
USENIX Association 12th USENIX Conference on File and Storage Technologies 309

DC Express: Shortest Latency Protocol for Reading Phase Change
Memory over PCI Express

Dejan Vučinić,1 Qingbo Wang,1 Cyril Guyot,1 Robert Mateescu,1 Filip Blagojević,1 Luiz Franca-
Neto,1 Damien Le Moal,1 Trevor Bunker,2 Jian Xu,2 Steven Swanson2 and Zvonimir Bandić1

1HGST San Jose Research Center, 2University of California, San Diego

Abstract
Phase Change Memory (PCM) presents an architec-

tural challenge: writing to it is slow enough to make
attaching it to a CPU’s main memory controller imprac-
tical, yet reading from it is so fast that using it in a pe-
ripheral storage device would leave much of its per-
formance potential untapped at low command queue
depths, throttled by the high latencies of the common
peripheral buses and existing device protocols.

Here we explore the limits of communication la-
tency with a PCM-based storage device over PCI Ex-
press. We devised a communication protocol, dubbed
DC Express, where the device continuously polls read
command queues in host memory without waiting for
host-driven initiation, and completion signals are elimi-
nated in favor of a novel completion detection proce-
dure that marks receive buffers in host memory with
incomplete tags and monitors their disappearance. By
eliminating superfluous PCI Express packets and con-
text switches in this manner we are able to exceed
700,000 IOPS on small random reads at queue depth 1.

1 Introduction
The development of NAND flash and the market

adoption of flash-based storage peripherals has exposed
the limitations of a prior generation of device interfaces
(SATA, SAS), prompting the creation of NVM Express
[1] (NVMe), a simplified protocol for Non-Volatile
Memory (NVM) storage attached to PCI Express. In the
course of researching the capabilities of several novel
memory technologies vying to displace flash, we set out
to build NVMe-compliant prototypes as technology
demonstrators. We found, however, that the maximal
performance permitted by NVMe throttles the potential
of many emerging memory cell technologies.

Phase Change Memory, one of the most promising
contenders, achieves non-volatility by re-melting a ma-
terial with two distinguishable solid phases to store two
or more different bit values. Discovered in 1968 [2],
this effect is today widely used in DVD-RW media, and
is now making inroads into lithographed memory de-
vices thanks to its favorable device size and scaling
properties [3], high endurance [4] and very fast readout.

The most dramatic advantage PCM has over NAND
flash is that its readout latency is shorter by more than
two orders of magnitude. While its write latency is
about fifty times longer than reads at current litho-
graphic limits, it is already comparable with NAND
flash and is expected to improve further with advances
in lithography [5]. This makes PCM a very attractive
alternative in the settings where the workload is domi-
nated by reads.

The main motivation for the work we present in this
paper is the desire to build a block storage device that
takes advantage of the fast readout of PCM to achieve
the greatest number of input-output operations per sec-
ond (IOPS) permitted by the low physical latency of the
memory medium. While spectacular numbers [6] of
IOPS are touted for flash-based devices, such perform-
ance is only possible at impractically high queue
depths. The fact remains that most practical data center
usage patterns revolve around low queue depths [7, 8],
especially under completion latency bounds [9]. The
most critical metric of device performance in many
settings is the round-trip latency to the storage device as
opposed to the total bandwidth achievable: the latter
scales easily with device bus width and speed, unlike
the former. Under this more stringent criterion, modern
flash-based SSDs top out around 13 kIOPS for small
random reads at queue depth 1, limited by over 70 µs of
readout latency of the memory medium (our measure-
ments).

Here we describe how, starting from NVMe as the
state of the art, we proceeded to slim down the read-
side protocol by eliminating unnecessary packet ex-
changes over PCI Express and by avoiding mode and
context switching. In this manner we were able to re-
duce the average round-trip protocol latency to just over
1 µs, a tenfold improvement over our current imple-
mentation of NVMe-compliant interface protocol. The
resulting protocol, DC Express, exceeds 700 kIOPS at
queue depth 1 on a simple benchmark with 512 B reads
from PCM across a 4-lane 5 GT/s PCI Express inter-
face, with modest impact on the total power consump-
tion of the system.

We believe one cannot go much faster without re-
tooling the physical link to the storage device.

310 12th USENIX Conference on File and Storage Technologies USENIX Association

2 Endpoint-initiated queue processing
Prompted by the observation that the latency of one

PCI Express packet exchange exceeds the time required
to transfer a kilobyte of data, the approach we took to
try to maximize the performance of a small read opera-
tion was to eliminate all unnecessary packet exchanges.
At a minimum, even the leanest protocol requires a way
to initiate and complete a transaction. In this section we
describe endpoint-driven queue polling as an alternative
to “doorbell” signals traditionally used for initiation; in
the next section we discuss a minimalist way of signal-
ing completion.

A rough outline of one NVMe-compliant read op-
eration is shown in Figure 1a. The protocol for reading
one block from the storage device begins with the host
CPU preparing a read command in host DRAM and
initiating the transaction by sending a “doorbell” packet
over PCI Express. This is a signal to the device that
there is a new read command waiting, hence it is to
initiate a direct memory access (DMA) request—
another PCI Express packet—to pick up that command
from the queue in host DRAM.

Since every round trip over PCI Express incurs well
over 0.6 µs latency on today’s fastest hardware, with
such a protocol we waste a microsecond of back-and-
forth over the bus before the device can even com-

mence the actual reading of data from the non-volatile
storage medium. In the past, with the fundamental read
latency of NAND flash between 25 and 80 µs, this extra
request latency was but a small fraction of total transac-
tion time and so was deemed negligible. In contrast, the
fundamental latency to first byte read from a modern
PCM chip is 110 ns, so now the protocol becomes se-
verely limiting when trying to maximize the overall
performance of the storage device for small random
reads at queue depth 1.

 The most important regime we strive to optimize
for is at high load. In this case there will almost always
be a new command waiting in the queue should the
device ask for one, making the sending of a doorbell
signal for every small read superfluous. In the quest for
best performance under these conditions latency be-
comes the key factor, and a given fraction of “no news”
transfers we treat as an acceptable overhead.

With this scenario in mind, and taking advantage of
the full-duplex nature of PCI Express, we present the
first key ingredient of DC Express in Figures 1b and 1c.
The device keeps sending out requests for one or more
commands in the read queue in host DRAM without
waiting for doorbell signals, so that there is almost al-
ways a request “in flight.” Further, since we can probe
the actual round-trip latency for one DMA request to
complete on given hardware, we can send anticipatory

Figure 1: Timing diagrams illustrating the NVM Express and DC Express protocols. Time flows down, drawings are not
to scale. a) NVMe: host CPU enqueues (enq) a command and rings doorbell; the device sends DMA request for the queue
entry; the DMA response arrives; the command is parsed and data packets sent to the host DRAM, followed by comple-
tion queue entry and interrupt assertion; the host CPU thread handles interrupt. Red bars at right mark irreducible protocol
latencies; rectangle illustrates the time when PCM is actually read. b) DC Express protocol at queue depth 1. There are no
distinct doorbell nor completion signals. Device sends out DMA requests for new commands continuously. c) DC Express
at higher queue depths. Subsequent DMA requests (blue) for new commands are launched prior to completing data trans-
mission for the previous command (black) to take advantage of full-duplex nature of PCI Express and allow for seamless
transmission. d) DC Express checks completion by marking each TLP-sized chunk of the receive buffer with an incom-
plete tag (mark) then monitoring for their disappearance. In case of out-of-order arrival the incomplete tag is found in one
of the chunks (oops) prompting a longer wait for all the data to settle.

USENIX Association 12th USENIX Conference on File and Storage Technologies 311

queue read requests prior to sending all data packets for
a previous request so that the next commands, if avail-
able, arrive at the device just in time when the device is
able to service another command (Figure 1c).

3 Tagging receive buffers as incomplete
To notify the host process that a read operation from

NVM has completed, an NVMe-compliant PCI Express
endpoint writes an entry into a “completion” queue in
host DRAM with a DMA transaction, followed by the
assertion of an interrupt signal to wake up the sleeping
thread (cf. Figure 1a). This protocol has two adverse
performance implications in addition to the bandwidth
consumed by the completion signal itself.

First, PCI Express allows for out-of-order arrival of
transaction-level packets (TLPs), meaning that the pos-
sibility exists for the completion packet to settle into
DRAM prior to all its data having arrived—which
would open a window for data corruption of random
duration (cf. Figure 1d). To ensure that all the data
packets have reached host DRAM prior to issuing the
completion signal, the endpoint must declare “strict
packet ordering” for that traffic class by setting a par-
ticular bit in the TLP header. Since PCI Express flow
control works by prior exchange of “transaction cred-
its,” one subtle negative effect of strict ordering is that
any delayed data packet and all its successors, including
the corresponding completion packet, will be holding
up the credits available until all the transactions com-
plete in turn, which can slow down the rest of PCI Ex-
press traffic.

Second, the context switching [10] and mode
switching overhead of interrupt-based completion sig-
naling can easily exceed the latency of a small PCM
read operation by two orders of magnitude. On a mod-
ern x86 processor running Linux, two context switches
between processes on the same core take no less than
1.1 µs, so it is imprudent to relinquish the time slice if
the read from the storage device is likely to complete in
less time. Even if the interrupt signal is ignored by a
polling host CPU, the act of asserting it entails transmit-
ting a packet over the PCI Express link—which again
results in a small penalty on the maximal payload
bandwidth remaining.

To avoid these performance penalties, we reasoned
that the lowest latency test of payload’s arrival into
DRAM would be to simply poll the content of the trail-
ing bits in the receive buffer from a CPU thread: seeing
them change would be the signal that the read operation
has completed. This spin-wait would not necessarily
increase CPU utilization since the cycles spent waiting
for request completions would otherwise be spent on
context switching and interrupt handling.

There are two obstacles to implementing this simple
protocol. As already mentioned, the individual TLPs
that comprise one read operation may arrive into
DRAM out of order, so the last word does not guaran-
tee the arrival of the entire buffer. And, the CPU does
not know what final bits to look for until they have al-
ready been read from the device.

The solution, and the second key ingredient of DC
Express, we elaborate in Figures 1d and 2. Since the
granularity of TLPs on a given PCI Express link is
known, in addition to checking the trailing bits of the
entire receive buffer the protocol also checks the trail-
ing bits of every TLP-sized chunk of host DRAM. In
the event of out-of-order packet reception, such check-
ing will reveal a chunk that has not yet settled, as
shown in the bottom panel of Figure 2.

Instead of looking for particular bit patterns to ar-
rive into the trailing bits of every atomic transfer, we
choose an “incomplete tag,” a pre-selected bit pattern
that does not appear in the data that is about to arrive
from the device. The protocol then writes this known
tag to the receive buffer prior to initiating the read op-
eration, and looks for its disappearance from the loca-
tion of every packet’s trailing bits as the robust comple-
tion signal. In this way we are using the fast link from
CPU to DRAM to avoid sending any extraneous bits or
packets over the much slower PCI Express link.

Figure 2: Detecting completion by pre-populating loca-
tions of packet trailing bits in the receive buffer with
incomplete tags. The disappearance of all incomplete
tags is a robust signal that the entire data transfer has
completed.

312 12th USENIX Conference on File and Storage Technologies USENIX Association

3.1 Strategy for choosing incomplete tag value
Obviously, the bit pattern used for the incomplete

tag in our scheme must be different from the trailing
bits of every TLP arriving. If we choose a pattern of
length greater than log2(C/P) bits (cf. Figure 2), where
C is the total capacity of the storage device and P the
size of one TLP, then in principle we can always select
a pattern such that no TLP arriving from that particular
storage device at that time will have trailing bits that
match our choice of pattern. Note that this characteristic
of storage device interfaces is different from, for in-
stance, network interface protocols, where we are not
privy to the content of arriving data even in principle.

One very simple strategy for choosing the pattern
for the incomplete tag is to pick it at random. Although
probabilistic, this method is adequate for the vast ma-
jority of computing applications that have no hard real
time latency bounds.

Let’s illustrate for the case of a device with 128 GiB
of PCM and 128 B size of TLP payload. Dividing de-
vice capacity by the TLP size,1 there are 230 possible
values at the trailing end of any one TLP-sized transfer.
If we set the size for the incomplete tag at 32 bits, a
randomly generated 32-bit pattern will then have at
most 230/232 = 25% chance of being repeated some-
where on the storage device—the worst case scenario
where every one of the 230 possible patterns is present
on the device. If the random choice was unlucky and
the generated pattern is present on the device, that read
operation will get stuck since the arrival of that packet
will go unnoticed, i.e. there will be a “collision.”

The strategy, then, is to pick the length of the tag
such that we can declare the probability of collision to
be low enough. If it encounters a collision, the protocol
simply times out the stuck read operation and chooses a
new tag at random before retrying. The time to timeout
we set to the product of maximum queue depth and
maximum latency to complete one read operation.

For applications that do have hard real time latency
bounds it is possible to devise more complex strategies
such that the incomplete tag value is always chosen so
no collision is possible. This would be done at the stor-
age device at first power-up and whenever a write to the
device invalidates the existing choice of pattern. One
such strategy would be for the device to pick values at
random and compare internally with the current con-
tents of the device. This would incur no communication
overhead as the storage medium accesses would be
confined to the PCM controller on the device. If even

1 We assume only block-aligned reads are allowed.

that much latency cannot be tolerated, additional com-
puting resources can be provided in the device to moni-
tor writes to keep track of intervals of values not pre-
sent in the currently stored data so that the selection of
a new tag can always complete in constant time.

4 Performance
To implement DC Express we built a prototype

NVM storage device (Figure 3) using a BEE4 FPGA
platform (BEEcube, Inc., Fremont, CA) equipped with
a custom-built DIMM card containing 5 Gib of Phase
Change Memory (Micron NFR0A2B0D125C50). The
NVM device exposed a 4-lane 5 GT/s (“gen2”) PCI
Express link from a Virtex6 FPGA running a custom
memory controller that communicated with the PCM
chips over the LPDDR2-NVM bus. The host systems
used for testing included a Dell R720 server with an
Intel Xeon E5-2690 CPU (Sandy Bridge-EP, Tur-
boBoost to 3.8 GHz) and a Z77 Extreme4-M mother-
board with an Intel i7-2600 CPU (Sandy Bridge, Tur-
boBoost to 3.4 GHz). The NVM device was normally
connected to the PCI Express lanes on the CPU dies.
Alternatively, on the Z77 host we could use the lanes
connecting to the Z77 chipset to measure the impact of
the retransmission. All measurements were done on

Figure 3: Diagram of our prototype system.

Figure 4: Average latency of a small random read opera-
tion when using the DC Express protocol at queue depth 1.

USENIX Association 12th USENIX Conference on File and Storage Technologies 313

Linux kernel version 3.5 (Ubuntu and Fedora distribu-
tions).

We first exercised the bare protocol from a user
space process by mmap()-ing a kernel buffer where the
queues and receive buffer locations were pre-allocated.
This allowed measurement of raw performance without
mode or context switching overhead. The results are
shown in Figure 4 for different transfer sizes. We de-
signed the NVM device so that the bandwidth of data
retrieval from PCM matches that of PCI Express trans-
mission. Therefore, only the initial PCM row activation
and local LPDDR2-NVM memory bus overhead (red)
contribute to the irreducible protocol latency; the re-
mainder is pipelined with PCI Express transfer (green).
The remaining (cyan) component consists of PCI Ex-
press packet handling and command parsing, in addi-
tion to the polling from both ends of the link.

When we exercise the protocol in a tight loop, or
with predictable timing in general, we can adjust the
endpoint polling to anticipate the times of arrival of
new commands into the read queue so that a new com-
mand gets picked up by the queue DMA request soon
after its arrival into the queue. The total round-trip la-
tency for this use case (shown by the solid black line in
Figure 4) we measured as the inverse of the total num-
ber of read operations executed in a tight loop. For tra-
ditional 512 B blocks (arrow in Figure 4) the total la-
tency seen by a user-space process averages 1.4 µs,
over 700,000 IOPS.

If we fully randomize read command arrival times
so that no predictive optimization of endpoint-driven
queue polling is possible, there is additional latency
incurred by the average delay between the arrival of a
read command into the queue and the time when the
next queue DMA hits. For this use case we measured
the completion latencies using Intel CPU’s time stamp
counter (dashed blue line in Figure 4).

Next we constructed a lightweight block device
driver to measure the impact of kernel entry and exit.
We derived our driver from the Linux ramdisk device
example. The read block size was limited to 4 kiB. We
list the additional latencies in Table 5. One memory-to-
memory copy of the retrieved block accounts for a
small fraction of the time spent inside the block driver.
Note that the tool used for measuring the latency of the
block device, fio, contributes a significant amount of its
own latency to these measurements. For comparison,
our current implementation of NVMe-compliant device
accessed through the Linux NVMe device driver under
similar conditions reaches 78 kIOPS at queue depth 1,
nearly 13 µs per 4 kiB read operation.

The latencies measured on the i7 system were com-
parable to those on the E5 server system when our de-
vice was connected to CPU lanes. Routing the packets
through the Z77 chipset resulted in about two micro-
seconds of additional latency per PCI Express round
trip.

4.1 Power and congestion considerations
One concern with a protocol that continuously que-

ries the host DRAM for new commands is the waste of
resources at idle. To better understand the magnitude of
this component relative to the baseline idle consump-
tion of a modern server configuration, for this exercise
we disabled all but one core on the single socket popu-
lated by the E5-2690 on the Dell R720 server equipped
with 16 GiB of DDR3-1600 DRAM.

In Figure 6 we show the dependence of DC Express
protocol performance and system power usage on the
clock frequency of the CPU core doing the spin-wait.
As expected, higher polling frequency reduces the aver-
age round-trip latency. Surprisingly, the optimal operat-
ing point, as defined by the Joules-per-IOP measure, is
not at the lowest core frequency. Dominated by the

component latency [µs] kIOPS
data transfer (4 kiB) 2.432

PCM read 0.368
protocol + command parsing 0.863 273(1)

block driver 0.99
read() call (kernel entry/exit) 1.17

fio 0.506 158(2)

Table 5: Breakdown of contributions to average round-
trip latency of DC Express for 4 kiB random reads at
queue depth 1. IOPS were measured from a user space
process (1) or linux block device driver (2). The total
latency to a given layer is the sum of all latencies above it.

Figure 6: DC Express protocol performance for 512 B
packets and total server power consumption as a function
of the E5-2690 CPU core frequency.

314 12th USENIX Conference on File and Storage Technologies USENIX Association

significant idle power consumption of the entire server,
the energy cost of one read operation stays relatively
flat at low clock settings, suggesting a cost-optimal
operating point near 2 GHz for this configuration (ar-
row in Figure 6) before hardware depreciation is taken
into account.

Note that the overall impact of constant polling
from the PCI Express endpoint is modest, about six
percent of idle power consumption of the server. This is
the worst case scenario where there is always a DMA
request in flight, i.e. at queue depth 1 every other read
of the command queue is guaranteed to be wasted. In
this regime, fetching one 64 B command at a time
would tie up less than six percent of the upstream PCI
Express bandwidth.

5 Discussion
In this paper we described our attempts to wring the

last drop of performance out of the widely adopted PCI
Express interface, driven by the possibility of much
higher performance frontiers uncovered by Phase
Change Memory and other emerging non-volatile stor-
age technologies. By eliminating unnecessary packet
exchanges and avoiding context and mode switching
we were able to surpass 700,000 IOPS at queue depth 1
when reading from a PCM storage device on commod-
ity hardware. The performance increases further for
smaller transfers to just under a million reads per sec-
ond, the hard limit set by bus and protocol latency. By
increasing the number of PCI Express lanes or the per-
lane bandwidth it will be possible in the future to as-
ymptotically approach this limit with larger transfers,
but going even faster will require a fundamental change
to the bus.

The unsolicited polling of DRAM from the endpoint
to check for presence of new read commands results in
a reduction in average protocol latency, but at the ex-
pense of slightly higher idle power consumption. We
have shown that the worst-case impact is modest, both
on power consumption and on the remaining PCI Ex-
press bandwidth. In settings with high load variability
this component of overall power usage can be greatly
mitigated ever further by, for instance, making the
switch to DC Express at a given load threshold while
reverting to the traditional “doorbell” mode of opera-
tion at times of low load.

Our focus was exclusively on small random reads,
as that is the most interesting regime where PCM
greatly outperforms the cheaper NAND flash. Write
latency of the current generation of PCM is 55 times
higher than read latency, so we did not attempt to mod-

ify the write-side protocol as the performance benefit
would be small. For new memory technologies with
much lower write latencies, e.g. STT-MRAM [11], a
similar treatment of the write-side protocol could result
in similarly large round-trip latency improvements, and
will be the subject of future work.

Prior work on accessing low-latency NVMs over
PCI Express has elaborated the advantages of polling
over interrupts [12]. Our work goes two steps further:
we introduce polling from both ends of the latency-
limiting link, and we do away with the separate comple-
tion signal in favor of low-latency polling on all atomic
components of a compound transfer.

While the advance in read performance we report is
quite dramatic, it is important to note the high cost of
using our protocol through kernel facilities. To maxi-
mize the read performance of PCM storage we resorted
to a user-space library which did not provide security.
To take advantage of the low latency while still enjoy-
ing safety guarantees from the operating system one
must implement an additional protocol layer of negotia-
tion through the kernel, such as Moneta Direct [13].

Our work casts PCM-based peripheral storage in a
new light. Rather than using it in the traditional fashion,
just like spinning disk of yore, we envision a new stor-
age tier that fills a niche between DRAM and NAND
flash. Using our FAST protocol will enable exposing
very large non-volatile memory spaces that can still be
read in-context with intermediate read latencies but
without the several Watts per gigabyte penalty of
DRAM refresh. On the other hand, treating PCM as
block storage alleviates the need to rethink the cache
hierarchy of contemporary CPUs, which would be nec-
essary to achieve reasonable write performance in ar-
chitectures where PCM is the main and only memory.

Beyond our work, almost an order of magnitude of
further improvement in small random read latency is
possible in principle before we hit the limits of the un-
derlying physics of phase change materials. At this
time, such advances would require either the use of
parallel main memory buses together with deep changes
to the cache hierarchy, or the use of fundamentally dif-
ferent high speed serial buses, such as HMCC [14],
with shorter minimal transaction latencies. The latter,
while promising, is still in the future, and is geared to-
ward devices soldered onto motherboards as opposed to
field-replaceable peripheral cards. It therefore appears
that the niche for low read latency PCI Express periph-
eral storage based on Phase Change Memory is likely to
persist until the arrival of future generations of periph-
eral buses and CPUs.

USENIX Association 12th USENIX Conference on File and Storage Technologies 315

References
[1] http://nvmexpress.org/wp-

content/uploads/2013/05/NVM_Express_1_1.pdf
[2] Ovshinsky, Stanford R. "Reversible electrical

switching phenomena in disordered structures."
Physical Review Letters 20: 1450–1453, 1968.

[3] Servalli, G. "A 45nm generation phase change
memory technology." Electron Devices Meeting
(IEDM), 2009 IEEE International. IEEE, 2009.

[4] Goux, L. et al., "Degradation of the Reset Switching
During Endurance Testing of a Phase-Change Line
Cell." IEEE Transactions on Electron Devices
vol.56(2), pp.354–358, 2009.

[5] Loke, D., et al. "Breaking the speed limits of phase-
change memory." Science 336.6088: 1566–1569,
2012.

[6] Fusion-io: http://www.fusionio.com/overviews/9m-
iops-technology-showcase/

[7] Seltzer, M., Chen, P. and Ousterhout, J. "Disk
scheduling revisited." Proceedings of the Winter
1990 USENIX Technical Conference. USENIX As-
sociation, 1990.

[8] Personal communications with customers.
[9] Stanovich, Mark J., Baker, Theodore P., and Wang,

An-I A. "Throttling on-disk schedulers to meet soft-
real-time requirements." Real-Time and Embedded
Technology and Applications Symposium. IEEE,
2008.

[10] Li, C., Ding, C., and Shen, K. “Quantifying the
cost of context switch.” ACM Workshop on Experi-
mental Computer Science. ACM, 2007.

[11] Huai, Yiming, et al. "Observation of spin-transfer
switching in deep submicron-sized and low-
resistance magnetic tunnel junctions." Applied Phys-
ics Letters 84.16: 3118-3120, 2004.

[12] Yang, J., Minturn, D. B., and Hady, F. "When poll
is better than interrupt." Proceedings of the 10th
USENIX conference on File and Storage Technolo-
gies. USENIX Association, 2012.

[13] Caulfield, Adrian M., et al. "Providing safe, user
space access to fast, solid state disks." Proceedings
of the seventeenth international conference on Ar-
chitectural Support for Programming Languages
and Operating Systems. ACM, 2012.

[14] http://www.hybridmemorycube.org/

