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Abstract 
Phase Change Memory (PCM) presents an architec-

tural challenge: writing to it is slow enough to make 
attaching it to a CPU’s main memory controller imprac-
tical, yet reading from it is so fast that using it in a pe-
ripheral storage device would leave much of its per-
formance potential untapped at low command queue 
depths, throttled by the high latencies of the common 
peripheral buses and existing device protocols. 

Here we explore the limits of communication la-
tency with a PCM-based storage device over PCI Ex-
press.  We devised a communication protocol, dubbed 
DC Express, where the device continuously polls read 
command queues in host memory without waiting for 
host-driven initiation, and completion signals are elimi-
nated in favor of a novel completion detection proce-
dure that marks receive buffers in host memory with 
incomplete tags and monitors their disappearance.  By 
eliminating superfluous PCI Express packets and con-
text switches in this manner we are able to exceed 
700,000 IOPS on small random reads at queue depth 1. 

1 Introduction 
The development of NAND flash and the market 

adoption of flash-based storage peripherals has exposed 
the limitations of a prior generation of device interfaces 
(SATA, SAS), prompting the creation of NVM Express 
[1] (NVMe), a simplified protocol for Non-Volatile 
Memory (NVM) storage attached to PCI Express. In the 
course of researching the capabilities of several novel 
memory technologies vying to displace flash, we set out 
to build NVMe-compliant prototypes as technology 
demonstrators. We found, however, that the maximal 
performance permitted by NVMe throttles the potential 
of many emerging memory cell technologies. 

Phase Change Memory, one of the most promising 
contenders, achieves non-volatility by re-melting a ma-
terial with two distinguishable solid phases to store two 
or more different bit values. Discovered in 1968 [2], 
this effect is today widely used in DVD-RW media, and 
is now making inroads into lithographed memory de-
vices thanks to its favorable device size and scaling 
properties [3], high endurance [4] and very fast readout.  

The most dramatic advantage PCM has over NAND 
flash is that its readout latency is shorter by more than 
two orders of magnitude. While its write latency is 
about fifty times longer than reads at current litho-
graphic limits, it is already comparable with NAND 
flash and is expected to improve further with advances 
in lithography [5]. This makes PCM a very attractive 
alternative in the settings where the workload is domi-
nated by reads. 

The main motivation for the work we present in this 
paper is the desire to build a block storage device that 
takes advantage of the fast readout of PCM to achieve 
the greatest number of input-output operations per sec-
ond (IOPS) permitted by the low physical latency of the 
memory medium. While spectacular numbers [6] of 
IOPS are touted for flash-based devices, such perform-
ance is only possible at impractically high queue 
depths. The fact remains that most practical data center 
usage patterns revolve around low queue depths [7, 8], 
especially under completion latency bounds [9]. The 
most critical metric of device performance in many 
settings is the round-trip latency to the storage device as 
opposed to the total bandwidth achievable: the latter 
scales easily with device bus width and speed, unlike 
the former. Under this more stringent criterion, modern 
flash-based SSDs top out around 13 kIOPS for small 
random reads at queue depth 1, limited by over 70 µs of 
readout latency of the memory medium (our measure-
ments). 

Here we describe how, starting from NVMe as the 
state of the art, we proceeded to slim down the read-
side protocol by eliminating unnecessary packet ex-
changes over PCI Express and by avoiding mode and 
context switching. In this manner we were able to re-
duce the average round-trip protocol latency to just over 
1 µs, a tenfold improvement over our current imple-
mentation of NVMe-compliant interface protocol. The 
resulting protocol, DC Express, exceeds 700 kIOPS at 
queue depth 1 on a simple benchmark with 512 B reads 
from PCM across a 4-lane 5 GT/s PCI Express inter-
face, with modest impact on the total power consump-
tion of the system. 

We believe one cannot go much faster without re-
tooling the physical link to the storage device. 
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2 Endpoint-initiated queue processing 
Prompted by the observation that the latency of one 

PCI Express packet exchange exceeds the time required 
to transfer a kilobyte of data, the approach we took to 
try to maximize the performance of a small read opera-
tion was to eliminate all unnecessary packet exchanges. 
At a minimum, even the leanest protocol requires a way 
to initiate and complete a transaction. In this section we 
describe endpoint-driven queue polling as an alternative 
to “doorbell” signals traditionally used for initiation; in 
the next section we discuss a minimalist way of signal-
ing completion. 

A rough outline of one NVMe-compliant read op-
eration is shown in Figure 1a. The protocol for reading 
one block from the storage device begins with the host 
CPU preparing a read command in host DRAM and 
initiating the transaction by sending a “doorbell” packet 
over PCI Express. This is a signal to the device that 
there is a new read command waiting, hence it is to 
initiate a direct memory access (DMA) request—
another PCI Express packet—to pick up that command 
from the queue in host DRAM. 

Since every round trip over PCI Express incurs well 
over 0.6 µs latency on today’s fastest hardware, with 
such a protocol we waste a microsecond of back-and-
forth over the bus before the device can even com-

mence the actual reading of data from the non-volatile 
storage medium. In the past, with the fundamental read 
latency of NAND flash between 25 and 80 µs, this extra 
request latency was but a small fraction of total transac-
tion time and so was deemed negligible. In contrast, the 
fundamental latency to first byte read from a modern 
PCM chip is 110 ns, so now the protocol becomes se-
verely limiting when trying to maximize the overall 
performance of the storage device for small random 
reads at queue depth 1. 

 The most important regime we strive to optimize 
for is at high load. In this case there will almost always 
be a new command waiting in the queue should the 
device ask for one, making the sending of a doorbell 
signal for every small read superfluous. In the quest for 
best performance under these conditions latency be-
comes the key factor, and a given fraction of “no news” 
transfers we treat as an acceptable overhead. 

With this scenario in mind, and taking advantage of 
the full-duplex nature of PCI Express, we present the 
first key ingredient of DC Express in Figures 1b and 1c. 
The device keeps sending out requests for one or more 
commands in the read queue in host DRAM without 
waiting for doorbell signals, so that there is almost al-
ways a request “in flight.” Further, since we can probe 
the actual round-trip latency for one DMA request to 
complete on given hardware, we can send anticipatory 

Figure 1: Timing diagrams illustrating the NVM Express and DC Express protocols. Time flows down, drawings are not 
to scale. a) NVMe: host CPU enqueues (enq) a command and rings doorbell; the device sends DMA request for the queue 
entry; the DMA response arrives; the command is parsed and data packets sent to the host DRAM, followed by comple-
tion queue entry and interrupt assertion; the host CPU thread handles interrupt. Red bars at right mark irreducible protocol 
latencies; rectangle illustrates the time when PCM is actually read. b) DC Express protocol at queue depth 1. There are no 
distinct doorbell nor completion signals. Device sends out DMA requests for new commands continuously. c) DC Express 
at higher queue depths. Subsequent DMA requests (blue) for new commands are launched prior to completing data trans-
mission for the previous command (black) to take advantage of full-duplex nature of PCI Express and allow for seamless 
transmission. d) DC Express checks completion by marking each TLP-sized chunk of the receive buffer with an incom-
plete tag (mark) then monitoring for their disappearance. In case of out-of-order arrival the incomplete tag is found in one 
of the chunks (oops) prompting a longer wait for all the data to settle. 
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queue read requests prior to sending all data packets for 
a previous request so that the next commands, if avail-
able, arrive at the device just in time when the device is 
able to service another command (Figure 1c). 

3 Tagging receive buffers as incomplete 
To notify the host process that a read operation from 

NVM has completed, an NVMe-compliant PCI Express 
endpoint writes an entry into a “completion” queue in 
host DRAM with a DMA transaction, followed by the 
assertion of an interrupt signal to wake up the sleeping 
thread (cf. Figure 1a). This protocol has two adverse 
performance implications in addition to the bandwidth 
consumed by the completion signal itself. 

First, PCI Express allows for out-of-order arrival of 
transaction-level packets (TLPs), meaning that the pos-
sibility exists for the completion packet to settle into 
DRAM prior to all its data having arrived—which 
would open a window for data corruption of random 
duration (cf. Figure 1d). To ensure that all the data 
packets have reached host DRAM prior to issuing the 
completion signal, the endpoint must declare “strict 
packet ordering” for that traffic class by setting a par-
ticular bit in the TLP header. Since PCI Express flow 
control works by prior exchange of “transaction cred-
its,” one subtle negative effect of strict ordering is that 
any delayed data packet and all its successors, including 
the corresponding completion packet, will be holding 
up the credits available until all the transactions com-
plete in turn, which can slow down the rest of PCI Ex-
press traffic. 

Second, the context switching [10] and mode 
switching overhead of interrupt-based completion sig-
naling can easily exceed the latency of a small PCM 
read operation by two orders of magnitude. On a mod-
ern x86 processor running Linux, two context switches 
between processes on the same core take no less than 
1.1 µs, so it is imprudent to relinquish the time slice if 
the read from the storage device is likely to complete in 
less time. Even if the interrupt signal is ignored by a 
polling host CPU, the act of asserting it entails transmit-
ting a packet over the PCI Express link—which again 
results in a small penalty on the maximal payload 
bandwidth remaining. 

To avoid these performance penalties, we reasoned 
that the lowest latency test of payload’s arrival into 
DRAM would be to simply poll the content of the trail-
ing bits in the receive buffer from a CPU thread: seeing 
them change would be the signal that the read operation 
has completed. This spin-wait would not necessarily 
increase CPU utilization since the cycles spent waiting 
for request completions would otherwise be spent on 
context switching and interrupt handling. 

There are two obstacles to implementing this simple 
protocol. As already mentioned, the individual TLPs 
that comprise one read operation may arrive into 
DRAM out of order, so the last word does not guaran-
tee the arrival of the entire buffer. And, the CPU does 
not know what final bits to look for until they have al-
ready been read from the device. 

The solution, and the second key ingredient of DC 
Express, we elaborate in Figures 1d and 2. Since the 
granularity of TLPs on a given PCI Express link is 
known, in addition to checking the trailing bits of the 
entire receive buffer the protocol also checks the trail-
ing bits of every TLP-sized chunk of host DRAM. In 
the event of out-of-order packet reception, such check-
ing will reveal a chunk that has not yet settled, as 
shown in the bottom panel of Figure 2. 

Instead of looking for particular bit patterns to ar-
rive into the trailing bits of every atomic transfer, we 
choose an “incomplete tag,” a pre-selected bit pattern 
that does not appear in the data that is about to arrive 
from the device. The protocol then writes this known 
tag to the receive buffer prior to initiating the read op-
eration, and looks for its disappearance from the loca-
tion of every packet’s trailing bits as the robust comple-
tion signal. In this way we are using the fast link from 
CPU to DRAM to avoid sending any extraneous bits or 
packets over the much slower PCI Express link. 

Figure 2: Detecting completion by pre-populating loca-
tions of packet trailing bits in the receive buffer with 
incomplete tags. The disappearance of all incomplete 
tags is a robust signal that the entire data transfer has 
completed. 
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3.1 Strategy for choosing incomplete tag value 
Obviously, the bit pattern used for the incomplete 

tag in our scheme must be different from the trailing 
bits of every TLP arriving. If we choose a pattern of 
length greater than log2(C/P) bits (cf. Figure 2), where 
C is the total capacity of the storage device and P the 
size of one TLP, then in principle we can always select 
a pattern such that no TLP arriving from that particular 
storage device at that time will have trailing bits that 
match our choice of pattern. Note that this characteristic 
of storage device interfaces is different from, for in-
stance, network interface protocols, where we are not 
privy to the content of arriving data even in principle. 

One very simple strategy for choosing the pattern 
for the incomplete tag is to pick it at random. Although 
probabilistic, this method is adequate for the vast ma-
jority of computing applications that have no hard real 
time latency bounds. 

Let’s illustrate for the case of a device with 128 GiB 
of PCM and 128 B size of TLP payload. Dividing de-
vice capacity by the TLP size,1 there are 230 possible 
values at the trailing end of any one TLP-sized transfer. 
If we set the size for the incomplete tag at 32 bits, a 
randomly generated 32-bit pattern will then have at 
most 230/232 = 25% chance of being repeated some-
where on the storage device—the worst case scenario 
where every one of the 230 possible patterns is present 
on the device. If the random choice was unlucky and 
the generated pattern is present on the device, that read 
operation will get stuck since the arrival of that packet 
will go unnoticed, i.e. there will be a “collision.” 

The strategy, then, is to pick the length of the tag 
such that we can declare the probability of collision to 
be low enough. If it encounters a collision, the protocol 
simply times out the stuck read operation and chooses a 
new tag at random before retrying. The time to timeout 
we set to the product of maximum queue depth and 
maximum latency to complete one read operation. 

For applications that do have hard real time latency 
bounds it is possible to devise more complex strategies 
such that the incomplete tag value is always chosen so 
no collision is possible. This would be done at the stor-
age device at first power-up and whenever a write to the 
device invalidates the existing choice of pattern. One 
such strategy would be for the device to pick values at 
random and compare internally with the current con-
tents of the device. This would incur no communication 
overhead as the storage medium accesses would be 
confined to the PCM controller on the device. If even 
                                                             
1 We assume only block-aligned reads are allowed. 

that much latency cannot be tolerated, additional com-
puting resources can be provided in the device to moni-
tor writes to keep track of intervals of values not pre-
sent in the currently stored data so that the selection of 
a new tag can always complete in constant time. 

4 Performance 
To implement DC Express we built a prototype 

NVM storage device (Figure 3) using a BEE4 FPGA 
platform (BEEcube, Inc., Fremont, CA) equipped with 
a custom-built DIMM card containing 5 Gib of Phase 
Change Memory (Micron NFR0A2B0D125C50). The 
NVM device exposed a 4-lane 5 GT/s (“gen2”) PCI 
Express link from a Virtex6 FPGA running a custom 
memory controller that communicated with the PCM 
chips over the LPDDR2-NVM bus. The host systems 
used for testing included a Dell R720 server with an 
Intel Xeon E5-2690 CPU (Sandy Bridge-EP, Tur-
boBoost to 3.8 GHz) and a Z77 Extreme4-M mother-
board with an Intel i7-2600 CPU (Sandy Bridge, Tur-
boBoost to 3.4 GHz). The NVM device was normally 
connected to the PCI Express lanes on the CPU dies. 
Alternatively, on the Z77 host we could use the lanes 
connecting to the Z77 chipset to measure the impact of 
the retransmission. All measurements were done on 

Figure 3: Diagram of our prototype system. 

Figure 4: Average latency of a small random read opera-
tion when using the DC Express protocol at queue depth 1.  
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Linux kernel version 3.5 (Ubuntu and Fedora distribu-
tions). 

We first exercised the bare protocol from a user 
space process by mmap()-ing a kernel buffer where the 
queues and receive buffer locations were pre-allocated. 
This allowed measurement of raw performance without 
mode or context switching overhead. The results are 
shown in Figure 4 for different transfer sizes. We de-
signed the NVM device so that the bandwidth of data 
retrieval from PCM matches that of PCI Express trans-
mission. Therefore, only the initial PCM row activation 
and local LPDDR2-NVM memory bus overhead (red) 
contribute to the irreducible protocol latency; the re-
mainder is pipelined with PCI Express transfer (green). 
The remaining (cyan) component consists of PCI Ex-
press packet handling and command parsing, in addi-
tion to the polling from both ends of the link. 

When we exercise the protocol in a tight loop, or 
with predictable timing in general, we can adjust the 
endpoint polling to anticipate the times of arrival of 
new commands into the read queue so that a new com-
mand gets picked up by the queue DMA request soon 
after its arrival into the queue. The total round-trip la-
tency for this use case (shown by the solid black line in 
Figure 4) we measured as the inverse of the total num-
ber of read operations executed in a tight loop. For tra-
ditional 512 B blocks (arrow in Figure 4) the total la-
tency seen by a user-space process averages 1.4 µs, 
over 700,000 IOPS. 

If we fully randomize read command arrival times 
so that no predictive optimization of endpoint-driven 
queue polling is possible, there is additional latency 
incurred by the average delay between the arrival of a 
read command into the queue and the time when the 
next queue DMA hits. For this use case we measured 
the completion latencies using Intel CPU’s time stamp 
counter (dashed blue line in Figure 4). 

Next we constructed a lightweight block device 
driver to measure the impact of kernel entry and exit. 
We derived our driver from the Linux ramdisk device 
example. The read block size was limited to 4 kiB. We 
list the additional latencies in Table 5. One memory-to-
memory copy of the retrieved block accounts for a 
small fraction of the time spent inside the block driver. 
Note that the tool used for measuring the latency of the 
block device, fio, contributes a significant amount of its 
own latency to these measurements. For comparison, 
our current implementation of NVMe-compliant device 
accessed through the Linux NVMe device driver under 
similar conditions reaches 78 kIOPS at queue depth 1, 
nearly 13 µs per 4 kiB read operation. 

The latencies measured on the i7 system were com-
parable to those on the E5 server system when our de-
vice was connected to CPU lanes. Routing the packets 
through the Z77 chipset resulted in about two micro-
seconds of additional latency per PCI Express round 
trip. 

4.1 Power and congestion considerations 
One concern with a protocol that continuously que-

ries the host DRAM for new commands is the waste of 
resources at idle. To better understand the magnitude of 
this component relative to the baseline idle consump-
tion of a modern server configuration, for this exercise 
we disabled all but one core on the single socket popu-
lated by the E5-2690 on the Dell R720 server equipped 
with 16 GiB of DDR3-1600 DRAM. 

In Figure 6 we show the dependence of DC Express 
protocol performance and system power usage on the 
clock frequency of the CPU core doing the spin-wait. 
As expected, higher polling frequency reduces the aver-
age round-trip latency. Surprisingly, the optimal operat-
ing point, as defined by the Joules-per-IOP measure, is 
not at the lowest core frequency. Dominated by the 

component latency [µs] kIOPS 
data transfer (4 kiB) 2.432  

PCM read 0.368  
protocol + command parsing 0.863 273(1) 

block driver 0.99  
read() call (kernel entry/exit) 1.17  

fio 0.506 158(2) 

Table 5: Breakdown of contributions to average round-
trip latency of DC Express for 4 kiB random reads at 
queue depth 1. IOPS were measured from a user space 
process (1) or linux block device driver (2). The total 
latency to a given layer is the sum of all latencies above it. 

Figure 6: DC Express protocol performance for 512 B 
packets and total server power consumption as a function 
of the E5-2690 CPU core frequency. 
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significant idle power consumption of the entire server, 
the energy cost of one read operation stays relatively 
flat at low clock settings, suggesting a cost-optimal 
operating point near 2 GHz for this configuration (ar-
row in Figure 6) before hardware depreciation is taken 
into account. 

Note that the overall impact of constant polling 
from the PCI Express endpoint is modest, about six 
percent of idle power consumption of the server. This is 
the worst case scenario where there is always a DMA 
request in flight, i.e. at queue depth 1 every other read 
of the command queue is guaranteed to be wasted. In 
this regime, fetching one 64 B command at a time 
would tie up less than six percent of the upstream PCI 
Express bandwidth.  

5 Discussion 
In this paper we described our attempts to wring the 

last drop of performance out of the widely adopted PCI 
Express interface, driven by the possibility of much 
higher performance frontiers uncovered by Phase 
Change Memory and other emerging non-volatile stor-
age technologies. By eliminating unnecessary packet 
exchanges and avoiding context and mode switching 
we were able to surpass 700,000 IOPS at queue depth 1 
when reading from a PCM storage device on commod-
ity hardware. The performance increases further for 
smaller transfers to just under a million reads per sec-
ond, the hard limit set by bus and protocol latency. By 
increasing the number of PCI Express lanes or the per-
lane bandwidth it will be possible in the future to as-
ymptotically approach this limit with larger transfers, 
but going even faster will require a fundamental change 
to the bus. 

The unsolicited polling of DRAM from the endpoint 
to check for presence of new read commands results in 
a reduction in average protocol latency, but at the ex-
pense of slightly higher idle power consumption. We 
have shown that the worst-case impact is modest, both 
on power consumption and on the remaining PCI Ex-
press bandwidth. In settings with high load variability 
this component of overall power usage can be greatly 
mitigated ever further by, for instance, making the 
switch to DC Express at a given load threshold while 
reverting to the traditional “doorbell” mode of opera-
tion at times of low load. 

Our focus was exclusively on small random reads, 
as that is the most interesting regime where PCM 
greatly outperforms the cheaper NAND flash. Write 
latency of the current generation of PCM is 55 times 
higher than read latency, so we did not attempt to mod-

ify the write-side protocol as the performance benefit 
would be small. For new memory technologies with 
much lower write latencies, e.g. STT-MRAM [11], a 
similar treatment of the write-side protocol could result 
in similarly large round-trip latency improvements, and 
will be the subject of future work. 

Prior work on accessing low-latency NVMs over 
PCI Express has elaborated the advantages of polling 
over interrupts [12]. Our work goes two steps further: 
we introduce polling from both ends of the latency-
limiting link, and we do away with the separate comple-
tion signal in favor of low-latency polling on all atomic 
components of a compound transfer. 

While the advance in read performance we report is 
quite dramatic, it is important to note the high cost of 
using our protocol through kernel facilities. To maxi-
mize the read performance of PCM storage we resorted 
to a user-space library which did not provide security. 
To take advantage of the low latency while still enjoy-
ing safety guarantees from the operating system one 
must implement an additional protocol layer of negotia-
tion through the kernel, such as Moneta Direct [13]. 

Our work casts PCM-based peripheral storage in a 
new light. Rather than using it in the traditional fashion, 
just like spinning disk of yore, we envision a new stor-
age tier that fills a niche between DRAM and NAND 
flash. Using our FAST protocol will enable exposing 
very large non-volatile memory spaces that can still be 
read in-context with intermediate read latencies but 
without the several Watts per gigabyte penalty of 
DRAM refresh. On the other hand, treating PCM as 
block storage alleviates the need to rethink the cache 
hierarchy of contemporary CPUs, which would be nec-
essary to achieve reasonable write performance in ar-
chitectures where PCM is the main and only memory. 

Beyond our work, almost an order of magnitude of 
further improvement in small random read latency is 
possible in principle before we hit the limits of the un-
derlying physics of phase change materials. At this 
time, such advances would require either the use of 
parallel main memory buses together with deep changes 
to the cache hierarchy, or the use of fundamentally dif-
ferent high speed serial buses, such as HMCC [14], 
with shorter minimal transaction latencies. The latter, 
while promising, is still in the future, and is geared to-
ward devices soldered onto motherboards as opposed to 
field-replaceable peripheral cards. It therefore appears 
that the niche for low read latency PCI Express periph-
eral storage based on Phase Change Memory is likely to 
persist until the arrival of future generations of periph-
eral buses and CPUs. 
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