approach has kept message traffic low while
reducing monitoring CPU utilization on the nodes.
C o Mon generally consumes about 0.3% of each
n o d e’s CPU; even monitoring 750 nodes eve ry five
minutes, it consumes less than 1Mbps in aggre g a t e .
While traffic consumption scales linearly with the
number of nodes at the centralized collector, moni-
toring bandwidth stays constant at each node—
i m p o rtant when monitoring nodes with network
p roblems. This design also makes it much simpler to
collect certain statistics (such as median values and
top values).

C o Blitz, our large file system, is one of the more
i n t e resting examples of simplicity in design, with
most design decisions running counter to conve n-
tional wisdom. It uses an unstru c t u red topology
rather than building a distributed hash table or simi-
lar stru c t u re. While this approach causes more pair-
wise heartbeat traffic, it also has all of the live n e s s
information traverse the same network paths as the
data transfers, reducing routing problems caused by
mismatched information.

Having each node independently pick its ow n
peers runs counter to ideas about scale, but we observe
that even the largest commercial content distribution
n e t w o rks have on the order of 1,000 points of pre s-
ence. While running directly on end-user machines
may sound appealing, security considerations pre ve n t
H TTP-compatible systems from taking this
a p p roach. Bi t To r rent, in contrast, can have the serve r
p rovide content hashes, mitigating the risk, but

C o Blitz is designed to run using standard Web serve r s
and unmodified Web clients. This re q u i rement has
also driven us to use regular transmission control pro-
tocol (TCP) connections, contrary to the finer granu-
larity that the user datagram protocol provides for the
c u r rent generation of distributed hash tables. How-
e ve r, the incidental benefit of TCP is that it also has
f ewer problems with stateful firewalls and intru s i o n -
detection systems. Despite these seemingly “u n a d-
va n c e d” design decisions, CoBlitz remains one of the
busiest services on PlanetLab and the only large-file
s e rvice that has stayed in operation since its inception.
We attribute at least part of this longevity to the
o b s e rvation that simplicity has made the system more
robust and easier to debug and maintain over time.

While the systems community has long re c o g n i ze d
the value of simplicity, it is equally true that there is
constant pre s s u re to “f i x” simple systems to correct for
their obvious flaws. Sometimes this is necessary if the
system is going to “g row up” and be sustainable on a
long-term basis. Sometimes it is merely to satisfy the
need of a solution looking for a problem. The trick is
to re c o g n i ze the difference. The strategy with Pl a n e t-
Lab has been to architect the system so the commu-
n i t y can add enhancements (through unbundled
management and federation) and, in turn, define a
minimal set of interfaces. We cannot claim to have
gotten these interfaces completely right yet, but the
strategy is a central design principle of the effort.

CONCLUSION

Classical science equates experimentation with run-
ning controlled (lab) experiments that in computer
science are often designed to evaluate implementa-
tion and engineering choices. However, computer
science also benefits from deployment studies (field
trials) that involve building and running prototypes
subjected to real use. Building something and watch-
ing it run thus helps us identify implicit assump-
tions, the need for different kinds of functionality,
surprising behavior, and unexpected limitations. In
this sense, working with experimental systems is like
constructing a building; engineering principles tell
us whether the design is sound, but we need to build
it and use it to decide how well it serves its purpose.

We have illustrated how such studies have been
beneficial for PlanetLab and the suite of network ser-
vices that run on top of it. De p l oyment studies are
valuable in exposing new re s e a rch opportunities, forc-
ing designers to think “a rc h i t e c t u r a l l y” across the
complete system rather than focus on a single dimen-
sion, and showing that real systems benefit from sim-
ple design, effectively discouraging the temptation to
i n t roduce complexity for complexity’s sake. c

COMMUNICATIONS OF THE ACM November 2007/Vol. 50, No. 11 43

Peterson_November 11/28/07 3:12 PM Page 43

References
1. Anderson, A., Peterson, L., Shenker, S., and Turner, J. Overcoming

the Internet impasse through virtualization. IEEE Computer 38, 4 (Apr.
2005), 34–41.

2. Park, K. and Pai, V. Scale and performance in the CoBlitz large-file dis-
tribution service. In Proceedings of the Third Symposium on Networked
Systems Design and Implementation (San Jose, CA, May 8–10).
USENIX Association, Berkeley, CA, 2006, 29–44.

3. Park, K. and Pai, V. CoMon: A mostly scalable monitoring system for
PlanetLab. ACM SIGOPS Operating Systems Review 40, 1 (Jan. 2006),
65–74.

4. Park, K., Pai, V., Lee, K.-W., and Calo, S. Securing Web service by
automatic robot detection. In Proceedings of the 2006 Usenix Annual
Technical Conference (Boston, MA, May 30–June 3). USENIX Associ-
ation, Berkeley, CA, 2006.

5. Park, K., Pai, V., Peterson, L., and Wang, Z. CoDNS: Improving
DNS performance and reliability via cooperative lookups. In Proceed-
ings of the Sixth Symposium on Operating System Design and Implemen-
tation (San Francisco, Dec. 6–8). USENIX Association, Berkeley, CA,
2004, 199–214.

6. Peterson, L., Bavier, A., Fiuczynski, M., and Muir, S. Experiences
building PlanetLab. In Proceedings of the Seventh Symposium on Oper-
ating System Design and Implementation (Seattle, WA, Nov. 6–8).
USENIX Association, Berkeley, CA, 2006, 351–366.

7. Poole, L. and Pai, V. ConfiDNS: Leveraging scale and history to
improve DNS security. In Proceedings of the Third USENIX Workshop
on Real, Large Distributed Systems (Seattle, WA, Nov. 5). USENIX
Association, Berkeley, CA, 2006.

8. Soltesz, S., Potzl, H., Fiuczynski, M., Bavier, A., and Peterson, L. Con-
tainer-based operating system virtualization: A scalable, high-perfor-
mance alternative to hypervisors. In Proceedings of EuroSys 2007
(Lisbon, Portugal, Mar. 21–23, 2007).

9. Wang, L., Pai, V., and Peterson, L. The effectiveness of request redi-
rection on CDN robustness. In Proceedings of the Fifth Symposium on
Operating System Design and Implementation (Boston, Dec. 9–11).

USENIX Association, Berkeley, CA, 2002, 345–360.
10. Wang, L., Park, K., Pang, R., Pai, V., and Peterson, L. Reliability and

security in the CoDeeN content distribution network. In Proceedings of
the 2004 USENIX Annual Technical Conference (Boston, MA, June
27–July 2). USENIX Association, Berkeley, CA, 2004, 171–184.

11. Zhang, M., Ruan, Y., Pai, V., and Rexford, J. How DNS misnaming
distorts Internet topology mapping. In Proceedings of the 2006
USENIX Annual Technical Conference (Boston, June). USENIX Asso-
ciation, Berkeley, CA, 2006, 369–374.

12. Zhang, M., Zhang, C., Pai, V., Peterson, L., and Wang, R. PlanetSeer:
Internet path failure monitoring and characterization in wide-area ser-
vices. In Proceedings of the Sixth Symposium on Operating System Design
and Implementation (San Francisco, Dec. 6–8). USENIX Association,
Berkeley, CA, 2004, 167–182.

Larry Peterson (llp@cs.princeton.edu) is the Robert E. Kahn
Professor of Computer Science at Princeton University, Princeton, NJ,
and director of the Princeton-hosted PlanetLab Consortium.
Vivek S. Pai (vivek@cs.princeton.edu) is an associate professor i n
the Department of Computer Science at Princeton University,
Princeton, NJ.

This work was funded in part by National Science Foundation grants CNS-0520053,
CNS-0454278, and CNS-0335214 and by Defense Advanced Research Projects
Agency contract N66001-05-8902.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. To copy otherwise, to republish, to post on servers or to redis-
tribute to lists, requires prior specific permission and/or a fee.

© 2007 ACM 0001-0782/07/1100 $5.00

44 November 2007/Vol. 50, No. 11 COMMUNICATIONS OF THE ACM

Peterson_November 11/28/07 3:12 PM Page 44

