
Our Troubles with Linux and Why You Should Care

Ashif S. Harji Peter A. Buhr Tim Brecht
Cheriton School of Computer Science

University of Waterloo
Waterloo, Canada

asharji,pabuhr,brecht@uwaterloo.ca

Abstract
Linux provides researchers with a full-fledged operating sys-
tem that is widely used and open source. However, due to its
complexity and rapid development, care should be exercised
when using Linux for performance experiments, especially
in systems research. The size and continual evolution of
the Linux code-base makes it difficult to understand, and as
a result, decipher and explain the reasons for performance
improvements. In addition, the rapid kernel development
cycle means that experimental results can be viewed as out
of date, or meaningless, very quickly. We demonstrate that
this viewpoint is incorrect because kernel changes can and
have introduced both bugs and performance degradations.

This paper describes some of our experiences using the
Linux kernel as a platform for conducting performance eval-
uations and some performance regressions we have found.
Our results show, these performance regressions can be se-
rious (e.g., repeating identical experiments results in large
variability in results) and long lived despite having a large
negative effect on performance (one problem has existed for
more than 3 years). Based on these experiences, we argue:
it is sometimes reasonable to use an older kernel version,
experimental results need careful analysis to explain why a
performance effect occurs, and publishing papers validating
prior research is essential.

Categories and Subject Descriptors
C.2 [Computer-Communication Networks]: Distributed
Systems—client/server ; D.4 [Operating Systems]: Reli-
ability—verification; D.4 [Operating Systems]: Perfor-
mance—measurements

General Terms
Experimentation, Measurement, Performance

Keywords
Linux, bugs, web servers, regression testing

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
2nd ACM SIGOPS Asia-Pacific Workshop on Systems (APSys 2011)July,
2011, Shanghai, China
Copyright 2011 ACM X-XXXXX-XX-X/XX/XX ...$10.00.

1. INTRODUCTION
Linux is a boon to academic systems-researchers because

it provides an open-source platform to make improvements
to and evaluate the performance of systems that are used in
production. Prior to Linux, OS, networking and database
researchers were often at the mercy of OS vendors with re-
spect to developing and evaluating new OS mechanisms or
policies. Furthermore, researchers could only find bugs or
performance problems in a vendor’s OS by treating it as a
black box and developing external tests. As well, vendors
were frequently unreceptive to performance problems and
bug reports. In fact, the availability of Linux has forced
some OS vendors to make some or all their software open
source, allowing researchers alternative venues for develop-
ment. Fundamentally, without access to source code, it is
extremely difficult for researchers to innovate in the crucial
and expanding area of systems software. Jockeying for spe-
cial or restricted access to an OS, or working with the OS
as a black-box does not allow all researchers equal or suffi-
cient access to find, understand and fix logic or performance
problems.

However, due to its complexity and rapid development,
using Linux for systems research also has its drawbacks.
The complexity of a large software system makes it diffi-
cult to configure and tune for the best possible performance,
and it also makes understanding and explaining the results
difficult. In addition, the rapid kernel development cycle
means that experimental results can be viewed as out of
date, or meaningless, very quickly. But most importantly,
the rapid changes in kernel development introduce both bugs
and performance degradations. While bugs causing failures
are quickly identified and fixed, performance related prob-
lems are extremely difficult to isolate and correct. Further-
more, because of conflicting goals and tradeoffs that are cen-
tral to systems implementation, changes that increase per-
formance in one area may degrade performance in another.

The main contribution of this paper is demonstrating that
significant performance problems exist in multiple Linux ker-
nels. As well, we argue that:

• some performance results published over an extended
time-period need to be re-examined due these perfor-
mance issues.

• to encourage good science, publishing papers that val-
idate prior research results is essential.

• experimental results need careful analysis to under-
stand and explain why a change has or has not pro-
duced a performance effect.

• finding and fixing performance problems is difficult and
time consuming, as is getting performance fixes into
the Linux kernel.

• changing to the newest Linux kernel is neither a panacea
nor requirement for sound research.

Finally, we make a number of recommendations for perform-
ing sound experimental performance evaluations.

2. EXPERIENCES WITH BUGS
We conduct research into designing and testing web-server

architectures on uniprocessor and multiprocessor hardware
with the goal of understanding how differences in architec-
ture affect performance. During detailed comparisons of
various servers, a number of performance anomalies were
encountered that could not be explained based on server ar-
chitectures or configurations [1]. The anomalies were even-
tually tracked into the Linux kernel, where three Linux per-
formance problems were found. These problems are subtle
as they do not cause crashes or typically result in crippling
performance behaviour. Without the benefit of working
with multiple servers and access to the Linux source-code,
it would have been difficult to identify these anomalies.

2.1 Small File Evictions
Kernel versions affected: 2.6.11 to 2.6.21.7
Duration: 02-Mar-2005 to 04-Aug-2007

There was a bug where small files (≤ page size) were be-
ing evicted from the file-system cache regardless of their fre-
quency of access. The bug occurred when a change was made
to the file-system cache-code to prevent a single, sequential
non-page-aligned read of a large file from invalidating a large
portion of the file-system cache. However, the mechanism
used to detect this behaviour was too coarse; multiple con-
secutive accesses to the same page in the file-system cache
did not update the access flags for that page. Only when a
different page in the file is accessed are the access flags up-
dated. This logic results in small files never being marked
as accessed after their first access. Hence, these pages are
always evicted from the cache regardless of how often the
file is accessed.

Situations where the file-system cache fills and must be-
gin evicting pages to disk are potentially affected by this
problem. The problem manifests itself through poor disk
performance because of less efficient disk access resulting
from small, frequently accessed files constantly being reread
from disk as opposed to sitting in the cache. The problem
becomes acute for applications that place a heavy load on
the file-system cache, e.g., web servers, particularly when
small files constitute a significant portion of the workload.

The small-file-evictions problem was discovered after pub-
lishing performance results [4] using a kernel that contains
this bug. The bug was found while conducting subsequent
research using a different workload with increased disk I/O.
After finding the bug, we reexamined the experiments from
the paper and fortunately determined it had only a minor
effect on the results, but an effect nonetheless. Hence, we
were lucky and the conclusions in the paper are still valid.

2.2 Prefetching Disabled
Kernel versions affected: 2.6.12 to 2.6.22.19
Duration: 17-Jun-2005 to 26-Feb-2008

There was a bug where the page-cache read-ahead is dis-
abled for sequential disk-reads when using sendfile with non-
blocking sockets, as a result of the kernel misinterpreting the
access pattern when reading large files. sendfile is unusual
because a call can involve both disk and network I/O. Mul-
tiple sendfile calls may be necessary to transmit file data
over the network because the size of non-blocking sends are
limited by the socket-buffer size. Similarly, the operating
system reads a file into the file-system cache from disk in
pieces, with the size of each piece determined by the disk-
I/O scheduling algorithm. For large files requiring disk-I/O
(i.e., not already in the file-system cache), the socket-buffer
size is normally smaller than the amount of file-data read by
a single disk-request, so the number of disk accesses required
is fewer than the number of network transmissions for the
send.

As a result, for nonblocking sendfile, the file-access pat-
tern appears random because consecutive sendfile calls, when
transmitting a large file, do not appear to continue from the
end of the last disk I/O but rather continue from some loca-
tion within the last disk read. At this point, the kernel dis-
ables page-caching read-ahead for the file and the size of fu-
ture disk requests for that file become smaller on average. In
contrast, for blocking sendfile, only a single sendfile call is re-
quired, and since the kernel performs the appropriate track-
ing, it recognizes file access is sequential, resulting in correct
page-cache read-ahead behaviour. We believe this bug re-
sulted from using or adapting a pre-existing kernel function
for use with sendfile that originally simply read file data
from disk. Unfortunately, assumptions about what consti-
tuted sequential access were not correspondingly adapted
to recognize the unusual disk access-patterns resulting from
sendfile with non-blocking sockets, causing read-ahead to be
disabled. This bug was found while trying to understand
and explain the differences in performance obtained when
using blocking and non-blocking sendfile.

2.3 Erratic Page Evictions
Kernel versions affected: 2.6.23 until at least 2.6.36.2
Duration: 09-Oct-2007 to at least 09-Dec-2010

There may exist a sendfile bug in the most recent Linux
kernel (present the last time we checked in December 2010).
This bug results in none of the pages associated with a trans-
mitted file being marked as accessed by the kernel, so the
kernel cannot distinguish between recently or frequently ac-
cessed pages and other pages in the file-system cache. There-
fore, under memory pressure, the kernel may incorrectly
evict pages from the file-system cache. When these pages
are in the middle of files or frequently accessed, it hampers
long contiguous disk-reads and read-ahead buffering, which
results in smaller and more random disk requests. This be-
haviour is manifested as erratic server performance and low
disk-throughput.

To correctly mark page accesses for sendfile, we devel-

oped a patch for the 2.6.24.3 Linux kernel.1 This patch
provided consistent and repeatable performance measure-
ments, by increasing file-system cache hit rates and improv-

1Our patch for small-file evictions (1st bug) is still in place
but the code path for sendfile changed significantly from the
earlier to the later kernels (due to splice). As a result, our
prior knowledge about sendfile could not be used with re-
spect to the new problem.

 0

 1000

 2000

 3000

 4000

 5000

 40000 45000 50000 55000 60000 65000 70000

M
b

p
s

Requests/s

2.6.24.3+patch run 1
2.6.36.2+patch run 1
2.6.36.2+patch run 2

2.6.36.2 run 1
2.6.36.2 run 2

Figure 1: Throughput for patched and unpatched

kernels

ing throughput when reading files from disk. Disk through-
put is increased in some of our experiments from approxi-
mately 11,000 blocks-in per second (1 block = 1024 bytes)
for non-blocking sendfile and 20,000 blocks-in per second
for blocking sendfile to approximately 28,000–30,000 blocks-
in per second for both non-blocking and blocking sendfile.
Figure 1 shows some representative experiments to illus-
trate this I/O problem in recent kernels. The patched
2.6.24.3 kernel (line 2.6.24.3+patch run 1) has stable per-
formance and the highest throughput. The unpatched
2.6.36.2 kernel (line 2.6.36.2 run 1) has significantly lower
throughput and throughput drops substantially for higher
request rates. Repeating the experiment a second time
(line 2.6.36.2 run 2) shows a large difference in performance
at 45,000 and 48,000 requests per second. After apply-
ing our patch for the 2.6.24.3 kernel to the 2.6.36.2 ker-
nel (line 2.6.36.2+patch run 1), throughput is significantly
higher compared to the unpatched counterparts. How-
ever, throughput is still significantly lower than the patched
2.6.24.3 kernel at higher request rates. Even with the
patch, a second run (line 2.6.36.2+patch run 2) has differ-
ent throughput, showing large variations similar to the un-
patched kernel. Without the patch, the 2.6.24.3 kernel ex-
hibited similar problems (not shown in the graph). These
experiments indicate there may be an additional perfor-
mance regression with the newer kernel or that the code
has changed enough to make the patch less effective. The
variance in throughput for identical experiments, combined
with low throughput, directed us to investigate this anomaly
further and lead to the bug.

As a result of these performance problems, for our research
work we either: use the patched 2.6.24.3 kernel because of
our experience with this kernel, its stability after patching,
and the problems and uncertainty with the newer kernels;
or are trying FreeBSD on one new project.

3. EXPERIENCES FINDING BUGS
Debugging performance problems is difficult, especially

tracking a performance problem into the Linux kernel. Some-
times, the most difficult step is to recognize that a perfor-
mance problem actually exists. In isolation, it is difficult
to determine if an application is running reasonably or if
there is a problem with its performance. In our work, we
had the benefit of comparing the throughput of several web-

servers across various configurations and workloads allowing
us to identify performance anomalies. Finding the source of
a performance problem can be challenging as problems of-
ten occur only when the application is under full load, when
debugging and profiling tools may significantly perturb the
environment.

Two common tools for tracking bugs in the kernel are
OProfile and SystemTap. OProfile generates dynamic call-
graphs along with the execution time spent in each function.
We found OProfile was not very helpful because it tended to
be too coarse grained. Rather, we found tools such as vmstat
and mpstat to be more helpful for our particular web-server
work. Unexpected differences in their statistics helped to
confirm a problem and even suggested the type of problem.
SystemTap was used to track down the read-ahead prob-
lem with non-blocking sendfile, and helpful with the other
problems. It is a scripting language useful for instrumenting
a running Linux kernel by executing a handler on specified
events, such as on entry to or exit from specified kernel func-
tions, allowing the printing of local data. Without a tool like
SystemTap to trace the sendfile call and narrow the search
space, finding these problems would have taken significantly
longer because the Linux kernel is large and complicated.

4. EXPERIENCES OF OTHERS
Some web sites contain data that tracks the performance

of different benchmarks over time (in some cases by ker-
nel version) [3, 2]. Browsing through the collections of
benchmarks available on these sites examples of long and
short term performance regressions and improvements can
be found. Specifically, the web site “Linux Kernel Perfor-
mance!” [3] has tracked the performance of several bench-
marks executing on Linux kernels from version 2.6.22 to
2.6.38 (at the time of writing). An example of a short-
term performance-regression occurs for the Online Trans-
action Processing benchmark (OLTP) on a 4P quad-core
Xeon. Performance drops by approximately 45% from ker-
nel version 2.6.22 to 2.6.23 and improves in subsequent re-
leases until it is back to the 2.6.22 level in version 2.6.25.
An example of a longer-term performance-reduction occurs
for the benchmark fileio-cfq on a 4P quad-core Xeon. Per-
formance drops by about 30% from kernel version 2.6.31 to
2.6.32 and performance of this benchmark has not improved
from that level with subsequent releases of the kernel (up to
2.6.38).

Interestingly, changing to a 2P Quad-core Core 2 Duo for
the same two benchmarks on the two kernel releases (OLTP
on 2.6.23 and fileio-cfq on 2.6.32) generates different per-
formance regressions. The degradations are about 20% for
OLTP (45% on the 4P system) and only 5% for fileio-cfq
(30% on the 4P system). If a regression test is performed
on the 2P system, the 5% reduction may be deemed accept-
able, but if performed on the 4P system, the 30% reduction
may be deemed unacceptable. Furthermore, if the range of
kernels is altered to 2.6.29 and 2.6.31, there is a 20% reduc-
tion on the 2P, but a 3% increase on the 4p. Therefore, it is
necessary to track performance across a number kernel ver-
sions on different systems to fully understand performance
changes.

Some of the benchmarks exhibit huge swings in perfor-
mance. For example, on the 4P quad-core Xeon system
the benchmark hackbenchpth150 improved by about 2,000%
from kernel version 2.6.25 to 2.6.26. Unfortunately, those

gains disappeared with the release of 2.6.36 and have stayed
at the reduced level (to version 2.6.38).

Performance regressions cause problems not only for re-
searchers but also for companies. Companies want to use
these kernels in production environments to conduct and re-
port results of important benchmarks using a version of the
kernel without performance problems.

5. CONSEQUENCES
The performance issues raised in the previous sections im-

ply a number of consequences for researchers:

5.1 Problems in Published Papers
A number of papers across many disciplines over multiple

years may contain incorrect performance results. Based on
our experience, papers involving significant I/O may be af-
fected. As well, based on the benchmarking results across
different kernel versions, performance variations occurred
across different parts of the kernel, so the scope of affected
papers/results could be larger than what we report on. The
scientific approach to finding incorrect results is for other
researchers to reproduce results. Unfortunately, if the origi-
nal results are verified, it is currently difficult or impossible
to publish this work, making the endeavour risky. As in
other scientific fields, Computer Science needs to value and
publish papers that verify previous results.

5.2 Underlying Cause
Based on our experience, it is crucial to find the under-

lying cause for performance results. Experimental results
require careful analysis to understand why a change has or
has not produced a performance effect, and anomalies in
performance results cannot be ignored because they may be
“shouting out” that there is an underlying problem. Deter-
mining and explaining the root cause for performance results
are likely to lead to either an understanding of the observed
performance or the discovery of a problem (in some cases,
possibly with the kernel). Simply reporting performance re-
sults (either positive or negative) is insufficient.

5.3 Fixing Problems
If unexplainable behaviour suggests a bug, it may be nec-

essary to look into the Linux kernel. Our experience is that
finding and fixing a kernel bug is extremely difficult and time
consuming, especially because the Linux code-base is large
and a quickly moving target. For example, there are many
levels of indirection (routine pointers) used in the kernel, so
determining what is called and when is difficult. Also, the
tool-set for monitoring dynamic execution is low-level and
complex to use.

Assuming you find and fix a problem, the next logical step
is to have the fix applied to the mainline kernel for the bene-
fit of all. Because the kernel evolves rapidly, it is necessary to
obtain the most recent kernel and check if the bug is already
fixed. If the bug is still present, it may be necessary to port
the fix (again) to the new code base. When the code base
has changed significantly, it may be the case that people no
longer possess the expertise or time required to construct
a new fix. Finally, to create a bug report it is important
to write small, stand-alone programs that reproduced the
problem, and to submit these programs along with the sug-
gested bug fix. Our experience is that bug reports sent to

the kernel-developer mailing-list are not always well received
and getting our fixes into the mainstream kernel sometimes
required a thick-skin and persistence.

5.4 Kernel Upgrading Problems
Once your research team has established a working ker-

nel, which generates good, explainable, consistent results,
there is the dilemma of moving to the latest version of the
kernel because there is a general belief the latest kernel is
always better. For researchers, this prejudice appears in the
form of reviewers stating that results are not meaningful
because the latest kernel is not used. However, based on
our experience, bugs we found were not fixed in the new
kernel, and new kernels can introduce performance regres-
sions and new problems. Furthermore, new kernels require
rerunning and re-validating experiments to re-establish re-
sults and gain expertise with the new kernel, which may
take weeks or months, and in the meantime another kernel
is released. An important aspect of our work has become
explaining and justifying why we are using an older kernel.

We expect that other researchers may have similar ex-
periences. Clearly, progress in the Linux kernel is essen-
tial, and the people involved are working actively to do the
right things. Additionally, there are cases where switching
to the newest kernel is absolutely necessary. However, we
do want reviewers, kernel developers, system administrators
and users to understand that the latest kernel is not always
the best kernel. It is incumbent on all parties to clearly
state why an old kernel is better than a new kernel or vice
versa. The reason needs to be particular and specific, and
not just that the new kernel has fixed a number of bugs and
improved performance.

6. POSSIBLE RECOMMENDATIONS
Linux kernel developers must employ a systematic, sus-

tained regiment of performance regression testing (to our
knowledge this is not currently being done). We understand
the difficulties in such an undertaking but expect many of
the problems we point out could have been avoided had rig-
orous performance regression testing been an integrated part
of the kernel-development process.

Some questions researchers need to ask are: When starting
a new project, what version of the kernel should be used and
why? When working on a project over an extended period,
should the kernel be upgraded and why? If upgrading to a
new kernel during a project, does the upgrade change the
results significantly, and if so why? How can performance
changes be explained by the research that has been done?

Here are some practical suggestions to help answer these
questions:

1. Before selecting a kernel, check web sites publishing
benchmarks on different kernels and select a kernel
with good benchmarks in your research area and avoid
those with obvious defects. For example, for reasons
explained in Section 4, it is unwise to use version 2.6.23
for workloads that resemble OLTP.

2. After upgrading kernels, run some sanity checks for
comparison. If performance improves or degrades, try
to determine why. This requires expertise, determina-
tion, and time, with no guarantee of success.

3. In general, experiments must be run multiple times to
check for variability. If there is variability, explain why
and report confidence intervals.

4. When conducting experiments, appeal to your intu-
ition. Researchers sometimes become blind when it
comes to obtaining results. If results are significantly
better or worse than expected, figure out why.

5. Ensure the experimental environment is sound. For ex-
ample: address-space randomization (computer secu-
rity technique) may cause variations in results; Security-
Enhanced Linux (SELinux) may reduce performance
for some workloads because of its security checking;
processor dynamic-frequency-scaling may cause vari-
ations in results due to changes in clock frequency.
Therefore, it may be appropriate to enable or disable
some of these mechanisms depending on the particular
experiment.

7. SUMMARY
Linux is an excellent platform for both conducting re-

search and as a production environments. Furthermore, the
Linux kernel developers are doing an excellent job build-
ing an innovative and robust operating-system. This paper
would not have been written without their dedication and
effort. Working in conjunction with the kernel developers
are university and industrial researchers who use Linux to
demonstrate new ideas, approaches, and techniques across a
spectrum of disciplines. A goal of these researchers is to see
their technologies move from the laboratory into production.
One reason for Linux’s success is its continuous inclusion of
innovations and improvements resulting in frequent release
cycles.

This paper highlights the issues and the problems that
result as the kernel evolves. It is unavoidable that changes
must be made to fix bugs, add new features, enhance main-
tainability, improve scalability, or increase performance. In
many cases, kernel developers must make complex decisions
regarding tradeoffs among these changes, which can affect
different benchmarks and applications in different ways on
different systems. Coupled with the relentless pace of change,
bugs and performance regressions can occur in newer ver-
sions of the kernel.

Our key points are: 1) The latest version of Linux is not
necessarily the best version to be using, and researchers, re-
viewers, kernel developers, and users need to think through
and understand the pros and cons of different kernel ver-
sions. It may also be the case that the most recent version
of the kernel is the best version to be using. 2) In light of the
significant performance bugs we found and the time periods
over which they have been present, it is very likely that per-
formance results published across an extended time period
need to be reevaluated. 3) More papers need to provide a
deep analysis of their experimental results. While such anal-
ysis is time consuming and difficult, it provides understand-
ing of where the benefits come from and insights into appli-
cability beyond the scope of the paper. 4) The computer-
systems research-community needs to embrace the scientific
approach of publishing papers that reexamine previous work
(in non trivial ways) to either confirm or refute their results.
This effort should include different hardware configurations,
different operating systems, and different workloads.

8. ACKNOWLEDGMENTS
Funding for this work was provided by the Natural Sci-

ences and Engineering Research Council of Canada. We
would like to thank the anonymous reviewers for helpful
comments and suggestions on an earlier version of this pa-
per.

9. REFERENCES
[1] A. S. Harji. Performance Comparison of Uniprocessor

and Multiprocessor Web Server Architectures. PhD
thesis, University of Waterloo, 2010.
http://hdl.handle.net/10012/5040.

[2] M. Larabel. Five Years Of Linux Kernel Benchmarks:
2.6.12 Through 2.6.37. Phoronix Media, Nov. 2010.
http://www.phoronix.com/scan.php?page=article-
&item=linux 2612 2637&num=1.

[3] Linux kernel performance!
http://kernel-perf.sourceforge.net.

[4] D. Pariag, T. Brecht, A. Harji, P. Buhr, and A. Shukla.
Comparing the performance of web server architectures.
In Proc. of the 2nd ACM SIGOPS/EuroSys Conf. on
Computer Systems, pages 231–243. ACM, Mar. 2007.

