
Heterogeneous Multicores: When Slower is Faster

Tomas Hruby Herbert Bos Andrew S. Tanenbaum
The Network Institute, VU University Amsterdam

{thruby,herbertb,ast}@few.vu.nl

ABSTRACT
It is well-known that breaking up the OS in many small
components is attractive from a dependability point of view.
If one of the components crashes or needs an update, we can
replace it on the fly without taking down the system. The
question is how to achieve this without sacrificing perfor-
mance and without wasting resources unnecessarily. In this
paper, we show that heterogeneous multicore architectures
allow us to run OS code efficiently by executing each of the
OS components on the most suitable core. Using frequency
scaling to emulate different x86 cores, we evaluate our design
on the most demanding subsystem of our operating system—
the network stack. We show that less is sometimes more
and that we can deliver better throughput with slower and
less power hungry cores. For instance, we support network
processing at close to 10 Gbps (the maximum speed of our
NIC), while using an average of just 60% of the speeds of the
cores. Moreover, even if we scale all the cores of the network
stack down to as little as 200 MHz, we still achieve 1.8 Gbps,
which may be enough for many applications.

1. INTRODUCTION
More and more hardware vendors are developing hetero-

geneous multicore architectures. The big.LITTLE ARM
combines two big Cortex-A15 cores with two little Cortex-A7
on the same die. The Tegra-3 is a Cortex-A9-based quad-core
CPU that includes a fifth ”companion” Cortex-A9 that is
slower and less power hungry. For sheer number of cores,
the 50+ core x86-compatible Intel Xeon Phi processor is
especially impressive.

In all three cases, the different cores share a large subset of
the instruction set architecture (ISA), so that the same code
can easily run on any of the cores in the system. The main
difference of the cores is their microarchitecture which is
designed for different optimal operation points. This means
that the LITTLE slower, simpler, and in-order cores (de-
signed for power efficiency at low frequencies) cannot deliver
performance equal to the big ones which are out-of-order and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 20XX ACM X-XXXXX-XX-X/XX/XX ...$15.00.

operate at higher frequencies. The same is true for the Tegra
and Xeon Phi.

The research community has advocated such heterogeneity
for many years [8] to make processing more efficient, in terms
of both performance and power. However, the focus was
primarily on applications, leaving the operating system by the
wayside with a few exceptions like [12, 18]. This is remarkable,
because the operating system performs a significant amount
of work on behalf of the applications [15, 13].

The NewtOS operating system described in this paper is
a highly efficient UNIX-like multiserver system that offers
three major benefits:

High reliability For instance, our operating system sup-
ports dynamic updates without any downtime and
survives crashes of key OS components. We described
these aspects in [6, 3], and [5], and will not discuss
them further in this paper.

High performance Building on a design described in [6],
we show that we support network processing at 10 Gbps
on COTS hardware (this paper),

Tailored resource utilization We map the OS compo-
nents to suitable cores and show that even wimpy cores
deliver competitive performance (this paper).

Multiserver systems, composed of many independent pro-
cesses (servers) that implement various OS functions, typi-
cally trade reliability for performance. NewtOS [6], a high-
performance derivative of MINIX 3 with a completely re-
designed network stack, shows that it is possible to mitigate
the overhead by dedicating cores to system servers, which
communicate through asynchronous user space channels with-
out kernel involvement. With their own cores the system
servers can run whenever needed from a warm cache, without
having to compete with other processes or waiting for the
kernel to schedule them. Moreover, the asynchrony allows
the system servers to work independently and thus increase
the parallelism within the system and streamline the process-
ing. As a result, we were able to improve TCP throughput
from hundreds of megabits per second to gigabits.

The cores of common platforms are designed for generic
usage and over-provisioned for running OS code. Looking at
current trends, we anticipate more designs in the big.LITTLE
fashion, which will have plenty of smaller, slower, in-order
cores with a higher number of threads, accompanied by
big, fast cores that can efficiently use the instruction level
parallelism of application code. However, the big cores will
become a minority.

i7 cores # i7 threads # Phi cores # Phi threads

4 8 44 176
8 18 27 108
12 24 10 40

Table 1: Estimation of options for different configurations
that merge Core i7 and Xeon Phi cores

In this paper, we explore the hardware design space in
an appropriate manner by emulating the future platforms
on current hardware using frequency scaling. We show that
our system can deliver the same or better performance with
smaller, simpler and slower cores—without compromising
reliability. Our case study is high bandwidth networking.

In the rest of the paper we discuss our motivations in
Sec. 2. We present details of the NewtOS design in Sec. 3.
We explore the design space and evaluate various setups of
our system in Sec. 4 and we put it in perspective of related
work in Sec. 5. Finally, we conclude in Sec. 6.

2. BIG CORES AND LITTLE CORES
Heterogeneous processor architectures are rapidly becom-

ing popular. In this section, we focus on Intel products and
sketch some of the properties of the architectures and analyze
some trends in this field.

We start our discussion with a comparison of fast cores
and slow cores. Specifically, Intel Core i7 with the Knights
Ferry processor. The quad-core Core i7 “Bloomfield” is a
prime example of a big out-of-order core with a design that is
geared for high single threaded throughput. It is produced by
45nm technology and die size of 263 mm2. In contrast, the
32 cores on the Knights Ferry (45nm, dies size est. 700 mm2)
are much simpler in-order cores that provide only a fraction
of the Core i7’s performance.

Compared to the Core i7, the Knights Ferry die hosts 8×
the number of cores and 16× the number of threads while
the difference in die size per core is 3× (and 6× per thread).
The cache size per core is obviously smaller, but threaded
cores can compensate for this [14]. The difference in the peak
clock speed is equally remarkable (3.3 GHz vs. 1.2 GHz).

The successor of Knights Ferry, a recently released product
called Xeon Phi, has even a larger number of cores. Intel
markets it as a “50+ core beast” and released up to 62 cores
on a single die. With each core hosting 4 threads of execution,
this amounts to 200+ threads on a single chip. It is likely
that future designs will see interesting new combinations as
Intel may well merge its Xeon Phi with other Intel cores on
a single die [10].

Tab. 1 shows different combinations of Core i7 and Xeon
Phi cores, taking into account the number of transistors for
a quad-core Core i7 in 22nm technology (1.4 billion) as well
as the number of transistors of a 62-core Xeon Phi produced
by the same technology (5 billion). Given these transistor
counts, Tab. 1 shows different configurations that would fit
on a die with mixed cores. The simple division also accounts
for each core’s cache share as caches take up a big portion of
the die size. Each line represents a configuration with the 5
billion transistor budget of Xeon Phi die where some of the
62 cores are replaced by i7 cores.

As consolidating multiple components on a single core
saves resources when peak performance is not needed, more

SC

TCP

UDP

IP

PF
DRV

DRV

DRV

Proc

Proc

Proc

Synchronous
Asynchronous

Synchronous IPC
Asynchronous Channels

Figure 1: Design of the NewtOS network stack

threads are attractive as containers for context of processes.
Hardware does the context switching (and not the software)
and we can suspend and resume efficiently with instructions
like MWAIT. NewtOS has about 30 system processes in its
default installation out of which about 10 are important for
performance. Tab. 1 shows that even with twelve i7 cores,
there would be enough threads to dedicate one to each of our
system’s processes and plenty of big cores for applications.

3. NEWTOS
The crux of this paper is the following: while evaluating

the performance of the stack, we realized that it actually
delivered higher throughput when we scaled the frequency of
some cores down. In addition, we found that the performance
of fairly slow cores is good enough for many use cases. We
present an OS that explicitly exploits these properties.

3.1 The NewtOS network stack
The heart of the NewtOS network stack is LwIP [4], a

simple and portable network stack for embedded systems
used by many research projects.

One of the main design goals of NewtOS is reliability. Thus,
we allow even core components of the operating system to
be replaced on the fly, without taking the system down (and
often with no noticeable disruption at all) [5]. To make this
possible, we split the stack into several components (TCP,
UDP, IP, drivers and packet filters) to reduce the chance that
an error in the stack may lead to a crash of the entire stack.
Likewise, we isolated functions that are easy to restart from
those which are not due to large dynamic state. Besides IP,
TCP, and UDP, the network stack supports an optional BSD
packet filter (PF).

Fig. 1 shows individual parts of the stack. All shaded com-
ponents in the figure are fully asynchronous, while the syscall
(SC) server translates synchronous system calls from user
processes to asynchronous messages within the stack. The
syscall server is the only process of the stack which frequently
uses traditional rendez-vous based communication provided
by the kernel. All other components communicate using
point-to-point channels, which are shared user space memory
queues accompanied by fast signaling. This mechanism is
located almost purely in user space to take the kernel out
of the loop almost entirely (removing all overhead due to
context switches, and pollution of TLBs, caches, and branch
predictors). We only use a kernel call to execute the MWAIT
instruction when a component becomes idle.

We take advantage of the x86-specific MWAIT instruction
to suspend execution of cores. Thus, we need not send high-
overhead interprocessor interrupts, but wake up a waiting
core by a mere memory write. Unfortunately, MWAIT is a

privileged instruction in Intel chips1. If it were not, there
would be no need for the kernel for normal mode of operation.
We see it as a hardware deficiency.

Our most efficient communication model runs each compo-
nent on its own dedicated core, so scheduling is not needed
and the component can run at anytime out of a warm cache.
However, we also allow components to share a core with
other processes. In such a case, we transparently fallback to
notifications, a standard method provided by microkernels.

It is useful to emphasize that the key performance prob-
lems that plagued multiserver systems in the past have been
the high overheads due to context switching and scheduling.
While the research community heavily optimized the interpro-
cess communication on microkernels like L4 [11], neither of
these bottlenecks could ever be eliminated on a uniprocessor.
However, dedicating a core to each component fixes both.
Further details of the design of the network stack and the
fast communication it uses are discussed in [6].

3.2 Dynamic reconfiguration
In contrast to monolithic systems, NewtOS resembles a

distributed system. Such systems can embrace diversity and
accommodate to a changing environment. This is also true
for NewtOS. Each system component can run on a dedicated
core or share it with other process. Likewise, the core can
be either big or little.

Although we claim that we need a dedicated core or at
least a thread for the important processes, it is possible to
consolidate processes on a single core (or even a thread) if
they are not in heavy use. For instance, most of today’s
traffic uses the TCP protocol, and dedicating a core to the
UDP component is probably overkill. On the other hand,
when UDP is used heavily (e.g., for streaming), NewtOS can
migrate UDP to its own core. Similarly, the network stack is
not used at all times in many deployments, or at least not
at its peak throughput. Thus, we can dedicate a core to all
processes of the stack, or even have it share a core with other
processes most of the time. When the workload changes the
system can redistribute itself to find the best configuration.
Phrased differently, the components of the system should get
the resources they need and no more.

Besides good performance, power consumption is also im-
portant. Here also, we should provision a system for its peak
performance, while using no more resources than needed dur-
ing quieter times. The system on a heterogeneous platform
can find its sweet spot using only a handful of cores. On
platforms with fine-grained power gating, the system can
turn off the unused cores and thus save power. Likewise,
picking the right type of cores is crucial to balance the per-
formance per Watt ratio. As we show in the evaluation in
Sec. 4, slower cores frequently result in only small drop in
performance whereas the power savings are significant.

We do not consider the scheduling as there is a lot of related
work on heterogeneous scheduling. We are solely interested
in the performance and efficiency of different configurations.

3.3 Non-overlapping ISA
At this moment, we limit ourselves to heterogeneous ar-

chitectures with an overlapping ISA [8]. On the other hand,
our system has the potential to embrace architectures with

1MWAIT is optionally unprivileged in AMD chips starting
with family 10h, but we use Intel due to hyper-threading and
better scaling.

different ISAs too. Specifically, we can use NewtOS’ live
update functionality to replace a component with the same
component compiled for a different ISA. The update is fairly
straightforward since both versions are based on the same
code, the data structures are the same and we can provide
an automatically generated transition function [5] to deal
with the architectural differences.

4. EVALUATION ON A NETWORK STACK
We evaluate the network stack of NewtOS on a dual socket

quad-core Intel Xeon E5520 with hyper-threading. The peak
clock speed of the chips is 2267 MHz and it is possible to
scale it down to 1600 MHz in steps of 133 MHz. According
to ACPI, power consumption of each chip at its maximal fre-
quency may be as much as 80W and at the lowest frequency
34W. It is not possible to scale the frequency of the cores of
one chip independently. However, modern Intel processors
can still scale each core independently using thermal throt-
tling to allow further scaling in steps of 12.5% of the clock
speed2. This means that by setting the chip to 1600 MHz,
it is possible to scale down to 200 MHz in the same-sized
steps. While we cannot compare in-order versus out-of-order
microarchitectures, we believe that 200 MHz is slow enough
to match the performance of slow in-order cores.

To show that a multiserver system can scale to multigigabit
range, we implemented a driver for the i82599 10G Intel
network chip. The driver is fairly simplistic but has standard
offloading features for the outgoing traffic. We connect our
machine to a Linux 3.7.1 system running on a 12-core AMD
Opteron 6168 at 1.9 GHz.

Our test case is the same as in [6] which we used to
stress the system when demonstrating its reliability. We
run an iperf server on the Linux machine and connect
from NewtOS. Iperf is a standard tool for measuring and
tuning network performance. The clients send data as fast as
possible, trying to saturate the network hardware, the buses,
the memory, or the CPU. We use multiple streams to get
the best performance. LwIP does not support TCP window
scaling, and is therefore not able to have enough data in
transition to saturate the 10G link on a single stream.

4.1 Test configurations
We experimentally evaluated several configurations of the

network stack to determine the most demanding components.
Not surprisingly, TCP ranked highly. Based on these exper-
iments, we opted for two basic setups, which we evaluate
across a range of clock settings.

In both cases we place all processes of the core system on
the first CPU and the network stack components involved
in processing TCP traffic on the remaining 3 cores of the
same chip. These components are TCP, IP and the 10G
ethernet driver (IXGBE). The syscall server shares its core
with the rest of the system since it uses the CPU lightly. It
runs in a different hardware thread as it needs it to use the
fast signaling when translating synchronous messages from
the clients to the TCP component and back.

In both configurations, TCP has its own dedicated core
and its second thread is idle. The first configuration (#1)
also dedicates a full core to IP and the driver while the

2It is usually possible to scale AMD chips to lower speeds
than Intel ones, however, the Intel-specific mechanism of
thermal throttling allows us to go as low as 200 MHz.

Freq Mbps Mbps drop Watts Power saving

2267 8641 – 80 –

1867 8152 6% 48 40%

1600 7840 9% 34 57%

Table 2: Performance loss compared to saved power

T
C

P
 t
h
ro

u
g
h
p
u
t
(G

b
p
s
)

%
 o

f
p
o
w

e
r

o
f
a
ll

c
o
re

s
 a

t
1
6
0
0
M

H
z

TCP core throttled clock speed (MHz)

TCP
IP

IXGBE
throughput
resources

 0

 2

 4

 6

 8

 10

200 400 600 800 1000 1200 1400 1600
 0

 20

 40

 60

 80

 100

Figure 2: Throughput compared to the resources in use

respective other threads are idle. The second configuration
(#2) places both IP and the driver in different threads of one
core. TCP is the most demanding component while IP and
the driver have similar CPU utilization as we demonstrate in
the remainder of this section. The scheduler distributes the
test clients equally on the threads of the remaining cores.

4.2 Frequency scaling 2267–1600 MHz
The first experiment is to explore how configuration #1

behaves when we change the frequency of the chip. We
present the measurements in Tab. 2. The first line represents
the baseline: all the cores run at the peak clock speed and
the chip draws maximum power. As expected, we see that
the bitrate drops when the clock speed goes down. As the
drop is fairly small, we show only one intermediate value.
The last line stands for the lowest frequency and power
consumption. Scaling the cores to the lowest frequency can
save 57% of power, but the drop in throughput is not nearly
as significant, a mere 9%. There are many cases in which
7.8 Gbps is enough while saving 46 Watts is important.

The TCP component uses the core at approximately 70%
while IP and the driver use their cores below 40%, which
is suboptimal. Waking a core up from a sleep has long
latency. Even so, blocking MWAIT is much faster than using
traditional kernel IPC. Especially since traditional IPC would
slow down the sending core too. To avoid the expensive idle
time, the scheduler should scale the cores on which it places
the components so that they are always highly used—with
little opportunity to sleep.

4.3 Throttling below 1600 MHz
We start our measurements by scaling all 3 cores to the

minimum. Since TCP is the component which uses its core
the most, we scale it up by one step for each new measurement
and we try to match it with the best setting for the other 2
cores. Our experience is that if we increase the speed of the
TCP core and the bitrate does not improve proportionally,
we must speed up the other cores by one step too. Adding

more does not help. We present our results for the best
configurations in Fig. 2, which compares the bitrate and the
power of the cores we need (the bars). In this case, 100%
is the combined power of all 3 cores running unthrottled at
1600 MHz. The important observations in Fig. 2 are :

• Scaling the 3 cores to 12.5% of their total performance
(200 MHz) delivers 1.8 Gbps which is enough for many
applications like video streaming, web browsing or on-
line gaming.

• The stack achieves higher throughput (7.9 Gbps) at
50% of resource utilization (bar 1200 MHz) than when
all cores run unthrottled at 1600 MHz (7.8 Gbps as we
reported in Tab. 2).

• Using TCP core clocked at 1600 MHz and the other two
at 600 MHz is just 60% of performance of all of them
running at 1600 MHz and only 40% of all running at
2267 MHz while this low-power configuration exceeds
the performance of both.

We emphasize that results are average bitrates of each test
run. The throughput at 60% of the combined resources (the
rightmost result in Fig. 2) reaches up to 9.1 Gbps with peaks
approximating 10 Gbps. Slower sometimes really is faster!

Fig. 3 presents the CPU utilization of each core. The
utilization is with respect to each core’s throttling and each
set of bars stands for one setting of the cores’ speeds. The
sets form three clusters determined by the speed of the
slower cores. The three sets in the first cluster show how the
utilization of the IP and driver cores increases as the higher
frequency permits TCP to process more data. In the third
set the utilization of the slower cores approaches 100% and
exceeds utilization of the TCP core. Therefore it is necessary
to speed them up if the current throughput is not enough.
The same pattern repeats in each of the clusters.

Utilization of the TCP core grows faster than of the other
two because IP and the driver do not touch the TCP payload.
TCP must copy all the data from the sending clients to the
address space of the stack. The copy overhead is between 60
and 70%, however, there are ways to reduce it [1].

4.4 Hyper-threading
The same set of experiments for configuration #2 evaluates

the effect of threaded cores. Threads are not equal to full
cores as they share the same pipeline. Their advantage is that
they allow the core to use cycles which would be otherwise
wasted when the pipeline stalls due to slow memory.

Besides using the core’s cycles more efficiently, hardware
threads reduce the amount of expensive sleep time. Since the
execution of both processes is interleaved, there is a higher
probability that while a processes’ thread is inactive, the
other processes of the stack create some new jobs. Thus,
when the thread activates again, the process can carry on.
Comparing the experiments with the slowest cores show that
using two cores at 200 MHz is just 66% of the resources of
3 dedicated cores at the same speed, but the throughput is
77% or 1.4 Gbps. This is still plenty for many applications,
especially in the embedded world where such low-powered
cores are common.

Fig. 5 compares the performance of configurations #1
and #2. As long as the variance in the bitrate is low, us-
ing the threaded core outperforms configuration #1 with
an extra core. Note that in all the cases, the clock speed

T
C

P
 t

h
ro

u
g

h
p

u
t

(G
b

p
s
)

U
ti
liz

a
ti
o

n
 o

f
e

a
c
h

 c
o

re
a

t
it
s
 f

re
q

/t
h

ro
tt

le

TCP | IP | IXGBE core throttled clock speed (MHz)

TCP
IP

IXGBE
throughput

 0

 2

 4

 6

 8

 10

200 | 200 | 200 400 | 200 | 200 600 | 200 | 200 800 | 400 | 400 1000 | 400 | 400 1200 | 600 | 600 1400 | 600 | 600 1600 | 600 | 600
 0

 20

 40

 60

 80

 100

Figure 3: Configuration #1 – CPU utilization of each core throttled to % of 1600 MHz.

T
C

P
 t

h
ro

u
g

h
p

u
t

(G
b

p
s
)

U
ti
liz

a
ti
o

n
 (

%
)

o
f

e
a

c
h

 c
o

re
a

t
it
s
 f

re
q

/t
h

ro
tt

le

TCP core throttle (%) | IP & IXGBE core throttled clock speed (MHz)

TCP
IP

IXGBE
throughput

 0

 2

 4

 6

 8

 10

200 | 200 400 | 400 600 | 400 800 | 600 1000 | 800 1200 | 800 1400 | 800 1600 | 1000
 0

 20

 40

 60

 80

 100

Figure 4: Configuration #2 (HT) – CPU utilization of each core throttled to % 1600 MHz.

T
C

P
 t
h
ro

u
g
h
p
u
t
(G

b
p
s
)

N
o
rm

a
liz

e
d
 C

P
U

 u
s
a
g
e
 (

%
)

TCP core throttled clock speed (MHz)

HT
no HT

HT
no HT

 0

 2

 4

 6

 8

 10

200 400 600 800 1000 1200 1400 1600
 0

 20

 40

 60

 80

 100

Figure 5: Comparison of configuration #1 (no HT) and #2
(HT). Lines represent bitrate, bars represent CPU utilization
of each configuration normalized to 3 cores at 1600 MHz

of the threaded core is less than or equal to double the
speed of the respective dedicated cores. The bars in Fig. 5
present the combined CPU utilization of both configurations
normalized to the power of 3 cores running unthrottled at
1600 MHz. In all cases the normalized utilization is lower
for configuration #2 while the performance is higher. As
the transmission gets more bursty, faster clock speed on the
dedicated cores (to get the work done quicker) outweighs the
benefits of threading. Higher bitrate leads then to higher
CPU utilization.

4.5 Stack on a single core
In case of shortage of cores due to high demand from

applications, or when cores are turned off to save power, the
entire network stack of NewtOS can keep operating on a
single core. The stack has throughput of up to 4.3 Gbps on a
big fast core clocked at 2267MHz, 3.4 Gbps at 1600 MHz and
400 Mbps on a 200 MHz wimpy core. The throughput of the

slow core is good enough for many common activities, but the
fast core cannot scale further. More importantly, a network
stack running on a single core has a much higher latency. If
a process has work to do, it hogs the core until it exhausts its
time quantum while others are on hold. Then the scheduler is
free to pick any runnable process of the stack which increases
non-determinism in the execution. Running the stack on
dedicated cores removes these deficiencies and the throughput
of a single fast core is similar to the configuration with a
TCP core at 600MHz and IP and driver cores at 200MHz.

5. RELATED WORK
Kumar et al. proposed single-ISA heterogeneous multi-

cores for power reduction [8] and to improve performance
of multithreaded workloads [9]. They demonstrated that
applications need a good mix of single-threaded performance
and high throughput. Due to the diversity in application
code, heterogeneous platforms outperform homogeneous ones
with the same die size.

Heterogeneous platforms inspired many novel scheduling
algorithms. Kumar et al. [9] proposed a whole range of sam-
pling heuristics that permute threads on cores to find the best
assignment. Becchi et al. [2] proposed a dynamic algorithm
which constantly measures the IPC ratio of threads and tries
to run on the big cores those threads that would benefit the
most. As permuting the threads and sampling them on all
types of cores is an overhead, Koufaty et al. [7] designed a
scheduler which monitors execution of each thread on its
current core only. It uses existing low overhead performance
monitoring counters to collect performance data and a model
which translates the performance statistics to the bias of
each thread to a certain type of a core. The algorithms
mostly use the speed up factor, the ratio between how fast
an application runs on a small and a big core. Saez et al. [17]
suggest a more comprehensive utility factor of how effectively

the whole mix of running application uses the machine.
Instead of using available performance counters as input of

the models which predict the performance on different types
of cores, hardware monitoring and prediction engines [19]
and performance impact estimators [21] were proposed as
hardware extensions. The hardware estimates the possible
speed-up and the scheduler can uses this feedback to decide
which applications would benefit from running on the big
cores and which can run on the small ones.

Our system can use the different heuristics or hardware
estimations to schedule applications. Second, our system is a
collection of user space processes and the scheduler can use
the same techniques to find their optimal placement. On the
other hand, scheduler’s goal is not to let the system finish
as quickly as possible, but to deliver optimal service to the
changing mix of workloads using the available resources. In
addition, the system components can themselves actively
help the scheduler by providing various hints. For instance,
a component can detect and signal when the recipient of its
messages cannot keep up and may benefit from a faster core.

Mogul et al. proposed operating system friendly cores
in [12], primarily to save power. They argue that many
features which the operating systems do not use draw a
lot of power while not contributing to performance of the
operating system. They propose that the system should run
on the optimized cores and the execution should transfer from
the application cores to the system cores when necessary.
The migration is a bottleneck which they address in [20].
FlexSC [18], meanwhile, aims to remove the overhead of
switching between applications and the system by running
each on different cores. As a side effect, the system can run on
core(s) that differ from those that host applications. NewtOS
moves execution only by sending a message to another core
and benefits from cache locality of the code and data of the
component running on the core.

Netmap [16] and OpenOnload [1] projects demonstrated
high bandwidth networking in user space. In contrast to
NewtOS, both need a driver in a monolithic kernel, hence
there is still a chance that a bug can bring the whole system
to a halt. Netmap shows that a 900 MHz core is good
enough to transfer 10 Gbps between the device and the user
space, however, it does not offer a generic networking support
to applications. OpenOnload transparently intercepts any
application requests and uses custom made hardware to
transfer data directly between applications and a device.
We endorse this approach as it would remove the copying
overhead in TCP between the applications and our stack.

6. CONCLUSIONS
We have demonstrated that a processor’s fast cores may

not be ideal for system workloads and that less can be more in
some situations. We presented an evaluation of network stack
of a reliable and dependable system. The results support
our claim that it is possible for such a system to perform
well, using much more constrained resources than usually
available. We use current hardware to approximate future
processors and we show the potential benefits. However,
performance should not be the only criterion, the system
is also responsible for security, reliable execution and easy
maintenance. NewtOS recovers from crashes and allows
administrators to update its components while it is running.
Although our case study covers only one part of a generic
operating system, we are confident that the findings apply

to other parts and to other systems as well.

Acknowledgments
This work has been supported by the European Research
Council Advanced Grant 227874. We would like to thank
Valentin Priescu for implementing the frequency scaling
driver. Likewise, we would like to thank Dirk Vogt for
implementing the MINIX 3 version of the IXGBE driver.

7. REFERENCES
[1] OpenOnload. http://www.openonload.org/.

[2] Becchi, M., and Crowley, P. Dynamic Thread Assignment on
Meterogeneous Multiprocessor Architectures. In Proceedings of
the 3rd conference on Computing frontiers (2006), CF ’06.

[3] Cristiano Giuffrida, L. C., and Tanenbaum, A. S. We Crashed,
Now What? In Proceedings of the 6th International Workshop
on Hot Topics in System Dependability (2010).

[4] Dunkels, A. Full TCP/IP for 8-bit architectures. In Int. Conf.
on Mobile Systems, Applications, and Services (2003).

[5] Giuffrida, C., and Tanenbaum, A. S. Safe and Automated
State Transfer for Secure and Reliable Live Update. In
Proceedings of the Fourth International Workshop on Hot
Topics in Software Upgrades (2012).

[6] Hruby, T., Vogt, D., Bos, H., and Tanenbaum, A. S. Keep Net
Working - On a Dependable and Fast Networking Stack. In
Proceedings of Dependable Systems and Networks (2012).

[7] Koufaty, D., Reddy, D., and Hahn, S. Bias Scheduling in
Heterogeneous Multi-Core Architectures. EuroSys ’10.

[8] Kumar, R., Farkas, K. I., Jouppi, N. P., Ranganathan, P., and
Tullsen, D. M. Single-ISA Heterogeneous Multi-Core
Architectures: The Potential for Processor Power Reduction. In
Proceedings of the 36th annual IEEE/ACM International
Symposium on Microarchitecture (2003).

[9] Kumar, R., Tullsen, D. M., Ranganathan, P., Jouppi, N. P.,
and Farkas, K. I. Single-ISA Heterogeneous Multi-Core
Architectures for Multithreaded Workload Performance. In
Proc. of the 31st Annual Int. Sym. on Computer Arch. (2004).

[10] Latif, L. IDF: Intel is looking at ARM’s Big Little architecture.
http://www.theinquirer.net/inquirer/news/2205764/idf-intel-
is-looking-at-arms-big-little-architecture.

[11] Liedtke, J., Elphinstone, K., Schönberg, S., Härtig, H.,
Heiser, G., Islam, N., and Jaeger, T. Achieved IPC
Performance (Still The Foundation For Extensibility), 1997.

[12] Mogul, J. C., Mudigonda, J., Binkert, N., Ranganathan, P.,
and Talwar, V. Using Asymmetric Single-ISA CMPs to Save
Energy on Operating Systems. IEEE Micro 28, 3 (May 2008).

[13] Nellans, D., Balasubramonian, R., and Brunv, E. A Case for
Increased Operating System Support in Chip Multiprocessors.
In In Proc. of 2nd IBM Watson P=ac 2 (2005).

[14] Olukotun, K., Hammond, L., and Laudon, J. Chip
Multiprocessor Architecture: Techniques to Improve
Throughput and Latency. 2007.

[15] Redstone, J. A., Eggers, S. J., and Levy, H. M. An Analysis of
Operating System Behavior on a Simultaneous Multithreaded
Architecture. In Proceedings of ASPLOS-IX (2000).

[16] Rizzo, L. Netmap: A Novel Framework for Fast Packet I/O. In
Proceedings of the 2012 USENIX conference on Annual
Technical Conference (2012), USENIX ATC’12.

[17] Saez, J. C., Fedorova, A., Koufaty, D., and Prieto, M.
Leveraging Core Specialization via OS Scheduling to Improve
Performance on Asymmetric Multicore Systems. ACM Trans.
Comput. Syst. 30 (Apr. 2012).

[18] Soares, L., and Stumm, M. FlexSC: Flexible System Call
Scheduling with Exception-Less System Calls. In Proc. of
Symp. on Oper. Sys. Des. and Impl. (2010).

[19] Srinivasan, S., Zhao, L., Illikkal, R., and Iyer, R. Efficient
Interaction Between OS and Architecture in Heterogeneous
Platforms. SIGOPS Oper. Syst. Rev. 45, 1 (Feb. 2011), 62–72.

[20] Strong, R., Mudigonda, J., Mogul, J. C., Binkert, N., and
Tullsen, D. Fast Switching of Threads Between Cores.
SIGOPS Oper. Syst. Rev. 43 (April 2009).

[21] Van Craeynest, K., Jaleel, A., Eeckhout, L., Narvaez, P., and
Emer, J. Scheduling heterogeneous multi-cores through
Performance Impact Estimation (PIE). In Proceedings of the
39th Annual Int. Symp. on Computer Architecture (2012).

