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The two Defense Advanced Research Projects
Agency (DARPA) robotics programs we discuss
here are designed to further the development of
autonomous locomotion and navigation. Each
addresses challenging problems that have shown
steady but slow progress to date. Now, however, 
a combination of machine-learning techniques
[5] and smart development techniques has begun
to accelerate the pace of autonomous systems
development. 

One innovative feature is the way the programs’
research teams have been supplied with common
hardware so they are better able to focus on
autonomous behavior. In addition, the programs 
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use frequent testing to monitor success and uncover
and resolve deficiencies. This promotes rapid innova-
tion, allowing both the government and the teams to
modify their methods as they see the results. Finally,
the programs foster collaboration among the teams.
Working together, they have built on successful
approaches, avoided dead ends, and made more
progress than would be expected in an isolated, com-
petitive environment. The programs
have thus far achieved autonomous
locomotion by a robotic quadruped
over terrain that was completely
impassible two years ago and have
more than doubled the speed of
autonomous navigation through com-
plex terrain. 

People expect robots to get from
place to place on their own, much as
people do. That is, using their on-
board sensors, they should be able to
know where they are and where they
are trying to get to and understand
what is in between and how to control
their bodies to traverse the distance. In
general, this is an unsolved problem. 

If we constrain the problem to on-
road navigation, with waypoints defin-
ing the route to an accuracy of a few
meters, with few obstacles on the pre-
scribed path, then robotic vehicles can
successfully travel at high speed for distances exceed-
ing 100km. Such a milestone was achieved in the
2005 DARPA Grand Challenge autonomous vehicles
race (www.darpa.mil/grandchallenge/) [2, 3]. How-
ever, if we require autonomous navigation in rough
off-road, complex terrain with widely spaced way-
points, then robotic systems fare poorly. To address
this need, DARPA created the two programs: Learn-
ing Applied to Ground Vehicles (LAGR) in 2004 and
Learning Locomotion (L2) in 2005. Here, we
describe the experimental methodology they use; the
algorithms developed for the programs are described
elsewhere [5]. 

The traditional approach to autonomous robot
navigation for the 10 years preceding the programs
was to map out the 3D environment in the vicinity of
the vehicle through either laser range finders
(LADAR) or stereo cameras, then use a form of rule-
based system to determine which regions were tra-
versable and which were not. A path-planning
algorithm would then direct the vehicle to its destina-
tion. Motor control was usually accomplished
through a combination of rule-based commands.
While progress was made with this approach, the sys-

tems tended to show brittle, scripted behavior, consis-
tently making the same errors again and again. A
report commissioned by the National Academy [1]
showed only a doubling of autonomous off-road
speed in complex terrain over the course of a decade.
DARPA expected that by introducing machine learn-
ing into the picture, the rate of progress would accel-
erate significantly. 

DARPA identified three major challenges for
autonomous navigation in complex, unstructured
environments: 

Detecting objects robustly to discriminate among
objects (such as rocks and other obstacles and
compressible bushes and other non-obstacles); 

Overcoming limitations of nearsighted sensing
(LADAR or stereo) to minimize the probability
of the vehicle getting caught in a cul-de-sac; and 

Walking, using a high degree-of-freedom vehicle in
extremely rough terrain. 

Looking to make quick progress, DARPA decided to
factor the problem. The first two items are primar-
ily issues in machine perception and are addressed
by the LAGR program. The third item concerns
motor control and is addressed by the L2 program. 

Like other DARPA efforts, prior robotics programs
funded multiple teams to explore the problem in dif-
ferent ways. In most of them, researchers would first
build or customize an existing robot, then write low-
level “housekeeping” software to control the robot’s
systems, and finally write the code that advances the
research objectives. In addition to diverting the
research effort and driving up costs, this approach
meant that each research team had a unique vehicle,
making it extremely difficult to compare results from
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one group to another. 
To circumvent this problem in LAGR and L2,

DARPA instead contracted with external suppliers to
build small fleets of identical vehicles that were sup-
plied to each research team. For the LAGR program,
Carnegie Mellon University’s National Robotics Engi-
neering Center built the 100kg hHerminator vehicle
(www.rec.ri.cmu.edu/projects/lagr/index.htm) shown

in Figure 1. The hHerminator’s
onboard sensors include two stereo
camera pairs, a wide-area augmen-
tation system GPS antenna and
receiver, an inertial measurement
unit (IMU), a bumper impact sensor, and short-range
IR sensors, all controlled by four Pentium M com-
puters. While the hHerminator is sensor-rich, its
motor control is simple; its two front electrically driven
wheels can be moved in tandem to go forward or in
reverse or differentially to turn. The rear wheels are
passive casters. hHerminators are meant to drive off-
road but only over terrain with noncompressible obsta-
cles no greater than about 5cm in height. 

For the L2 program, Boston Dynamics built the
3kg Little Dog vehicle (see Figure 2) (www.bostondy-
namics.com/content/sec.php?section=LittleDog), a
12-degree-of-freedom quadruped robot with onboard
IMU, foot touchdown sensors, and short-range IR
sensor; otherwise, it is blind. The control system relies
on an external Vicon motion-capture (mocap) system
to measure the position and pose of the robot in real
time. DARPA intentionally removed the extremely
challenging perception problem from the program,
allowing researchers to concentrate on locomotion. 

The L2 program also built a series of terrain boards

on which the Little Dog walks. These boards were
laser-scanned to obtain precise surface geometries that
are also supplied to the control system in real time.
Thus, by using the mocap systems in conjunction with
the scanned boards, a Little Dog has nearly perfect
knowledge of its environment and of itself. This means
the L2 research teams can focus on learning and con-
trol systems, without having to also tackle perception.

Figure 2 shows a Little Dog on a terrain board sur-
rounded by a mocap system; most terrain boards cre-
ated to date mimic the natural environment. 

Without resorting to special-purpose computing
hardware, Little Dog is too small to carry significant
onboard computer power. Most of the complex com-
puting used to control Little Dog is provided by an
off-board processor linked to the robot by a wireless
connection.

Each of the eight teams selected for the LAGR pro-
gram was supplied with two hHerminators. In the L2
program, each of the six teams was supplied with a
Little Dog robot and mocap system. In both pro-
grams, after three months of familiarization with their
systems, the teams were required by DARPA to sub-
mit code for monthly tests at a government site. 

The monthly tests were a key aspect of both pro-
grams and served several functions. First, they gave
quick feedback to both DARPA and the teams on the
progress of their research. This allowed DARPA to
adjust subsequent tests to push them toward maxi-
mum performance. Second, making the results of the
tests known among the teams fostered competition,
further encouraging them to excel. 

The LAGR program was structured as two 18-
month phases; L2 has had a single 15-month phase
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Figure 2. Learning
locomotion test site;

the Little Dog vehicle
is near the center of

the terrain board. 



followed by two 12-month phases. In order to
advance to the next phase in each program, teams are
required to pass preestablished metrics. 

DARPA decided at the inception of both programs
that these criteria would be fixed and not relative, so
the teams would not compete with one another for
second-phase contracts. It was thus possible that all or
none of the teams would advance to the second phase.

This policy contrasts with a down-selection in which
only a limited number of first-phase teams advance.
The absence of a down-select means that teams are
more willing to share methods and even code with
one another. DARPA encourages such sharing and
allows each team to contribute in areas in which it is
most capable. For the third phase of the L2 program,
scheduled to begin in the second half of calendar year
2008, DARPA will down-select from six to three per-
former teams. 

Objectively measuring progress in autonomous
robotics research has always presented challenges,
including a lack of a standard vehicle and an a priori
measure of the difficulty of a course (which in turn
depends on the mechanical capability of the vehicle),
as well as difficulty comparing results from one test
site to results from other sites. Testing often takes the
form of a large, complex demonstration at the end of
a development program. Developers do not have the
opportunity to learn from their mistakes. At its worst,
testing is performed under carefully selected condi-
tions to ensure a high probability of success. Such
tests do not adequately explore the robustness of a sys-
tem or assess how it might perform in the real world. 

In both programs, all teams are supplied identical
(within manufacturing tolerances) vehicles. They

develop code to control their vehicles at their own
facilities, then send the code to DARPA for testing.
The DARPA test team then independently evaluates
the code onto either an hHerminator or a Little Dog
on identical robots at the program test site and runs a
series of trials to try to determine the effectiveness of
the code. 

The hHerminators in the LAGR program were
shipped with a modular “baseline” code
developed at the National Robotics
Engineering Center, which was state-of-
the-art in 2004 and a legacy of the com-
pleted DARPA PerceptOR program [4].
Thus the teams were able to examine
how the baseline system performed in
their own environments. The baseline
code included modules for stereo analy-
sis, obstacle detection, and path plan-
ning. Teams were able to replace
individual modules as they developed
their software; they were also able to
compare the performance of their own
code against that of the baseline system
to readily determine if their modifica-
tions were indeed improvements. 

In the LAGR tests, the baseline code
also served an additional function: cali-
brating the difficulty of the test courses
(each about 100 meters long) devised by
DARPA. That is, the average speed of an
hHerminator vehicle running baseline
code on a test course was defined as the
course’s baseline speed. A team’s code’s
speed on the course was normalized by
the baseline speed, enabling consistent
comparison with the baseline. This

process helped compensate for variations in difficulty
among different courses and let DARPA measure
progress from one test to the next. 

By design, LAGR courses are changed each month
so teams cannot “memorize” the features of a particu-
lar course. About 70% of the tests have been con-
ducted at various locations at the U.S. Army’s Fort
Belvoir in Virginia. The other tests were conducted at
test sites in Hanover, NH, and San Antonio, TX (see
Figure 3). These locations were chosen for their abil-
ity to provide a variety of terrain and vegetation types. 

In order to advance to the second phase of the
LAGR program, teams had to demonstrate an average
speed 10% faster than the baseline system on two of
the three final tests in the first phase. This rather
modest metric was chosen to allow teams to attempt
risky but promising approaches that might not be
fully developed during the first 15 months of the pro-

58 November  2007/Vol. 50, No. 11 COMMUNICATIONS OF THE ACM

Figure 3. 
LAGR testing 
at the 
Southwest
Research 
Institute, 
San Antonio,
TX. 



gram. All eight teams achieved this metric on the
phase-end tests, with speeds from 1.2 to 2.2 times the
baseline performance. The objective for the second
phase, which is still in progress, is three times the base-
line speed under more robust conditions. Compared
to the National Academy report, LAGR has com-
pressed the pace of doubling performance from 10
years to less than 36 months. 

In the L2 tests, courses took the form of manufac-
tured terrain boards. Each new board was used for a
DARPA test, then distributed to the teams for further
in-house testing. New boards were not distributed
prior to a test so the teams would not be tempted to
memorize a script for traversing the board. Because
boards are expensive to manufacture, it was not always
possible to test on a “virgin” board. In these circum-
stances DARPA would usually change the orientation
of a course across a board or through the tilt of a board
to foil attempts at scripted runs. 

In both programs, DARPA gave teams complete
logs of the test runs to recreate test conditions and
analyze their performance. Teams are still mastering
the complex terrain boards, but it is already clear that
L2 has significantly advanced autonomous legged
locomotion on extreme terrain (www.cs.cmu.edu/
~cga/leg-learn/). 

In order to advance to the second phase of L2,
teams were required to make their Little Dogs traverse
obstacles 0.4 leg lengths in height (4.8 cm) and move
at an average speed of 0.1 leg lengths per second (1.2
cm/sec). For the second and third phases, the metrics
for speed are defined as 4.2 and 7.2 cm/s, respectively,
and obstacle heights are defined as 7.8 and 10.8 cm,
respectively. 

A key cost-benefit of this standardized testing
approach is that it reduces testing costs to the govern-
ment. By using a common platform and standardized
software process, it is able to test frequently at a lower
cost per test. In prior DARPA robotics programs, the
government’s test group would invite research teams
to a central location to compare the performance of
several systems on a standard course. The government
would incur substantial shipping and travel costs for
both the test and the research teams. In addition to
financial costs, the extra travel and logistics takes valu-
able time from research. 

In DARPA’s new model for testing, the govern-
ment has reduced its costs in several areas. First, by
providing a common platform, teams focus on soft-
ware development and do not have to dedicate a team
member to vehicle maintenance. Second, because the
teams transmit their code to the government rather
than travel to an event, the government is able to eval-
uate progress on its own timetable. Third, research

team personnel save time by not having to travel to
each test, instead monitoring performance by viewing
real-time video and streaming data. Finally, dissemi-
nating data logs to all teams gives each one a much
larger data set than it could reasonably expect to col-
lect alone. 

CONCLUSION

These two DARPA programs in learned
autonomous locomotion and navigation have devel-
oped clear and simple experimental methods for
measuring progress and for encouraging cross-team
cooperation. Even though both are still ongoing,
they have generated considerable scientific knowl-
edge and insight. By providing each team with a stan-
dard vehicle, DARPA has focused research on
producing new science, rather than on nursing a semi-
custom robot. The framework for regular, objective
evaluation of relative performance was intended to
promote innovation, not hinder it. Midway into these
programs, initial results indicate the strategy is work-
ing.  
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