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Abstract
Traditional caching policies are known to perform poorly
for storage server caches. One promising approach to
solving this problem is to use hints from the storage
clients to manage the storage server cache. Previous
hinting approaches are ad hoc, in that a predefined re-
action to specific types of hints is hard-coded into the
caching policy. With ad hoc approaches, it is difficult to
ensure that the best hints are being used, and it is diffi-
cult to accommodate multiple types of hints and multiple
client applications. In this paper, we propose CLient-
Informed Caching (CLIC), a generic hint-based policy
for managing storage server caches. CLIC automatically
interprets hints generated by storage clients and trans-
lates them into a server caching policy. It does this with-
out explicit knowledge of the application-specific hint
semantics. We demonstrate using trace-based simula-
tion of database workloads that CLIC outperforms hint-
oblivious and state-of-the-art hint-aware caching poli-
cies. We also demonstrate that the space required to track
and interpret hints is small.

1 Introduction

Multi-tier block caches arise in many situations. For ex-
ample, running a database management system (DBMS)
on top of a storage server results in at least two caches,
one in the DBMS and one in the storage system. The
challenges of making effective use of caches below the
first tier are well known [15, 19, 22]. Poor temporal lo-
cality in the request streams experienced by the second-
tier caches reduces the effectiveness of recency-based re-
placement polices [22], and failure to maintain exclusiv-
ity among the contents of the caches in each tier leads to
wasted cache space [19].

Many techniques have been proposed for improving
the performance of second-tier caches. Section 7 pro-
vides a brief survey. One promising class of techniques
relies on hinting: the application that manages the first-

tier cache generates hints and attaches them to the I/O
requests that it directs to the second tier. The cache at the
second tier then attempts to exploit these hints to improve
its performance. For example, an importance hint [6] in-
dicates the priority of a particular page to the buffer cache
manager in the first-tier application. Given such hints,
the second-tier cache can infer that pages that have high
priority in the first tier are likely to be retained there, and
can thus give them low priority in the second tier. As
another example, a write hint [11] indicates whether the
first tier is writing a page to ensure recoverability of the
page, or to facilitate replacement of the page in the first-
tier cache. The second tier may infer that replacement
writes are better caching candidates than recovery writes,
since they indicate pages that are eviction candidates in
the first tier.

Hinting is valuable because it is a way of making
application-specific information available to the second
(or lower) tier, which needs a good basis on which to
make its caching decisions. However, previous work has
taken an ad hoc approach to hinting. The general ap-
proach is to identify a specific type of hint that can be
generated from an application (e.g., a DBMS) in the first
tier. A replacement policy that knows how to take advan-
tage of this particular type of hint is then designed for the
second tier cache. For example, the TQ algorithm [11] is
designed specifically to exploit write hints. The desired
response to each possible hint is hard-coded into such an
algorithm.

Ad hoc algorithms can significantly improve the per-
formance of the second-tier cache when the necessary
type of hint is available. However ad hoc algorithms also
have some significant drawbacks. First, because the re-
sponse to hints is hard-coded into an algorithm at the sec-
ond tier, any change to the hints requires changes to the
cache management policy at the second-tier server. Sec-
ond, even if change is possible at the server, it is difficult
to generalize ad hoc algorithms to account for new situ-
ations. For example, suppose that applications can gen-



erate both write hints and importance hints. Clearly, a
low-priority (to the first tier) replacement write is prob-
ably a good caching candidate for the second tier, but
what about a low-priority recovery write? In this case,
the importance hint suggests that the page is a good can-
didate for caching in the second tier, but the write hint
suggests that it is a poor candidate. One response to this
might be to hard code into the second-tier cache manager
an appropriate behavior for all combinations of hints that
might occur. However, each new type of hint will mul-
tiply the number of possible hint combinations, and it
may be difficult for the policy designer to determine an
appropriate response for each one. A related problem
arises when multiple first-tier applications are served by
a single cache in the second tier. If different applications
generate hints, how is the second tier cache to compare
them? Is a write hint from one application more or less
significant than an importance hint from another?

In this paper, we propose CLient-Informed Caching
(CLIC), a generic technique for exploiting application
hints to manage a second-tier cache, such as a storage
server cache. Unlike ad hoc techniques, CLIC does not
hard-code responses to any particular type of hint. In-
stead, it is an adaptive approach that attempts to learn to
exploit any type of hint that is supplied to it. Applica-
tions in the first tier are free to supply any hints that they
believe may be of value to the second tier. CLIC analyzes
the available hints and determines which can be exploited
to improve second-tier cache performance. Conversely,
it learns to ignore hints that do not help. Unlike ad hoc
approaches, CLIC decouples the task of generating hints
(done by applications in the first tier) from the task of
interpreting and exploiting them. CLIC naturally accom-
modates applications that generate more than one type of
hint, as well as scenarios in which multiple applications
share a second-tier cache.

The contributions of this paper are as follows. First,
we define an on-line cost/benefit analysis of I/O request
hints that can be used to determine which hints provide
potentially valuable information to the second-tier cache.
Second, we define an adaptive, priority-based cache re-
placement policy for the second-tier cache. This policy
exploits the results of the hint analysis to improve the hit
ratio of the second-tier cache. Third, we use trace-based
simulation to provide a performance analysis of CLIC.
Our results show that CLIC outperforms ad hoc hinting
techniques and that its adaptivity can be achieved with
low overhead.

2 Generic Framework for Hints

We assume a system in which multiple storage server
client applications generate requests to a storage server,
as shown in Figure 1. We are particularly interested in
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Figure 1: System Architecture

client applications that cache data, since it is such appli-
cations that give rise to multi-tier caching.

The storage server’s workload is a sequence of block
I/O requests from the various clients. When a client
sends an I/O request (read or write) to the server, it may
attach hints to the request. Specifically, each storage
client may define one or more hint types and, for each
such hint type, a hint value domain. When the client is-
sues an I/O request, it attaches a hint set to the request.
Each hint set consists of one hint value from the domain
of each of the hint types defined by that client. For exam-
ple, we used IBM DB2 Universal Database1 as a storage
client application, and we instrumented DB2 so that it
would generate five types of hints, as described in the
first five rows of Figure 2. Thus, each I/O request is-
sued by DB2 will have an attached hint set consisting of
5 hint values: a pool ID, an object ID, an object type ID,
a request type, and a DB2 buffer priority.

CLIC does not require these specific hint types. We
chose these particular types of hints because they could
be generated easily from DB2, and because we believed
that they might prove useful to the underlying storage
system. Each application can generate its own types of
hints. CLIC itself only assumes that the hint value do-
mains are categorical. It neither assumes nor exploits
any ordering on the values in a hint value domain. Each
storage client application may have its own hint types. In
fact, even if two storage clients are instances of the same
application (e.g., two instances of DB2) and use the same
hint types, CLIC treats each client’s hint types as distinct
from the hint types of all other clients.

3 Hint Analysis

Every I/O request, read or write, represents a caching op-
portunity for the storage server. The storage server must
decide whether to take advantage of each such opportu-
nity by caching the requested page. Our approach is to
base these caching decisions on the hint sets supplied by
the client applications with each I/O request. CLIC as-
sociates each possible hint set H with a numeric priority,



Value Value
Hint Domain Domain

DBMS Type Cardinality Cardinality Description
(TPC-C) (TPC-H)

DB2 pool ID 2 5 Identifies which DB2 buffer pool generated the I/O re-
quest.

DB2 object ID 21 23 Identifies a group of related database objects, such as a
table and its associated indices.

DB2 object type ID 6 9 Identifies object type, such as table or index. Together, a
pool ID, object ID and object type ID uniquely identify
a database object.

DB2 request type 5 5 For read requests, distinguishes regular reads from
prefetch reads. For writes, provides write hints ([11]),
which distinguish between recovery writes, replacement
writes, and synchronous writes. Synchronous writes are
replacement writes that are not performed by an asyn-
chronous page cleaning thread.

DB2 buffer priority 4 1 Identifies the priority of the page in its DB2 buffer cache.
MySQL thread ID - 5 ID of server thread that issued the request.
MySQL request type - 3 Read, replacement write, or recovery write.
MySQL file ID - 9 MySQL is configured so that each table is stored in a sep-

arate file, together with any indexes defined on that table,
so this hint distinguishes groups of database objects.

MySQL fix count - 2 indicates how many MySQL threads are have currently
fixed (pinned) this page in the buffer pool

Figure 2: Types of Hints in the DB2 and MySQL I/O Request Traces

Pr(H). When an I/O request (read or write) for page p
with attached hint set H arrives at the server, the server
uses Pr(H) to decide whether to cache p. Cache man-
agement at the server will be described in more detail
in Section 4, but the essential idea is simple: the server
caches p if there is some page p′ in the cache that was re-
quested with a hint set H ′ for which Pr(H ′) < Pr(H).

We expect that some hint sets may signal pages that are
likely to be re-used quickly, and thus are good caching
candidates. Other hint sets may signal the opposite. In-
tuitively, we want the priority of each hint set to reflect
these signals. But how should priorities be chosen for
each hint set? One possibility is to assign these priorities,
in advance, based on knowledge of the client applica-
tion that generates the hint sets. Most existing hint-based
caching techniques use this approach. For example, the
TQ algorithm [11], which exploits write hints, under-
stands that replacement writes likely indicate evictions in
the client application’s cache, and so it gives them high
priority.

CLIC takes a different approach to this problem. In-
stead of predefining hint priorities based on knowledge
of the storage client applications, CLIC assigns a prior-
ity to each hint set by monitoring and analyzing I/O re-
quests that arrive with that hint set. Next, we describe

how CLIC performs its analysis.
We will assume that each request that arrives at the

server is tagged (by the server) with a sequence number.
Suppose that the server gets a request (p, H), meaning
a request (read or a write) for a page p with an attached
hint set H , and suppose that this request is assigned se-
quence number s1. CLIC is interested in whether and
when page p will be requested again after s1. There are
three possibilities to consider:

write re-reference: The first possibility is that the next
request for p in the request stream is a write request
occurring with sequence number s2 (s2 > s1). In
this case, there would have been no benefit what-
soever to caching p at time s1. A cached copy of
p would not help the server handle the subsequent
write request any more efficiently. A cached copy
of p may be of benefit for requests for p that occur
after s2, but in that case the server would be bet-
ter off caching p at s2 rather than at s1. Thus, the
server’s caching opportunity at s1 is best ignored.

read re-reference: The second possibility is that the
next request for p in the request stream is read re-
quest at time s2. If the server caches p at time s1

and keeps p in the cache until s2, it will benefit by



being able to serve the read request at s2 from its
cache. For the server to obtain this benefit, it must
allow p to occupy one page “slot” in its cache during
the interval s2 − s1.

no re-reference: The third possibility is that p is never
requested again after s1. In this case, there is clearly
no benefit to caching p at s1.

Of course, the server cannot determine which of these
three possibilities will occur for any particular request,
as that would require advance knowledge of the future
request stream. Instead, we propose that the server base
its caching decision for the request (p, H) on an analysis
of previous requests with hint set H . Specifically, CLIC
tracks three statistics for each hint set H:

N(H): the total number of requests with hint set H .

Nr(H): the total number requests with hint set H that
result in a read re-reference (rather than a write re-
reference or no re-reference).

D(H): for those requests (p, H) that result in read re-
references, the average number of requests that oc-
cur between the request and the read re-reference.

Using these three statistics, CLIC performs a simple
benefit/cost analysis for each hint set H , and assigns
higher priorities to hint sets with higher benefit/cost ra-
tios. Suppose that the server receives a request (p, H)
and that it elects to cache p. If a read re-reference sub-
sequently occurs while p is cached, the server will have
obtained a benefit from caching p. We arbitrarily assign
a value of 1 to this benefit (the value we use does not af-
fect the relative priorities of pages). Among all previous
requests with hint set H , a fraction

fhit(H) = Nr(H)/N(H) (1)

eventually resulted in read re-references, and would have
provided a benefit if cached. We call fhit(H) the read hit
rate of hint set H . Since the value of a read re-reference
is 1, fhit(H) can be interpreted as the expected benefit
of caching and holding pages that are requested with hint
set H . Conversely, D(H) can be interpreted as the ex-
pected cost of caching such pages, as it measures how
long such pages must occupy space in the cache before
the benefit is obtained. We define the caching priority of
hint set H as:

Pr(H) =
fhit(H)
D(H)

(2)

which is the ratio of the expected benefit to the expected
cost.

Figure 3 illustrates the results of this analysis for a
trace of I/O requests made by DB2 during a run of the

STOCK table replacement writes

ORDERLINE table reads

Figure 3: Hint Set Priorities for the DB2 C60 Trace
Each point represents a distinct hint set. All hint sets are shown.

TPC-C benchmark. Our workload traces will be de-
scribed in more detail in Section 6. Each point in Fig-
ure 3 represents a distinct hint set that is present in the
trace, and describes the hint set’s caching priority and
frequency of occurrence. All hint sets with non-zero
caching priority are shown. Clearly, some hint sets have
much higher priorities, and thus much higher benefit/cost
ratios, than others. For illustrative purposes, we have in-
dicated partial interpretations of two of the hint sets in the
figure. For example, the most frequently occurring hint
set represents replacement writes to the STOCK table in
the TPC-C database instance that was being managed by
the DB2 client. We emphasize that CLIC does not need
to understand that this hint represents the STOCK table,
nor does it need to understand the difference between a
replacement write and a recovery write. Its interpreta-
tion of hints is based entirely on the hint statistics that it
tracks, and it can automatically determine that a request
with the STOCK table hint set is a better caching oppor-
tunity than a request with the ORDERLINE table hint
set.

3.1 Tracking Hint Set Statistics

To track hint set statistics, CLIC maintains a hint table
with one entry for each distinct hint set H that has been
observed by the storage server. The hint table entry for H
records the current values of the statistics N(H), Nr(H)
and D(H). When the server receives a request (p, H), it
increments N(H). Tracking Nr(H) and D(H) is some-
what more involved, as CLIC must determine whether a
read request for page p is a read re-reference. To de-
termine this, CLIC records two pieces of information
for every page p that is cached: seq(p), which is the
sequence number of the most recent request for p, and



H(p), which is the hint set that was attached to the most
recent request for p. In addition, CLIC records seq(p)
and H(p) for a fixed number (Noutq) of additional, un-
cached pages This additional information is recorded in
a data structure called the outqueue. Noutq is a CLIC
parameter that can be used to bound the amount of space
required for tracking read re-references. When the server
receives a read request for page p with sequence number
s, it checks both the cache and the outqueue for informa-
tion about the most recent previous request, if any, for p.
If it finds seq(p) and H(p) from a previous request, then
it knows that the current request is a read re-reference of
p. It increments Nr(H(p)) and it updates D(H(p)) using
the re-reference distance s− seq(p).

When a page p is evicted from the cache, an entry for
p is inserted into the outqueue. An entry is also placed
in the outqueue for any requested page that CLIC elects
not to cache. (CLIC’s caching policy is described in Sec-
tion 4.) If the outqueue is full when a new entry is to be
inserted, the least-recently inserted entry is evicted from
the outqueue to make room for the new entry.

Since CLIC only records seq(p) and H(p) for a lim-
ited number of pages, it may fail to recognize that a new
read request (p, H) is actually a read re-reference for p.
Some error is inevitable unless CLIC were to record in-
formation about all requested pages. However, CLICs
approach to tracking page re-references has several ad-
vantages. First, since CLIC tracks the most recent refer-
ence to all pages that are in the cache, we expect to have
accurate re-reference distance estimates for hint sets that
are believed to have the highest priorities, since pages
requested with those hint sets will be cached. If the pri-
ority of such hint sets drops, CLIC should be able to
detect this. Second, by evicting the oldest entries from
the outqueue when eviction is necessary, CLIC will tend
to miss read re-references that have long re-reference
distances. Conversely, read re-references that happen
quickly are likely to be detected. These are exactly the
type of re-references that lead to high caching priority.
Thus, CLIC’s statistics tracking is biased in favor of read
re-references that are likely to lead to high caching pri-
ority.

3.2 Time-Varying Workloads
To accommodate time-varying workloads, CLIC divides
the request stream into non-overlapping windows, with
each window consisting of W requests. At the end of
each window, CLIC adjusts the priority for each hint set
using the statistics collected during that window. The
adjusted priority will be used to guide the caching pol-
icy during the next window. It then clears the statistics
(N(H), Nr(H), D(H)) for all hint sets in the hint table
so that it can collect new statistics during the next win-
dow.

Let Pr(H)i represent the priority of H that is calcu-
lated after the ith window, and that is used by CLIC’s
caching policy during window i + 1. Priority Pr(H)i is
calculated as follows

Pr(H)i = rP̂r(H)i + (1− r)Pr(H)i−1 (3)

where P̂r(H)i represents the priorities that were calcu-
lated using the statistics collected during the ith window
(and Equation 2), and r (0 < r ≤ 1) is a CLIC parame-
ter. The effect of Equation 3 is that the impact of statis-
tics gathered during the ith window decays exponentially
with each new window, at a rate that is controlled by r.
Setting r = 1 causes CLIC to base its priorities entirely
on the statistics collected during the most recently com-
pleted window. Lower values of r cause CLIC to give
more weight to older statistics. For all of the experiments
reported in this paper, we have set W = 106 and r = 1.

4 Cache Management

In the previous section, we described how CLIC assigns
a caching priority to each hint set H . In this section, we
describe how the server uses these priorities to manage
the contents of its cache.

Figure 4 describes CLIC’s priority-based replacement
policy. This policy evicts a lowest priority page from
the cache if the newly requested page has higher prior-
ity. The priority of a page is determined by the priority
Pr(H) of the hint set H with which that page was last
requested. Note that if a page that is cached after being
requested with hint set H is subsequently requested with
hint set H ′, its priority changes from Pr(H) to Pr(H ′).
The most recent request for each cached page always de-
termines its caching priority.

The policy described in Figure 4 can be implemented
to run in constant expected time. To do this, CLIC main-
tains a heap-based priority queue of the hint sets. For
each hint set H in the heap, all pages with H(p) = H are
recorded in a doubly-linked list that is sorted by seq(p).
This allows the victim page to be identified (Figure 4,
lines 7-11) in constant time. CLIC also maintains a hash
table of all cached pages so that it can tell which pages
are cached (line 1) and find a cached page in its hint set
list in constant expected time. Finally, CLIC implements
the hint table as a hash table so that it can look up Pr(H)
(line 12) in constant expected time.

As described in Section 3.2, CLIC adjusts hint set pri-
orities after every window of W requests. When this oc-
curs, CLIC rebuilds its hint set priority queue based on
the newly adjusted priorities. Hint set priorities do not
change except at window boundaries.



if p is not cached then1

if the cache is not full then2

cache p3

set seq(p) = s4

set H(p) = H5

else6

let m be the minimum priority7

of all pages in the cache8

let v be the page with the9

minimum sequence number seq(v)10

among all pages with priority m11

if Pr(H)>m then12

evict v from the cache13

add entry for v (with seq(v)14

and H(v)) to the outqueue15

cache p16

set seq(p) = s17

set H(p) = H18

else /* do not cache p */19

add entry for p to the outqueue20

set seq(p) = s21

set H(p) = H22

else /* p is already cached */23

seq(p) = s24

H(p) = H25

Figure 4: Hint-Based Server Cache Replacement Policy
This pseudo-code shows how the server handles a request for
page p with hint set H and request sequence number s.

5 Handling Large Numbers of Hint Sets

As described in Section 3.1, CLIC’s hint table records
statistical information about every hint set that the server
has observed. Although the amount of statistical infor-
mation tracked per hint set is small, the number of dis-
tinct hit sets from each client might be as large as the
product of the cardinalities of that client’s hint value do-
mains. In our traces, the number of distinct hit sets is
small. For other applications, however, the number of
hint sets could potentially be much larger. In this section,
we propose a simple technique for restricting the number
of hint sets that CLIC must consider, so that CLIC can
continue to operate efficiently as the number of hint sets
grows.

All of the hint types in our workload traces exhibit fre-
quency skew. That is, some values in the hint domain oc-
cur much more frequently than others. As a result, some
hint sets occur much more frequently than others. To re-
duce the number of hints that CLIC must consider, we
propose to exploit this skew by tracking statistics for the
hint sets that occur most frequently in the request stream
and ignoring those that do not. Ignoring infrequent hint
sets may lead to errors. In particular, we may miss a hint
set that would have had high caching priority. However,
since any such missed hint set would occur infrequently,

the impact of the error on the server’s caching perfor-
mance is likely to be small.

The problem with this approach is that we must deter-
mine, on the fly, which hint sets occur frequently, with-
out actually maintaining a counter for every hint set.
Fortunately, this frequent item problem arises in a vari-
ety of settings, and numerous methods have been pro-
posed to solve it. We have chosen one of these methods:
the so-called Space-Saving algorithm [14], which has re-
cently been shown to outperform other frequent item al-
gorithms [7]. Given a parameter k, this algorithm tracks
the frequency of k different hint sets, among which it
attempts to include as many of the actual k most fre-
quent hint sets as possible. It is an on-line algorithm
which scans the sequence of hint sets attached to the re-
quests arriving at the server. Although k different hint
sets are tracked at once, the specific hint sets that are be-
ing tracked may vary over time, depending on the request
sequence.

After each request has been processed, the algorithm
can report the k hint sets that it is currently tracking, as
well as an estimate of the frequency (total number of oc-
currences) of each hint set and an error indicator which
bounds the error in the frequency estimate. By analyzing
the frequency estimates and error indicators, it is pos-
sible to determine which of the k currently-tracked hint
sets are guaranteed to be among the actual top-k most
frequent hint sets and which are not. However, for our
purposes this is not necessary.

We adapted the Space-Saving algorithm slightly so
that it tracks the additional information we require for
our analysis. Specifically:

N(H): For each hint set H that is tracked by the Space-
Saving algorithm, we use the frequency estimate
produced by the algorithm, minus the estimation er-
ror bound reported by the algorithm, as N(H).

Nr(H): We modified the Space-Saving algorithm to in-
clude an additional counter for each hint set H that
is currently being tracked. This counter is initialized
to zero when the algorithm starts tracking H , and it
is incremented for each read re-reference involving
H that occurs while H is being tracked. We use the
value of this counter as Nr(H).

D(H): We track the expected re-reference distance for
all read re-references involving H that occur while
H is being tracked, i.e., those read re-references that
are included in Nr(H).

For all hint sets H that are not currently tracked by the
algorithm, we take Nr(H) to be zero, and hence Pr(H)
to be zero as well.

In general, N(H) will be be an underestimate of the
true frequency of hint set H . Since Nr(H) is only incre-



mented while H is being tracked, it too will in general
underestimate the true frequency of read re-references
involving H . As a result of these underestimations,
fhit(H), which is calculated as the ratio of the Nr(H) to
N(H), may be inaccurate. However, because we take the
ratio of N(H) to Nr(H), the two underestimations may
at least partially cancel one another, leading to a more ac-
curate fhit(H). In addition, the higher the true frequency
of H , the more time H will spend being tracked and the
more accurate we expect our estimates to be.

To account for time-varying workloads, we restart the
Space-Saving algorithm from scratch for every window
of W requests. Specifically, at the end of each window
we use the Space-Saving algorithm to estimate N(H),
Nr(H), and D(H) for each hint set H that is tracked
by the algorithm, as described above. These statistics
are used to calculate P̂r(H), which is then used in Equa-
tion 3 to calculate the hint set’s caching priority (Pr(H))
to be used during the next request window. Once the
P̂r(H) have been calculated, the Space-Saving algo-
rithm’s state is cleared in preparation for the next win-
dow.

The Space-Saving algorithm requires two counters for
each tracked hint-set, and we added several additional
counters for the sake of our analysis. Overall, the space
required is proportional to k. Thus, this parameter can be
used to limit the amount of space required to track hint
set statistics. With each new request, the data structure
used by the Space-Saving algorithm can be updated in
constant time [14], and the statistics for the tracked hint
sets can be reported, if necessary, in time proportional to
k.

6 Experimental Evaluation

Objectives: We used trace-driven simulation to evaluate
our proposed mechanisms. The goal of our experimental
evaluation is to answer the following questions:

1. Can CLIC identify good caching opportunities for
storage server caches, and thereby improve the
cache hit ratio in compared to other caching poli-
cies? (Section 6.1)

2. How effective are CLIC’s mechanisms for reduc-
ing the number of hint sets that it must track (Sec-
tions 6.2 and 6.3).

3. Can CLIC improve performance for multiple stor-
age clients by prioritizing the caching opportunities
of the different clients based on their observed ref-
erence behavior? (Section 6.4)

Simulator: To answer these questions, we implemented
a simulation of the storage server cache. In addition to
CLIC, the simulator implements the following caching
policies for purpose of comparison:

OPT: This is an implementation of the well-known op-
timal off-line MIN algorithm [4]. It replaces the
cached page that will not be read for the longest
time. This algorithm requires knowledge of the fu-
ture so it cannot be used for cache replacement in
practical systems, but its hit ratio is optimal so it
serves as an upper bound on the performance of any
caching algorithm.

LRU: This algorithm replaces the least-recently used
page in the cache. Since temporal locality is often
poor in second-tier caches, we expect CLIC to per-
form significantly better than LRU.

ARC: ARC [13] is a hint-oblivious caching policy that
considers both recency and frequency of use in
making replacement decisions.

TQ: TQ is a hint-aware algorithm that was proposed for
use in second-tier caches [11]. Unlike the algo-
rithms proposed here, it works only with one spe-
cific type of hint that can be associated with write
requests from database systems. We expect our pro-
posed algorithms, which can automatically exploit
any type of hint, to do at least as well as TQ when
the write hints needed by TQ are present in the re-
quest stream.

The TQ algorithm has previously been compared to a
number of other second-tier caching policies that are
not considered here. These include MQ [22], a hint-
oblivious policy, and write-hint-aware variations of both
MQ and LRU. TQ was shown to be generally superior
to those alternatives when the necessary write hints are
present [11], so we use it as our representative of the state
of the art in hint-aware second-tier caching policies.

The simulator accepts a stream of I/O requests with as-
sociated hint sets, as would be generated by one or more
storage clients. It simulates the caching behavior of one
of the five supported cache replacement policies (CLIC,
OPT, LRU, ARC and TQ) and computes the read hit ra-
tio for the storage server cache. The read hit ratio is the
number of read hits divided by the number of read re-
quests.
Workloads: In this paper, we use DB2 Universal
Database (version 8.2) and the MySQL2 database sys-
tem (Community Edition, version 5.0.33) as our stor-
age system clients. DB2 is a widely-used commercial
relational database system to which we had access to
source code, and MySQL is a widely-used open source
relational database system. We instrumented DB2 and
MySQL so that they would generate I/O hints and dump
them into an I/O trace. The types of hints generated by
these two systems are described in Figure 2.

To generate our traces, we ran TPC-C and TPC-H
workloads on DB2 and a TPC-H workload on MySQL.



Trace DB Size DBMS Buffer Distinct Distinct
Name DBMS WkLoad (pages) Size (pages) Requests Hint Sets Pages

DB2 C60 DB2 TPC-C 600K 60K 37699091 164 930688
DB2 C300 DB2 TPC-C 600K 300K 31869377 154 1320882
DB2 C540 DB2 TPC-C 600K 540K 21863719 140 1807431
DB2 H80 DB2 TPC-H 800K 80K 635375701 134 732905

HB2 H400 DB2 TPC-H 800K 400K 65675204 129 732723
DB2 H720 DB2 TPC-H 800K 720K 3077872 128 732690
MY H65 MySQL TPC-H 328K 65K 36266735 21 167502
MY H98 MySQL TPC-H 328K 98K 16561346 21 167501

Figure 5: I/O Request Traces. The page sizes for the DB2 and MySQL databases were 4KB and 16KB, respectively. For the
TPC-C workloads, the table shows the initial database size. The TPC-C database grows as the workload runs.

TPC-C and TPC-H are well-known on-line transac-
tion processing (TPC-C) and decision support (TPC-H)
benchmarks. We ran TPC-C at scale factor 25. At this
scale factor, the TPC-C database initially occupied ap-
proximately 600,000 4KB blocks, or about 2.3 GB, in the
storage system. The TPC-C workload inserts new items
into the database, so the database grows during the TPC-
C run. For the TPC-H experiments, the database size was
approximately 3.2 GB for the DB2 runs, and 5 GB for the
MySQL runs. The DB2 TPC-H workload consisted of
the 22 TPC-H queries and the two refresh updates. The
workload for MySQL was similar except that it did not
include the refresh updated and we skipped one of the
22 queries (Q18) because of excessive run-time on our
MySQL configuration.

On each run, we controlled the size of the database
system’s internal buffer cache. We collected traces using
a variety of different buffer cache sizes for each DBMS.
We expect the buffer cache size to be a significant pa-
rameter because it affects the temporal locality in the
I/O request stream that is seen by the underlying stor-
age server. Figure 5 summarizes the I/O request traces
that were used for the experiments reported here.

6.1 Comparison to Other Caching Policies

In our first experiment, we compare the cache read hit ra-
tio of CLIC to that of other replacement policies that we
consider (LRU, ARC, TQ, and OPT). We varied the size
of the storage server buffer cache, and we present the
read hit ratio as a function of the server’s buffer cache
size for each workload. For these experiments, we set
r = 1.0 and the size of CLIC’s outqueue (Noutq) to 5 en-
tries per page in the storage server’s cache. If the cache
holds C pages, this means that CLIC tracks the most re-
cent reference for 6C pages, since it tracks this infor-
mation for all cached pages, plus those in the outqueue.
For each tracked page, CLIC records a sequence num-
ber and a hint set. If each of these is stored as a 4-byte
integer, this represents a space overhead of roughly 1%.

To account for this, we reduced the server cache size by
1% for CLIC only, so that the total space used by CLIC
would be the same as that used by other policies. ARC
also employs a structure similar to CLIC’s outqueue for
tracking pages that are not in the cache. However, we
did not reduce ARC’s cache size. As a result, ARC has a
small space advantage in these experiments.

Figure 6 shows the results of this experiment for the
DB2 TPC-C traces. All of the algorithms have similar
performance for the DB2 C60 trace. That trace comes
from the DB2 configuration with the smallest buffer
cache, and there is a significant amount of temporal lo-
cality in the trace that was not “absorbed” by DB2’s
cache. This temporal locality can be exploited by the
storage server cache. As a result, even LRU performs
reasonably well. Both of the hint-based algorithms (TQ
and CLIC) also do well.

The performance of LRU is significantly worse on
the other two TPC-C traces, as there is very little tem-
poral locality. ARC performs better than LRU, as ex-
pected, though substantially worse than both of the hint-
aware policies. CLIC, which learns how to exploit the
available hints, does about as well as TQ, which imple-
ments a hard-coded response to one particular hint type
on the DB2 C300 trace, and both policies’ performance
approaches that of OPT. CLIC outperforms TQ on the
DB2 C540 trace, though it is also further from OPT. The
DB2 C540 trace comes from the DB2 configuration with
the largest buffer cache, so it has the least temporal local-
ity of all traces and therefore presents the most difficult
cache replacement problem.

Figures 7 and 8 show the results for the TPC-H traces
from DB2 and for the MySQL TPC-H traces, respec-
tively. Again, CLIC generally performs at least as well
as the other replacement policies that we considered. In
some cases, e.g., for the DB2 H400 trace, CLIC’s read
hit ratio is more than twice the hit ratio of the best hint-
oblivious alternative. In one case, for the DB2 H80 trace
with a server cache size of 300K pages, both LRU and
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Figure 6: Read Hit Ratio of Caching Policies for the DB2
TPC-C Workloads

ARC outperformed both TQ and CLIC. We are uncertain
of the precise reason for this inversion. However, this is
a scenario in which there is a relatively large amount of
residual locality in the workload (because the DB2 buffer
cache is small) and in which the storage server cache may
be large enough to capture it.

6.2 Tracking Only Frequent Hint Sets
In this experiment, we study the effect of tracking only
the most frequently occurring hint sets using the top-k
algorithm described in Section 5. In our experiment we
vary k, the number of hint sets tracked by CLIC, and
measure the server cache hit ratio.

Figure 9 shows some of the results of this experiment.
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Figure 7: Read Hit Ratio of Caching Policies for the DB2
TPC-H Workloads

The top graph in Figure 9 shows the results for the DB2
TPC-C traces, with a server cache size of 180K pages.
We obtained similar results with the DB2 TPC-C traces
for other server cache sizes. In all cases, tracking the
20 most frequent hints (i.e., setting k = 20) was suffi-
cient to achieve a read hit ratio close to what we could
obtain by tracking all of the hints in the trace. In many
cases, tracking fewer than 10 hints sufficed. The curve
for the DB2 C540 trace illustrates that the Space Sav-
ing algorithm that we use to track frequent hint sets can
sometimes suffer from some instability, in the sense that
larger values of k may result in worse performance than
smaller k. This is because hint sets reported by the Space
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Figure 8: Read Hit Ratio of Caching Policies for the
MySQL Workloads

Saving algorithm when k = k1 are not guaranteed to be
reported by the space saving algorithm when k > k1.
We only observed this problem occasionally, and only
for very small values of k.

The lower graph in Figure 9 shows the results for the
DB2 TPC-H traces, with a server cache size of 180K
pages. For all of the DB2 TPC-H traces and all of the
cache sizes that we tested, k = 10 was sufficient to ob-
tain performance close to that obtained by tracking all
hint sets. For the MySQL TPC-H traces (not shown in
Figure 9), which contained fewer distinct hint sets, k = 4
was sufficient to obtain good performance. Overall, we
found the top-k approach to be very effective at cutting
down the number of hints to be considered by CLIC.

6.3 Increasing the Number of Hints
In the previous experiment, we studied the effectiveness
of the top-k approach at reducing the number of hints
that must be tracked by CLIC. In this experiment, we
consider a similar question, but from a different perspec-
tive. Specifically, we consider a scenario in which CLIC
is subjected to useless “noise” hints, in addition to the
useful hints that it has exploited in our previous experi-
ments. We limit the number of hint sets that CLIC is able
to track and increase the level “noise”. Our objective is
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Figure 9: Effect of Top-K Hint Set Filtering on Read Hit
Ratio

to determine whether the top-k approach is effective at
ignoring the noise, and focusing the limited space avail-
able for hint-tracking on the most useful hints.

In practice, we hope that storage clients will not gen-
erate lots of useless hints. However, in general, clients
will not be able to determine how useful their hints are
to the server, and some hints generated by clients may be
of little value. By deliberately introducing a controllable
level of useless hints in the his experiment, we hope to
test CLIC’s ability to tolerate them without losing track
of those hints that are useful..

For this experiment we used our DB2 TPC-C traces,
each of which contains 5 real hint types, and added T
additional synthetic hint types. In other words, each re-
quest will have 5 + T hints associated with it, the five
original hints plus T additional synthetic hints. Each in-
jected synthetic hint is chosen randomly from a domain
of D possible hint values. A particular value from the
domain is selected using a Zipf distribution with skew
parameter z = 1. When T > 1, each injected hint value
is chosen independently of the other injected hints for
the same record. Since the injected hints are chosen at
random, we do not expect them to provide any informa-



tion that is useful for server cache management. This
injection procedure potentially increases the number of
distinct hint sets in a trace by a factor DT . For our ex-
periments, we chose D = 10, and we varied T , which
controls the amount of “noise”.

Figure 10 shows the read hit ratios in a server cache of
size 180K pages as a function of T . We fixed k = 100
for the top-k algorithm, so the number of hints tracked
by CLIC remains fixed at 100 as the number of useless
hints increases. As T goes from 0 to 3, the total number
of distinct hint sets in each trace increases from just over
100 (the number of distinct hint sets each TPC-C trace),
to about 1000 when T = 1, and to more than 50000 when
T = 3.

Ideally, the server cache read hit ratio would remain
unchanged as the number of “noise” hints is increased.
In practice, however, this is not the case. As shown in
Figure 10, CLIC fares reasonably well for the DB2 C60
trace, suffering mild degradation in performance for T ≥
2. However, for the other two traces, CLIC experienced
more substantial degradation, particularly for T ≥ 2.
The cause of the degradation is that high-priority hint
sets from the original trace get “diluted” by the additional
noise hint types. For example, with D = 10 and T = 2,
each original hint set is split into as many as DT = 100
distinct hint sets because of the additional noise hints that
appear with each request. Since CLIC has limited space
for tracking hint sets, the dilution eventually overwhelms
its ability to track and identify the useful hints.

This experiment suggests that it may be necessary to
tune or modify CLIC to ensure that it operates well in
situations in which the storage clients provide too many
low-value hints. One way to address this problem is to
increase k as the number of hints increases, so that CLIC
is not overwhelmed by the additional hints. Controlling
this tradeoff of space versus accuracy is an interesting
tuning problem for CLIC. An alternative approach is to
add an additional mechanism to CLIC that would allow
it to group similar hint sets together, and then track re-
reference statistics for the groups rather than the individ-
ual hint sets. We have explored one technique for doing
this, based on decision trees. However, both the deci-
sion tree technique and the tuning problem are beyond
the scope of this paper, and we leave them as subjects for
future work.

6.4 Multiple Storage Clients
One desirable feature of CLIC is that it should be capable
of accommodating hints from multiple storage clients.
The clients independently send their different hints to
the storage server without any coordination among them-
selves, and CLIC should be able to effectively prioritize
the hints to get the best overall cache hit ratio.

To test this, we simulated a scenario in which multiple
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Figure 10: Effect of Number of Additional Hint Types
on Read Hit Ratios

instances of DB2 share a storage server. Each DB2 in-
stance manages its own separate database, and represents
a separate storage client. All of the databases are housed
in the storage server, and the storage server’s cache must
be shared among the pages of the different databases.
To create this scenario, we create a multi-client trace for
our simulator by interleaving requests from several DB2
traces, each of which represents the requests from a sin-
gle client. We interleave the requests in a round robin
manner, one from each trace. We truncate all traces to
the length of the shortest trace being interleaved to elim-
inate bias towards longer traces. We treat the hint types
in each trace as distinct, so the total number of distinct
hint sets in the combined trace is the sum of the number
of distinct hint sets in each individual trace.

Figure 11 shows results for the trace generated by
interleaving the DB2 C60, DB2 C400, and DB2 C540
traces. The server cache size is 180K pages, and CLIC
uses top-k filtering with k = 100. The figure shows the
read hit ratio for the requests from each individual trace
that is part of the interleaved trace. The figure also shows
the overall hit ratio for the entire interleaved trace. For
comparison, the figure shows the hit ratios for the full-
length (untruncated) traces when they use independent
caches of size 60K pages each (i.e., the storage server
cache is partitioned equally among the clients). The fig-
ure shows a dramatic improvement in hit ratio for the
DB2 C60 trace and also an improvement in the overall
hit ratio as compared to equally partitioning the server
cache among the traces. CLIC is able to identify that
the DB2 C60 trace presents the best caching opportuni-
ties (since it has the most temporal locality), and to fo-
cus on caching pages from this trace. This illustrates that
CLIC is able to accommodate hints from multiple storage
clients and prioritize them so as to maximize the overall
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Figure 11: Read Hit Ratio with Three Clients
Read hit ratio is near zero for the DB2 C300 and DB2 C540
traces in the 180K page shared cache, so bars are not visible.

hit ratio.
Note that it is possible to consider other objectives

when managing the shared server cache. For exam-
ple, we may want to ensure fairness among clients or to
achieve certain quality of service levels for some clients.
This may be accomplished by statically or dynamically
partitioning the cache space among the clients. In CLIC,
the objective is simply to maximize the overall cache
hit ratio without considering quality of service targets or
fairness among clients. This objectives results in the best
utilization of the available cache space. Our experiment
illustrates that CLIC is able to achieve this objective, al-
though the benefits of the server cache may go dispro-
portionately to some clients at the expense of others.

7 Related Work

Many replacement policies have been proposed to im-
prove on LRU, including MQ [22], ARC [13], CAR [3],
and 2Q [10]. These policies use a combination of re-
cency of use and frequency of use to make replacement
decisions. They can be used to manage a cache at any
level of a cache hierarchy, though some, like MQ, were
explicitly developed for use in second-tier caches, for
which there is little temporal locality in the workload.
ACME [1] is a mechanism that can be used to automat-
ically and adaptively choose a good policy from among
a pool of candidate policies, based on the recent perfor-
mance of the candidates.

There are also caching policies that have been pro-
posed explicitly for second (or lower) tier caches in a
cache hierarchy. Chen et al [6] have classified these
as either hierarchy-aware or aggressively collaborative.
Hierarchy-aware methods specifically exploit the knowl-
edge that they are running in the second tier, but they are
transparent to the first tier. Some such approaches, like

X-RAY [2], work by examining the contents of requests
submitted by a client application in the first tier. By as-
suming a particular type of client and exploiting knowl-
edge of its behavior, X-RAY can extract client-specific
semantic information from I/O requests. This informa-
tion can then be used to guide caching decisions at the
server. X-RAY has been proposed for file system clients
[2] and DBMS clients [17].

Aggressively collaborative approaches require
changes to the first tier. Examples include PROMOTE
[8] and DEMOTE [19], both of which seek to maintain
exclusivity among caches, and hint-based techniques,
including CLIC. Although all aggressively collaborative
techniques require changes to the first tier, they vary
considerably in the intrusiveness of the changes that
are required. For example, ULC [9] gives complete
responsibility for management of the second tier cache
to the first tier. PROMOTE [8] prescribes a replacement
policy that must be used by all tiers, including the first
tier. This may be undesirable if the first tier cache is
managed by a database system or other application
which prefers an application-specific policy for cache
management. Among the aggressively collaborative
techniques, hint-based approaches like CLIC are ar-
guably the least intrusive and least costly. Hints are
small and can be piggybacked onto I/O requests. More
importantly, hint-based techniques do not require any
changes to the policies used to manage the first tier
caches.

Several hint-based techniques have been proposed, in-
cluding importance hints [6] and write hints [11], which
have already been described. In their work on informed
prefetching and caching, Patterson et al [16] distin-
guished hints that disclose from hints that advise, and
advocated the former. Most subsequent hint-based tech-
niques, including CLIC, use hints that disclose. In-
formed prefetching and caching rely on hints that dis-
close sequential access to entire files or to portions of
files. Karma [21] relies on application hints to group
pages into “ranges”, and to associate an expected access
pattern with each range. Unlike CLIC, all of these tech-
niques are they are designed to exploit specific types of
hints. As was discussed in Section 1, this makes them
difficult to generalize and combine.

A previous study [6] suggested that aggressively col-
laborative approaches provided little benefit beyond that
of hierarchy-aware approaches and thus, that the loss of
transparency implied by collaborative approaches was
not worthwhile. However, that study only considered one
ad hoc hint-based technique. Li et al [11] found that the
hint-based TQ algorithm could provide substantial per-
formance improvements in comparison to hint-oblivious
approaches (LRU and MQ) as well as simple hint-aware
extensions of those approaches.



There has also been work on the problem of sharing
a cache among multiple competing client applications
[5, 12, 18, 20]. Often, the goal of these techniques is
to achieve specific quality-of-service objectives for the
client applications, and the method used is to somehow
partition the shared cache. This work is largely orthogo-
nal to CLIC, in the sense that CLIC can be used, like any
other replacement algorithm, to manage the cache con-
tents in each partition. CLIC can also used to directly
control a shared cache, as in Section 6.4, but it does not
include any mechanism for enforcing quality-of-service
requirements or fairness requirements among the com-
peting clients.

The problem of identifying frequently-occurring items
in a data stream occurs in many situations. Metwally
et al [14] classify solutions to the frequent-item prob-
lem as counter-based techniques or sketch-based tech-
niques. The former maintain counters for certain indi-
vidual items, while the latter collect information about
aggregations of items. For CLIC, we have chosen to use
the Space-Saving algorithm [14] as it is both effective
and simple to implement. A recent study [7] found the
Space-Saving algorithm to be one of the best overall per-
formers among frequent-item algorithms.

8 Conclusion

We have presented CLIC, a technique for managing a
storage server cache based on hints from storage client
applications. CLIC provides a general, adaptive mech-
anism for incorporating application-provided hints into
cache management. We used trace-driven simulation to
evaluate CLIC, and found that it was effective at learn-
ing to exploit hints. In our tests, CLIC learned to per-
form as well as or better than TQ, an ad hoc hint based
technique. In many scenarios, CLIC also performed sub-
stantially better than hint-oblivious techniques such as
LRU and ARC. Our results also show that CLIC, unlike
TQ and other ad hoc techniques, can accommodate hints
from multiple client applications.

A potential drawback of CLIC is the space overhead
that is required learning which hints are valuable. We
considered a simple technique for limiting this over-
head, which involves identifying frequently-occurring
hints and tracking statistics only for those hints. In many
cases, we found that it was possible to significantly re-
duce the number of hints that CLIC had to track with
only minor degradation in performance. However, al-
though tracking only frequent hints is a good way to re-
duce overhead, the overhead is not eliminated and the
space required for good performance may increase with
the number of hint types that CLIC encounters. As part
of our future work, we are using decision trees to gener-
alize hint sets by grouping related hint sets together into

a common class. We expect that this approach, together
with the frequency-based approach, can enable CLIC to
accommodate a large number of hint types.
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