
NOKI’H-HOLLAND 

Experimental Evaluation in Computer Science: 
A Quantitative Study 

Walter F. Tichy, Paul Lukowicz, Lutz Prechelt, and Ernst A. Heinz 
Unicersity of Karlsruhe, Karlsruhe, Germany 

A survey of 400 recent research articles suggests that 

computer scientists publish relatively few papers with 

experimentally validated results. The survey includes 

complete volumes of several refereed computer sci- 

ence journals, a conference, and 50 titles drawn at 

random from all articles published by ACM in 1993. 

The journals of Optical Engineering (OE) and Neural 

Computation (NC) were used for comparison. Of the 

papers in the random sample that would require ex- 

perimental validation, 40% have none at all. In jour- 

nals related to software engineering, this fraction is 

50%. In comparison, the fraction of papers lacking 

quantitative evaluation in OE and NC is only 15% and 

12%, respectively. Conversely, the fraction of papers 

that devote one fifth or more of their space to experi- 

mental validation is almost 70% for OE and NC, while 

it is a mere 30% for the computer science (CS) random 

sample and 20% for software engineering. The low 

ratio of validated results appears to be a serious weak- 

ness in computer science research. This weakness 

should be rectified for the long-term health of the 

field. 

1. 

A 

The fundamental principle of science, the definition 
almost, is this: the sole test of the validity of any idea is 
experiment. -Richard P. Feynman 

Beware of bugs in the above code; I have only 
proved it correct, not tried it. -Donald E. Knuth 

INTRODUCTION 

large part of CS research consists of proposing 

new designs: systems, algorithms, and models. Such 
designs must be judged by whether they increase our 
knowledge about what are useful and cost-effective 
problem solutions. In most cases, objective judge- 
ment can only be achieved on the basis of repro- 
ducible experiments. 

This study was motivated by our subjective im- 
pression that experimental evaluation is often ne- 
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glected in CS research. We feared that the quality of 
CS research might be inferior to other disciplines, in 
particular the natural sciences, the engineering sci- 
ences, and applied mathematics. To test whether 
this impression was merely scientific pessimism, we 
performed an empirical study involving both CS and 
non-CS publications. This article presents the design 
and the results of this study. 

We classified research articles in peer-reviewed 
journals and conferences. The classification divides 
the set of articles into theoretical work, design and 
modeling work, empirical work, hypothesis testing, 
and other (for details see Section 3). Ideally, theoret- 
ical work should be well balanced with empirical 
work, and design and modeling work should contain 
experimental evaluation. Assessing the quantity and 
quality of such evaluations is the main purpose of 
this study. We used the fraction of space each article 
devotes to evaluation as an indicator of quality. 
Section 3.3 explains the rationale for this approach. 

We sampled a broad set of recent CS publica- 
tions: the complete volumes 9-11 (1991-1993) of 
ACM Transactions on Computer Systems (TOG’S), the 
complete volumes 14-15 (1992-1993) and numbers 
1 and 2 of volume 16 (1994) of ACM Transactions on 
Programming Languages and Systems (TOPLAS), the 
complete volume 19 (1993) of IEEE Transactions of 
Software Engineeting (TSE), and all papers from the 
Proceedings of the 1993 SIGPLAN Conference on 
Programming Language Design and Implementation 
(PLDI). Moreover, we drew a random sample of 74 
titles from the set of all works published by ACM 
in 1993, using the INSPEC data base (STN Inter- 
national, 1994). From this sample, we excluded 24 
articles that were either inappropriate (because they 
are not peer-reviewed research papers) or not avail- 
able in our library. See Appendix A for details. The 
resulting set contains 50 papers, of which 30 are 
refereed conference contributions. This sample rep- 
resents a fair cross-section of peer-reviewed re- 
search in CS. 
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For comparison, we reviewed publications from 
two other fields: volume 5 (1993) of Neural Compu- 
tation (NC), and numbers 1 and 3 of volume 33 
(1994) of Optical Engineering (OE). NC, published 
by MIT Press, is an interdisciplinary journal in the 
field of neuroscience. It contains articles about arti- 
ficial neural networks, neural modeling, and the 
theory 
of neural computation; the contributors come from 
many disciplines, e.g., biology, computer science, 
mathematics, medicine, physics, and psychology. We 
chose NC because it might share characteristics 
with CS due to its youth and partial overlap with CS. 
OE, published by the International Society for Opti- 
cal Engineering, is a journal devoted to applied 
optics, optomechanics, optoelectronics, image pro- 
cessing research, and related fields. Most contri- 
butors come from physics, electrical engineering, 
optics, astronomy, space science, and mechanical 
engineering. We chose OE because optics, similar to 
CS, has many immediate applications, but in con- 
trast has a longer history. 

The remaining sections review related work, intro- 
duce the methodology of our study, present the 
observations, and discuss accuracy. 

2. RELATED WORK 

Obviously, the views on the quality of experimen- 
tal CS are quite contradictory; yet we could not find 
any attempt in the literature to objectively assess the 
quantity or quality of experimental work in CS. 

The literature contains only a few articles about the 
nature of experimental CS, and we are not aware 
of any systematic attempt to assess research in this 
area. 

3. METHODOLOGY 

Early surveys (Feldman and Sutherland; 1979; 
McCracken et al., 1979) published in 1979 describe 
the state of experimental CS with respect to the 
poor support it received. Today, the situation is 
perceived as largely unchanged: in 1994, the Com- 
puter Science and Telecommunications Board con- 
cluded that experimental CS is still underfunded, 
and that researchers in the area often face difficult 
career paths at universities. 

The initial step was to define reasonable classifica- 
tion criteria. Each author then performed his classi- 
fication tasks independently of the others, in order 
to minimize possible distortions caused by direct or 
indirect mutual influence. 

In 1980, Denning defined experimental CS as 
“measuring an apparatus in order to test a hypothe- 
sis.” Denning noted that standards in the natural 
sciences describe how to carry out such work prop- 
erly, but that CS rarely performs well by these 
standards. He concluded that “if we do not live up 
to the traditional standards of science, there will 
come a time when no one takes us seriously.” In 
later articles, Denning (1981a, 1981b) cited the field 
of performance evaluation as a positive example of 
experimental CS research. 

All four authors classified the ACM papers drawn 
at random; groups of two did so for PLDI, TOPLAS, 
and TSE, whereas only single persons handled NC, 
OE, and TOCS. A degree of uniformity was achieved 
by having the same person classify nearly all samples 
(except NC). The following table shows who actually 
classified which sample. 

Ernst Lutz Paul Walter 

NC X 
OE X 
TOCS X 
Random X X X X 
PLDI X X 
TOPLAS X X 
TSE X X 

3.1 Classification 

Several articles describe the role of experimental Our classification scheme distinguishes five major 
research in branches of CS, e.g., machine learning categories: formal theory, design and modeling, em- 
(Langley, 1988), algorithms (Hooker, 19941, or soft- pirical study, hypothesis testing, and other. These 

ware engineering (Fenton et al., 1994). The latter 
article is quite critical of software engineering re- 
search and states “there are far too few examples of 
moderately effective research.” Baldwin and Koo- 
men (1992) discuss practicing experimental com- 
puter science during CS education. 

In 1990, Iyer wrote that “experimental CS is a 
relatively new, yet fast developing area” and finds “it 
is indeed encouraging to see that there is substantial 
research going on in this important area.” Four 
years later, however, Hooker (1994) notes that ex- 
perimental research is dramatically underdeveloped 
in algorithms research. He states that most experi- 
mental efforts “fall short of science on several lev- 
els,” and continues, “it is symptomatic of the situ- 
ation in operations research (OR) and computer 
science one cannot publish reports that an algorithm 
does not perform well in computational tests.” In a 
similar spirit, Bailey (1991) presents a list of com- 
mon experimental flaws in the field of computer 
performance evaluation, suggesting that many of 
these errors are committed intentionally-to “fool 
the masses.” 
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categories suffice for our purposes. Moreover, they 
appear general enough to be applicable to other 
disciplines as well. 

Publications of the design and modeling category 
require reproducible experiments for validation of 
claims. Without validation, they fail to establish use- 
ful and credible results. Our classification captures 
the importance of experimental validation by further 
subdividing the design and modeling category ac- 
cording to the space devoted to the description of 
experimental evaluation. 

3.2 Major Categories 

To achieve an acceptable degree of objectivity, we 
applied the classification criteria to the main claims 
and contributions of the surveyed papers. Main 
claims and contributions are usually clearly stated in 
the abstracts, introductions, or conclusions of arti- 
cles. The classification criteria are as follows. 

Formal theory. This category consists of articles 
whose main contributions are formally tractable 
propositions, e.g., lemmata and theorems and their 
proofs. 

Design and modeling. The main contributions of 
articles in this category are systems, techniques, or 
models, whose claimed properties cannot be proven 
formally. Examples include software tools, perfor- 
mance prediction models, and complex hard- and 
software systems of all kinds. 

Empirical work. Articles in this category collect, 
analyze, and interpret observations about known 
designs, systems, or models, or about abstract theo- 
ries or subjects (as this paper does). The emphasis is 
on evaluation, not on new designs or models. 

Hypothesis testing. Articles in this category define 
hypotheses and describe experiments to test them. 

Other. This category includes articles that do not 
fit any of the four categories above, e.g., surveys. 

3.3 Subclasses of Design and Modeling 

Work in design and modeling is further classified 
according to the experimental evaluation that ap- 
pears in it. We used a simple and objectively quan- 
tifiable criterion, namely, the physical space devoted 
to describing experimental setups, presenting obser- 
vations, and interpreting results. We partitioned the 
papers into five subclasses of O%, O-10, 10-20, 
20-50, and > 50% of space per article devoted to 
such material. 

_I. SYSTEMS SOFTWARE 11 
19%: 28:0- 1x 

Although space is a purely quantitative measure- 
ment, we believe that it is also indicative of quality 
based on the following two assumptions. 

The amount of space devoted to the description 
of experimental evaluation and the importance 
attached to it by authors and viewers are closely 
correlated. 
The importance attached to and the quality of 
experimental evaluation are closely correlated. 

Both assumptions are plausible, but we have not 
validated them. Together they suggest a correlation 
between the quality of experimental evaluation and 
the amount of space devoted thereto. 

Although these assumptions need not always ap- 
ply, our collective impressions during the study sup- 
port a positive correlation. Where we felt confident 
to judge quality, we rarely found mismatches. Intu- 
itively, it is difficult to write something meaningful 
about a difficult experimental set up and the inter- 
pretation of results in, say, 3 pages of a 20-page 
paper. Conversely, a long description of an uninter- 
esting experiment is likely to be rejected by review- 
ers. We attribute the positive correlation between 
quality and space to a functionin,g process of peer 
review. 

In any event, one of our main observations con- 
cerns papers that have no experimental validation at 
all. For an absent evaluation, a correlation between 
quality and space is moot. 

3.4 Assessing Experimental Evaluation 

Recall that design and modeling papers state claims 
that cannot be proven by logical reasoning, but 
require experimental evaluation. Hence, we looked 
for designs, systems, algorithms executed, techniques 
and methods applied, and models validated. This 
material is generally easy to spot: it manifests itself 
in tables, graphs, or section headings and is often 
summarized in abstracts. 

We did not attempt to assess quality of experi- 
mental work in any way. But we did try to include 
only what appeared to be true experimental work. 
The nature of true experiments is characterized by 
testing claims in an objective and repeatable man- 
ner. For example, benchmark measurements are ac- 
ceptable, because they are repeatable and their out- 
comes are not completely determined in advance. 
The only subjective part is the composition of the 
benchmark. 

We excluded demonstrations of systems, because 
in essence they are predetermined demonstrations 
of functionality, not objective measurements. Their 
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outcomes are completely determined in advance and 
often not measurable. Examples that appear in pa- 
pers, even if extensive, are also excluded, because 
they merely illustrate concepts. 

It proved difficult to asses whether simulation 
set-ups constitute acceptable experimental work. Af- 
ter some initial experience, we formulated the fol- 
lowing guideline: simulation is regarded as true ex- 
perimentation if and only if 

1. 

2. 

4. 

it is used to generate input data for other true 
experiments, or 
it uses data traces of real-world events as inputs 
and is conducted in realistic set-ups, e.g., in gen- 
erally accepted simulation environments. 

OBSERVATIONS 

This section summarizes the overall results of our 
study according to the two-level classification in the 
previous section. The complete classification data 
can be found in Appendix B. 

Rather than averaging the class sizes, we only 
took classification data from one person (Paul) to 
compile the results in this section. The other classi- 
fiers’ data are used for bounding the error (Section 
5). This approach has the advantage that the classi- 
fication criteria are applied uniformly to all samples. 
The only exception is NC, which was classified by a 
different person. 

4.1 Major Categories 

Table 1 presents class sizes for the major categories 
per sample, whereas Figure 1 depicts the classes as 
percentages of the total number of articles in each 
sample. Three important observations directly follow 
from these data. 

1. The majority of articles in all samples consists of 
design and modeling work. 

2. With the exception of TSE, the CS samples have 
a significantly lower percentage of empirical work 
than OE and NC. 

Table 1. The Absolute Cardinalities of Major Categories 
(Total Number of All Classified Articles = 403) 

NC OE TOCS Random PLDI TOPLAS TSE 

Theory 14 6 3 6 2 19 18 
Design 49 46 31 35 25 26 47 
Empirical 812 3 1 2 4 15 
Hypothesis 0 3 0 1 0 0 0 
Emp.+ Hyp. 8 15 3 2 2 4 15 
Other 18 1 7 0 3 7 
Total 72 75 38 50 29 52 87 
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Figure 1. The relative cardinalities of major categories 
(sum of all articles per sample = 100%). 

3. Hypothesis testing is extremely rare in all samples 
(4 articles out of a total of 403). 

Because hypothesis testing is so rare, we combined it 
with empirical work in Figure 1. 

4.2 Subclasses of Design & Modeling 

The subclass cardinalities for experimental evalua- 
tion in design and modeling work appear in Table 2; 
percentages relative to the total number of design 
and modeling articles are shown in Figure 2. 

The following observations are obvious: 

There is a disproportionally high percentage of 
design and modeling work without any experi- 
mental evaluation in the CS samples compared 
with NC and OE (43% vs. 14%). 
In NC and OE, there are significantly more de- 
sign and modeling articles devoting > 20% of 
their space to experimental evaluation than in the 
CS samples (67% in OE vs. 31% in the random 
sample). 
Samples related to software engineering (TSE 

and TOPLAS) are worse than the random CS 
sample. 

Table 2. The Absolute Cardinalities of All Design and 
Modeling Subclasses Plus the Relative Cardinal@ of the 
Subclass 0% and the Cumulative Relative Cardinal@ of 
the Subclasses > 20% 

NC OE TOCS PLDI TOPLAS TSE 

0% 6 7 
O-10% 3 6 
lo-20% 6 2 
20-50% 28 28 
> 50% 6 3 
Total 49 46 
> 20%/ 69% 67% 

Total 
O%/Total 12% 15% 

12 
2 

10 
7 
0 

31 
23% 

15 9 
3 6 
6 0 

11 8 
0 2 

35 25 
31% 40% 

7 
3 
4 
0 

26 
15% 

26 
9 
2 
7 
3 

47 
21% 

.39% 43% 36% 46% 55% 

12 
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Figure 2. The relative cardinalities of the design and 
modeling subclasses (sum of design and modeling articles 
per sample = 100%). 

To underscore these observations, Figure 3 shows 
the fraction of design and modeling articles that 
have no experimental evaluation at all, and Figure 4 
shows the fraction of design articles with > 20% of 
their space devoted to experimental evaluation. 

5. ACCURACY OF STUDY 

Any experiment dealing with humans involves a con- 
siderable amount of ambiguity. Unlike physically 
measurable quantities, human judgement is often 
subjective. In a strict empirical study, statistical tech- 
niques should be used to determine and minimize 
the margin of human error. This implies large num- 
bers of independent trials with different individuals. 
Unfortunately, this kind of analysis is beyond our 
resources. However, the trends exposed by our study 
are so clear cut and our conclusions so modest that 
they remain valid even for large margins of error. 
Therefore, we restrict our error analysis to a dis- 
cussion of the sources of inaccuracies and present 
plausible arguments for ’ our error estimates. Fur- 
thermore, Appendix B makes our classification data 
publicly available for analysis by anyone. If enough 
additional people classify the same papers, we might 
be able to derive a statistically sound error estimate. 

NCC 1 

li% 20% Xl% 40% 9% 60% 

Figure 3. The percentage of design and modeling articles 
without any experimental evaluation. 

NC 

OE 

TCCS 

Rndom 

PJDI 

TCRFS 

TS5 

0% 10% 20% 32% 40% 50% 60% 70% 

Figure 4. The percentage of design and modeling articles 
with > 20% of space devoted to experimental evaluation. 

Because the margin of error analysis is based on a 
rough estimate instead of a rigorous analysis, this 
study can only present evidence but cannot supply a 
conclusive scientific proof. 

5.1 Systematic Error 

The main sources of systematic error are misclass- 
ification and publication selection bias. 

5.1.1 Classification error. Systematic classification 
errors consist of classification ambiguities and inac- 
curacies in determining the amount of space de- 
voted to experimental evaluation. To get an idea of 
the impact of systematic classification errors, con- 
sider the classification deviations when the same 
sample is evaluated by different individuals. Because 
the random sample was classified by four people, 
and PLDI, TOPLAS, and TSE where each classified 
by two individuals, we obtain 468 article classifica- 
tion pairs. Of these, 93 (20%) show differences. The 
absolute and relative numbers of deviations between 
all class pairs are detailed in Table 3. 

ClaxsiJication ambiguity. Classification ambiguities 
result from subjectivity in interpreting and applying 
the criteria described in Section 3.1. A close look 
reveals that the vast majority of classification dif- 
ferences arose between 

formal theory and design and modeling subclass 
O%, due to disagreement on their exact distinc- 
tion (26% of all discrepancies); 
design and modeling subclass 0% and category 
“other,” because it was difficult to apply our 
criteria to some unorthodox work (10% of all 
discrepancies); 
design and modeling subclass 0% and the remain- 
ing design and modeling subclasses due to dif- 
ferent views on how to classify simulations (6 + 4 
+ 10 + 0% = 20% of all discrepancies). 
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Table 3. The Absolute and Relative Numbers of Classification Discrepancies Observed 
Between Different Individuals (Shown for Each Pair of Classes) 

Theory Empirical Hypothesis Other 0% (O-10%) 

Design 

(lo-20%) 

Theory 
Empirical 
Hypothesis 
Other 
0% 
O-10% 
lo-20% 
20-50% 
> 50% 

0% 
0% 
2% 

26% 
2% 
0% 
1% 
0% 

0 

1% 
0% 
2% 
1% 
2% 
4% 
0% 

0 
1 

0% 
0% 
0% 
2% 
1% 
0% 

2 24 
0 2 
0 0 

9 
10% 

1% 6% 

2% 4% 
1% 10% 
1% 0% 

5% 
4% 
1% 

0 1 
2 4 
2 1 
2 1 
4 9 
5 4 

I 
8% 
0% 1% 

The boldface numbers are discussed in the text. 

Counting inaccuracy. About 5 + 8 + 1% = 14% 
of all discrepancies are between neighboring design 
and modeling subclasses, due to inaccuracies in de- 
termining the exact amount of space devoted to the 
evaluation, in particular for articles not containing a 
separate section for experimental evaluation. 

To judge the effect of the classification error on 
the observations in Section 4, the deviations in class 
cardinalities should be established. Unfortunately, 
an exact estimation using statistical techniques is not 
possible given the small number of classifications 
we have for each sample. Instead, we can make an 
educated guess by looking directly at the class cardi- 
nality deviations in the samples classified by differ- 
ent individuals (Table 4). For large classes the devia- 
tion is 20%. For small ones it ranges between 30 and 
60% (approximately two items). 

5.1.2. Publication selection bias. The second source 
of systematic error is that the selection of articles we 
reviewed could be biased toward a particular style or 
quality. 

Selection of journals. The CS journals were se- 
lected to be representative of different areas of CS. 

Table 4. The Deviations in Cardinalities of Major 
Categories and Subclasses as Classified by 
Different Individuals 

Random PLDI TOPLAS TSE Average 

Theory 1.83 0.00 4.00 1.00 15% 
Design 2.00 0.00 1.00 4.00 5% 
Emp. + Hyp. 1.00 0.00 3.00 2.00 26% 
Other 1.17 0.00 2.00 3.00 36% 
0% 2.83 1.00 0.00 7.00 17% 
0%. . . 10% 1.17 0.00 2.00 0.00 13% 
10% .20% 2.00 0.00 3.00 0.00 45% 
20% . . .50% 2.17 0.00 0.00 1.00 11% 
> 50% 0.00 1.00 0.00 2.00 60% 

Deviations are given as absolute mean values for each sample 
classilied by more than one person. The rightmost column shows the 
corresponding relative mean value over all samples. 

We have concentrated on renowned journals that 
are widely recognized as leading in their respective 
fields. Furthermore, we were careful not to consider 
journals with an editorial policy explicitly encourag- 
ing specific kinds of contributions. It is unlikely that 
the character of the actual research going on in 
those fields significantly differs from what is pub- 
lished in these journals. It is possible, however, that 
our results do not generalize to other fields within 
CS. The 1993 PLDZ proceedings cannot be consid- 
ered to be more than a case study of conference 
contributions. 

Random sample quality. We claim that the ran- 
dom sample provides a fairly representative cross- 
section of all areas of CS. This claim is valid if 
neither the set of publications contained in the 
INSPEC data base nor our inability to get hold of 
some articles is correlated with the objectives of this 
study. These seem to be reasonable assumptions. 

5.2 Statistical Error 

There are two kinds of statistical error in our study. 
The first one, random classification mistakes, is ne- 
glected, because the classification deviation data 
shown in Table 3 suggests that it is much smaller 
than the systematic classification error. The second 
one concerns questions about how well our samples 
represent the underlying populations in a statistical 
sense. 

Journal sample quality. For the journals NC, 
TOCS, TOPLAS, and TSE, at least one year was 
under consideration. Within the considered time 
span, all articles of a journal were included in the 
sample, resulting in zero statistical error. We do not 
claim a particular error bound for generalizations to 
other time spans. Due to the large number of arti- 
cles (N 40 per issue), only two issues of OE were 
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studied. Again, within these issues, the statistical 
error is zero because all articles were included in the 
sample. We assume the deviations between these 
issues and others of the same volume to be negli- 
gible. 

Random sample quality. Because the sample of 
50 ACM publications was taken at random (from a 
population of > 8001, confidence intervals for the 
random deviations between observed and true class 
frequencies can be calculated. Because of the small 
sample size, the intervals become relatively large if a 
high confidence level is chosen. In Table 5, confi- 
dence intervals (at a 0.7 confidence level) for the 
true class sizes are shown, given observed class sizes 
of n in a sample of 50 items. 

5.3 Overall Accuracy 

The overall error is dominated by class cardinality 
deviations caused by the systematic classification 
error and the statistical inaccuracy of the random 
sample. Based on the discussions in Sections 5.1.1 
and 5.2, we make a worst-case analysis to underscore 
the plausibility of our claims. For the class cardinal- 
ity deviation, the average values presented in Table 
4 are used. The statistical error in the random 
sample is approximated by the confidence intervals 
shown in Table 5. In Figures 5-7, these error esti- 
mates have been applied to the data from Figures 
1-4 and Table 2, respectively, in such a way that the 
maximum possible distortion of class cardinalities 
discussed in Section 4 is achieved. For NC and OE, 
the sizes of the categories theory, other, design and 
modeling subclass O%, and design and modeling 
subclass O-10% were increased, whereas those of 
the empirical category, design and modeling subclass 

Table 5. The Confidence Intervals for Different Observed 
Class Cardinalities n of a Sample with 50 Items 

at a 70% Confidence Level 

n Interval 

1 0.4-2.6 
2 1.0~4.0 
3 1.7-5.2 
4 2.4-6.4 
5 3.2-7.6 
6 4.0-8.8 
7 4.8-9.9 
x 5.7-11.0 
9 6.9- 11.5 
10 7.8~ 12.6 
11 8.7-13.6 
12 9.7-l 4.7 
13 10.6-15.8 
14 11.5~16.8 
1s 1?.4- 17.8 
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Figure 5. The relative cardinalities of major categories 
after applying the error estimates. 

20-50%, and design and modeling subclass > 50% 
were decreased. For the CS samples, the opposite 
was done. The trends are weaker but still remain 
quite visible, as we see in the resulting figures. 

6. CONCLUSIONS 

We presented an empirical study of the amount of 
experimental evaluation in refereed CS publications. 
In a random sample, > 40% of articles about new 
designs and models completely lack such experimen- 
tation. For samples related to software engineering, 
this fraction is higher; it is > 50% for 7’SE. When 
considering papers with at least one fifth of their 
space devoted to evaluation, we find that only 30% 
of CS papers satisfy this (rather mild) criterion, and 
only 20% for TSE and 15% for TOPLAS. Even 
when allowing for the worst possible error in this 
study, the fraction of unvalidated papers seems high. 
There is no significant number of articles with purely 
empirical work that could compensate for this defi- 
ciency. 

Over half of the CS random sample consists of 
refereed conference contributions” One might sus- 
pect that this is the reason for the high number of 
articles lacking validation. However, when confer- 
ences are excluded, both the ratio of unvalidated 

Figure 6. The percentage of design and modeling articles 
without any experimental evaluation after applying the 
error estimates. 
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Figure 7. The percentage of design and modeling articles 
with > 20% of space devoted to experimental evaluation 
after applying the error estimates. 

work and the ratio for papers with acceptable evalu- 
ation change insignificantly (by only two percentage 
points). Note that these numbers are quite unreli- 
able, because they are based on only 13 papers in 
the design and modeling subclass. However, two of 
the three selected journals are worse than the ran- 
dom sample including conferences; PLDI, a confer- 
ence, turns out to be better. 

On the whole, we consider this situation as un- 
acceptable, even alarming. The results suggest that 
large parts of CS may not meet standards long 
established in the natural and engineering sciences. 
Among other things, such standards hold that only 
validated claims are published in journals. 

Computer scientists that we have contacted infor- 
mally with our results (admittedly a biased selection!) 
are not surprised by our numbers, but are quick with 
explanations. The youth of CS is often advanced as a 
reason for low standards. However, when compared 
with NC, this explanation becomes doubtful. NC is 
only six years old, and thus younger than all the CS 
journals surveyed. Furthermore, computational ap- 
proaches to an area can hardly be older than CS. 
Yet the scientific standards applied in NC appear 
far better than in CS in general, and are nearly 
indistinguishable from an established field as repre- 
sented by OE. We think that youth alone is not, a 
sufficient explanation for poor standards. The most 
damaging observation one might make is that com- 
puter scientists are a minority among the contribu- 
tors to NC and OE! 

Other explanations point to the difficulty of con- 
ducting experiments in CS, especially when humans 
are involved. There may be some truth in that, 
especially in the software area. However, psycholo- 
gists have evolved techniques to deal with humans in 
experimental settings, and perhaps CS has simply 
not embraced those techniques. Furthermore, the 
experiments that physicists and other scientists con- 
duct are far more complicated and costly than what 
computer scientists have ever attempted. A more 
plausible explanation for low standards is that com- 
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puter scientists, on the whole, have neglected to 
develop adequate measuring techniques. CS labs 
seem poorly equipped for evaluating their own 
progress. Workers who wish to base their claims on 
solid evidence face a tremendous effort in building 
up measuring equipment and expertise. Naturally, 
they are quickly discouraged, and why bother if 
experimental work is not rewarded and papers are 
accepted without it? 

We also have the impression that while many 
computer scientists agree that standards should be 
raised, as individuals they are afraid to take the first 
step. This is an understandable fear, because invest- 
ing in experimentation may damage or slow careers. 
This fear can only be counterbalanced by c”oncerted, 
open, and positive action. We suggest the following 
steps: 

Editors, reviewers, and tenure committees must all 
set higher standards for what constitutes accept- 
able design papers. Reasonable evaluation of de- 
sign ideas must be included in almost all papers. 

We must recognize that empirical work is first-class 
science. Purely empirical work that makes no de- 
sign contribution of its own should be sought-after 
material by journals and conferences. 

Wherever appropriate, publicly accessible sets of 
benchmark problems must be established to be 
used in experimental evaluations. 

In many areas within CS, rules for how to conduct 
repeatable experiments still have to be discovered. 
Workshops, laboratories, and prizes should be or- 
ganized to help with this process. 

Tenure committees and funding agencies must 
recognize that high-quality experimental CS needs 
time and money to produce validated results; but 
these results will be more valuable than the ones 
we usually get today. 

Finally, and most effectively, computer scientists 
have to begin with themselves, in their own labo- 
ratories, with their own colleagues and students, 
to produce results that are grounded in evidence. 

We do not expect the situation to change overnight. 
Nor do we require that all design work stop and 
every computer scientist do nothing but measure. 
Quite the contrary-new ideas are needed more 
than ever. But computer scientists must find out how 
good these ideas are and use experimentation to 
guide them to the profitable ones. 

We submit that CS, after having been in existence 
for about half a centuly (we assume modern CS 
started with the first digital, electronic computer) is 
no longer a “young” science whose standards are by 
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necessity weaker than that of established sciences. 
With the shrinking amount of research funding, CS 
will face stiff competition from other fields, young 
and old. “Business as usual” may become extremely 
damaging for CS. The time has come to act so 
everyone can take CS seriously once more. 

REFERENCES 

Bailey, D. H., Twelve Ways to Fool the Masses When 
Giving Performance Results on Parallel Computers, Su- 
percomp. Rec. 54-55 (1991); Supercomputer 4-7 (1991). 

Baldwin, D., and Koomen, J., Using Scientific Experiments 
in Early Computer Science Laboratories, ACM SZGCSE 
Bull. 24, 102-106 (1992). 

Denning, P. J., What Is Experimental Computer Science? 
Commun. ACM 23,543-544 (1980). 

Denning, P. J., Performance Analysis: Experimental Com- 
puter Science at Its Best, Commun. ACM 24, 725-727 
(1981a). 

Denning, P. J., Performance Evaluation: Experimental 
Computer Science at Its Best, ACM Perform. Ecal. Rel<. 
WGMETRZCS) 10, 106-109 (1981b). 

Feldman, J. A, and Sutherland, W. R., Rejuvenating Ex- 
perimental Computer Science: A Report to the Na- 
tional Science Foundation and Others, Commun. ACM 
22, 491-502. 

Fenton, N., Pfleeger, S. L., and Glass, R. L., Science and 
Substance: A Challenge to Software Engineers, IEEE 
Sofiare 11, 86-95 (1994). 

Hooker, J. N., Needed: An Empirical Science of Algo- 
rithms, Operat. Res. 42, 201-212 (1994). 

STN International, INSPEC: Information Service for 
Physics and Engineering Communities, IEE, Herts, UK, 
1994. 

Iyer, R. K., Experimental Computer Science, IEEE Trans. 
Software Eng, 16, 109-110. 

Langley, P., Machine Learning as an Experimental Sci- 
ence, Mach. Learn. 3, 5-8 (1988). 

McCracken, D. D., Denning, P. J., and Brandin, D. H., An 
ACM Executive Committee Position on the Crisis in 
Experimental Computer Science, Commun. ACM 22, 
503-504 (1979). 

Computer Science and Telecommunications Board, Aca- 
demic Careers for Experimental Computer Scientists 
and Engineers, Commun. ACM 37, 87-90 (1994). 

APPENDIX A: TITLES DRAWN AT RANDOM 

The original random sample contained 74 titles. For 
the final classification, we excluded 7 articles from 
the Communications of the ACM (CACM), 2 articles 
from the History of Programming Languages confer- 
ence (HOPL-II), 3 non-CS articles that had gotten 
into the sample accidentally, 1 title that was a com- 
plete workshop proceedings volume, 1 title that was 
a complete journal issue, and 10 articles not avail- 
able in our library. 
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Appendix A. Titles Drawn at Random 

The CACM and HOPL-II articles were excluded 
because we felt that these publications were reviews 
or historical accounts that did not claim to advance 
the science per se. 

APPENDIX 6: CLASSIFICATION DATA 

Except for the ACM random sample, all listed val- 
ues represent the number of the first page of an 
article in the respective publication. For the ACM 
random sample, values correspond to the numbering 
introduced in Appendix A. 
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Appendix B. Classification Data 
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Ernst: ACM 1993 Random from INSPEC 

Lutz: ACM 1993 Random from INSPEC 

Paul: ACM 1993 Random from INSPEC 

~~ 

Walter: ACM 1993 Random from INSPEC 
Theory Empirical Design [ Hype. ( cxhcr 

3, 10, 16, 24 _ see below - a, 26, 47 
25, 27, 32, 46 57, 18 

0% < 10% < 20% 1 < 50% 1 > 50% 
4, 7, 8, 9, 12 11, 22, 23 5, 14, 19 0, 1, 15, 18 - 
13. 17. 20. 21 29 30, 45. 52 28, 31, 33 

Paul: PLDI 1993 
Theory 1 Empirical [ Design 1 Hypothesis 1 Other 
‘78, 23, 1 90, I,, 1 ( see below _ - 

0% 1 < 10% ] < 20% , < SO% ) > 60% 
26, 68. 139. 14, I 36. 46 I - I 1. 13. 56 I 278 

Ernst: TOPLAS 1993 
1 Theory YP. Other 

1, 73, 133, 211, 953, 290 - (ree below) - - 

463. 563. 575. 632.659 

I Paul: TOPLAS 1993 I 

I Ernst: TOPLAS 1994 No. 1+2 I 
Theory 1 Empirical 1 Design ) Hypothesis ) Other 

259 I - see below - - 

0% 1 < 10% I < ZOYO 1 < 50% 1 > 50% 
102, ZOJ ( 151 1 3, 35, 175 1 _ - 

Paul: TOPLAS 1994 No. 1+2 

Walter: TSE 1993 
Theory 1 Empirical I Design 1 Hype. 1 Other 

3. 13. ,I, 89 I 120, 379, 425 I (below) I 390 I 24. 503 

Paul: OE 1994 No. 1+3 
Theory 1 Empirical 1 Design 1 Hypothesis ( Other 
230. 23, I 86, 102, 167 I (see below) i 9,. 27’8 I 681, 685 

Paul: TOCS 1992 


