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Understanding Fundamental Design Choices in Single-ISA
Heterogeneous Multicore Architectures

KENZO VAN CRAEYNEST and LIEVEN EECKHOUT, Ghent University

Single-ISA heterogeneous multicore processors have gained substantial interest over the past few years
because of their power efficiency, as they offer the potential for high overall chip throughput within a
given power budget. Prior work in heterogeneous architectures has mainly focused on how heterogeneity
can improve overall system throughput. To what extent heterogeneity affects per-program performance
has remained largely unanswered. In this article, we aim at understanding how heterogeneity affects both
chip throughput and per-program performance; how heterogeneous architectures compare to homogeneous
architectures under both performance metrics; and how fundamental design choices, such as core type, cache
size, and off-chip bandwidth, affect performance.

We use analytical modeling to explore a large space of single-ISA heterogeneous architectures. The ana-
lytical model has linear-time complexity in the number of core types and programs of interest, and offers a
unique opportunity for exploring the large space of both homogeneous and heterogeneous multicore proces-
sors in limited time. Our analysis provides several interesting insights: While it is true that heterogeneity
can improve system throughput, it fundamentally trades per-program performance for chip throughput;
although some heterogeneous configurations yield better throughput and per-program performance than
homogeneous designs, some homogeneous configurations are optimal for particular throughput versus per-
program performance trade-offs. Two core types provide most of the benefits from heterogeneity and a larger
number of core types does not contribute much; job-to-core mapping is both important and challenging for
heterogeneous multicore processors to achieve optimum performance. Limited off-chip bandwidth does alter
some of the fundamental design choices in heterogeneous multicore architectures, such as the need for large
on-chip caches for achieving high throughput, and per-program performance degrading more relative to
throughput under constrained off-chip bandwidth.
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1. INTRODUCTION
Heterogeneous multicore processor architectures have received substantial interest in
both academia and industry over the past years. One of the primary drivers for hetero-
geneous architectures is higher performance for a given power budget, or higher power
efficiency for a given performance target, by dynamically scheduling jobs on the highest-
performance or most power-efficient core on the chip. By doing so, total chip throughput
is maximized while not exceeding the total power budget, or vice versa, power and en-
ergy consumption is reduced while maintaining specific performance targets. Prior
work has reported substantial power and energy savings through heterogeneity [Ku-
mar et al. 2004]. Industry is actively pursuing the road of heterogeneity: example
heterogeneous architectures are the IBM Cell processor with its 8 special-purpose
engines and one general-purpose RISC core [Kahle et al. 2005], as well as recently in-
troduced CPU chips with an integrated GPU such as Intel’s Sandy Bridge [Intel 2008],
AMD’s Fusion [AMD 2008], and NVidia’s Tegra [NVidia 2010]. Other commercial of-
ferings integrate different general-purpose CPU core types; see for example NVidia’s
Kal-El [NVidia 2011] which integrates four performance-tuned cores along with one
energy-tuned core, and ARM’s big.LITTLE chip [Greenhalgh 2011], which integrates
a high-performance big core with a low-energy small core on a single chip. The latter
two examples are so-called single-ISA heterogeneous multicores, which means that the
different core types implement the same Instruction-Set Architecture (ISA).

In this article, we aim at exploring the heterogeneous single-ISA multicore archi-
tecture design space, and address some of the fundamental questions related to het-
erogeneity, such as: What are the performance benefits from heterogeneity over ho-
mogeneous architectures, i.e., how does heterogeneity affect chip throughput versus
job turnaround time? If heterogeneity yields any performance benefits, what level of
heterogeneity should be supported, i.e., how many different core types should be in-
tegrated? Do two different core types provide most of the benefit or do we need more
core types? And what should these core types look like? Should we go for extreme
core types, i.e., aggressive 4-wide out-of-order cores versus scalar in-order processor
cores? Or should we deploy middle-of-the road cores along with extreme core types?
How does heterogeneity affect off-chip bandwidth requirements? Or, vice versa, how
do bandwidth limitations affect some of the fundamental trade-offs in heterogeneous
architectures? In spite of the substantial amount of prior work done in this area, a
comprehensive study exploring these heterogeneous processor trade-offs and design
choices has not been published before, to the best of our knowledge.

We use analytical modeling for exploring the heterogeneous multicore design space.
The analytical model employed in this work estimates heterogeneous multicore perfor-
mance from single-core runs, i.e., the model has linear-time complexity in the number
of core types while enabling performance predictions for arbitrary compositions of
heterogeneous architectures and workloads. Moreover, it allows for quantifying het-
erogeneous architecture performance for a large number (hundreds) of possible job
mixes in a reasonable amount of time. Performing the same study using architectural
simulation would have been completely infeasible because of its time complexity: sim-
ulating and exploring a large heterogeneous architecture design space for a very large
number of job mixes is impossible in a reasonable amount of time.

Our methodology uses analytical modeling to estimate performance for an arbitrary
heterogeneous processor architecture and arbitrary job mixes. In contrast to prior work
which focused on total chip throughput (also called weighted speedup), we quantify
performance along two dimensions: we measure both overall system throughput and
per-program performance (average job turnaround time). Although throughput and
per-program performance are not independent, we find it very insightful to analyze
multicore processor in terms of these performance axes. In particular, we determine
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the frontier of Pareto-optimal processor architectures that provide the optimum trade-
off between system throughput versus average job turnaround time. Pareto-optimality
implies that there exist no design points that outperform the Pareto-optimal frontier
on all objectives (both system throughput and job turnaround time) at the same time.
In other words, one cannot say whether one Pareto-optimal configuration outperforms
another Pareto-optimal configuration—instead, Pareto-optimal configurations repre-
sent different trade-offs. We apply our methodology to SPEC CPU2006 workload mixes
and we consider heterogeneous multicore processor configurations with up to five core
types ranging from simple single-issue in-order cores to aggressive four-wide out-of-
order cores.

This analysis leads to several interesting and insightful observations.

—While it is true that, as reported by prior work, replacing an aggressive out-of-order
core in a homogeneous architecture with several simple in-order cores improves
system throughput (while assuming a fixed chip area), it also decreases average per-
program performance. Conversely, trading a number of simple in-order cores for an
aggressive out-of-order core improves per-program performance, but it also decreases
total system throughput. So, fundamentally, heterogeneity trades job turnaround
time for total system throughput.

—Homogeneous architectures cover a broad range of the performance spectrum in
terms of throughput versus job turnaround time. For a fixed chip area budget, a
limited number of aggressive out-of-order cores yield short job turnaround time
with limited system throughput; a large number of simple in-order cores on the
other hand yield high system throughput at the cost of longer job turnaround times.
Mediocre cores yield intermediate design trade-offs. Heterogeneity on the other hand
allows for designing multicore processors with more fine-grained trade-offs in system
throughput versus job turnaround time. Interestingly though, although there exist
heterogeneous design points that outperform homogeneous designs both in terms of
throughput and per-program performance, some homogeneous design points appear
on the heterogeneous architecture Pareto frontier. In other words, some homogeneous
configurations are optimal for particular throughput versus job turnaround time
trade-offs.

—We find that two core types offer most of the performance benefits from heterogene-
ity, i.e., going to a larger number of core types does not contribute much. However,
performance is greatly affected by which core types are chosen and different compo-
sitions lead to different performance trade-offs. Further, some compositions of core
types do not yield Pareto-optimal configurations. For other compositions, the number
of cores of each core type determines whether the heterogeneous multicore processor
is globally optimal.

—Limited off-chip bandwidth has a significant impact on the fundamental design
choices in heterogeneous architectures. When limiting off-chip bandwidth, increasing
system throughput comes at the cost of a proportionally larger degradation in per-
program performance. Further, although a homogeneous design with many small
cores yields the highest throughput assuming infinite bandwidth, only heteroge-
neous designs can achieve the highest throughput under limited off-chip bandwidth.
Finally, architectures designed for high throughput should employ large LLCs in
order to reduce off-chip bandwidth pressure.

—We also find that the effectiveness of heterogeneous architectures heavily depends on
how jobs are mapped on the different core types. Simple heuristics based on CPI or
miss rates to discern compute- versus memory-intensive jobs do not achieve optimum
performance. Instead, more accurate estimates that compare relative performance
across core types are needed for effective job-to-core mapping.
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The key contributions of the article are to comprehensively explore the heterogeneous
multicore design space and provide insight in some of the fundamental trade-offs and
design choices. We use analytical modeling to do so which enables exploring many
more machine configurations and workloads than what is possible to consider with
cycle-accurate simulation. Further, one of the key trade-offs that we study relates
to chip throughput versus per-program performance. Prior work on the other hand
focused on throughput only, for the most part; and prior work that did consider both
chip throughput and per-program performance assumed different workload condi-
tions. Grochowski et al. [2004] and Annavaram et al. [2005] considered multithreaded
workloads and advocated spending more energy per instruction during serial phases
(e.g., run serial phases on big cores ot at higher frequency/voltage in a heterogeneous
multicore); Kumar et al. [2004] focus on throughput when assuming a fixed number of
independent programs in a multi-program workload, and focus on per-program perfor-
mance when considering variable active thread counts in multi-program workloads.
In this work, we consider abundant numbers of active thread counts, i.e., at least
as many independent programs as there are cores, and we find that heterogeneous
multicores provide a trade-off between chip throughput and per-program performance,
even under such workload conditions.

The remainder of this article is organized as follows. We first describe the analytical
model that we use in our exploration (Section 2). Subsequently, we present our method-
ology for exploring the heterogeneous processor architecture design space (Section 3).
After detailing our experimental setup (Section 4), we then present our results and find-
ings (Section 5). Finally, we describe related work (Section 6) and conclude (Section 7).

2. MULTICORE PERFORMANCE MODELING
The analytical model used in this article is called the Multi-Program Performance
Model (MPPM), which we developed as part of our prior work [Van Craeynest and Eeck-
hout 2011] and which is a method for quickly estimating multi-program multicore per-
formance from single-core simulation runs. MPPM collects a profile during single-core
simulation that captures a program’s memory behavior as well as its phase behavior. It
then employs an iterative method to model the performance entanglement between co-
executing programs on a multicore processor with shared caches: the iterative method
captures how per-program performance affects the amount of resource sharing, and,
vice versa, how resource sharing in its turn affects per-program performance.

We refer to Figure 1 for a general overview of MPPM, and we briefly describe MPPM
in the next few subsections.

2.1. Single-Core Simulation Profiling
The first step in the MPPM framework is to perform single-core simulation profiling,
which collects three characteristics.

—Single-core CPI is the number of Cycles Per Instruction (CPI) when running the
single-core workload in isolation, i.e., there are no coexecuting programs and the
single-core workload has access to the entire memory hierarchy.

—Memory CPI is the fraction of the single-core CPI waiting for memory.
—Stack Distance Counters (SDCs) capture the program’s temporal memory access

behavior in set-associative (or fully associative) caches [Mattson et al. 1970]. We
collect SDCs for each program on the LLC without cache sharing, i.e., by running
the program in isolation. An SDC for an A-way set-associative cache involves A+ 1
counters, C1, C2, . . . , CA, C>A, and is computed as follows. On each access, one of the
counters is incremented. If the access is to the ith position in the LRU stack for that
set, the ith counter Ci is incremented. If the cache access involves a miss, then the
C>A is incremented.
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Fig. 1. General overview of MPPM.
Each of these performance characteristics are measured on a per-interval basis. The

reason is to be able to model the impact of time-varying phase behavior on resource
contention in multicore processors. In our setup, we measure these characteristics for
every interval of 20 million (dynamically executed) instructions.

Single-core simulation profiling runs need to be done only once for all the benchmarks
and all the core types of interest. This is a one-time cost. Once we have collected the
single-core simulation profiles, we can then quickly estimate performance for both
homogeneous and heterogeneous multicore architectures for arbitrary workload mixes
and multicore configurations.

2.2. Iterative Multicore Performance Estimation
The single-core performance characteristics mentioned in the previous section serve
as input to an iterative multicore performance model, called the Multi-Program
Performance Model (MPPM). The concept of the MPPM is to initially start from the
single-core performance measurements and then iteratively converge on how resource
contention in shared resources affects per-core performance in a multicore processor.
The reason for the iterative process is the tight performance entanglement between
per-core performance and resource contention, i.e., per-core performance affects the
amount of resource contention, and vice versa, resource contention affects per-core
performance. In order to model this tight performance entanglement, the model
initially estimates the amount of resource contention assuming each program makes
progress as per the single-core simulations; however, the amount of resource sharing
affects per-core progress, which in its turn affects resource sharing. Hence, in the next
iteration, per-core progress is adjusted to incorporate how resource contention affects
per-core progress. This, in its turn, may again affect the amount of resource contention
seen, which leads to the second iteration, etc. This iterative process continues until
convergence.

We initialize the algorithm by assuming that all programs experience the same
relative slowdown and execute at single-core speed initially. Further, we assume that
all programs start at the beginning of the execution trace. Once these initial conditions
are set, the iterative process starts.
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At each iteration, we first determine the slowest program in the workload mix, or the
program in the multi-program workload mix with the highest (estimated) multicore
CPI. We determine the number of cycles it takes for the slowest program to execute L
million instructions (L equals 200 million instructions in our setup), and we estimate
the amount of resource sharing in the LLC over this period of time. This is done using
the SDCs. The SDCs serve as input to a cache contention model that estimates the
additional number of conflict misses due to cache sharing in the LLC. There exist
several cache contention models [Chandra et al. 2005; Eklöv et al. 2011; Lee et al.
2008]. We use the Frequency of Access (FOA) model proposed by Chandra et al. [2005]
because it is a fairly simple model and we found it accurate enough for our needs. The
average memory access latency is determined by dividing the memory CPI with the
number of misses. By multiplying the number of additional conflict LLC misses with
the average penalty per LLC miss, we obtain an estimate for the number of lost cycles
due to cache sharing for each of the programs in the multi-program mix. The lost cycles
are then accounted for in the estimated per-program multicore CPI, i.e., we account
for the fact that a program gets slowed down because of resource contention. In the
next iteration, MPPM then takes the updated multicore CPI for each of the programs
and computes resource sharing accordingly. This way, we model how resource sharing
affects per-program performance and vice versa.

This iterative process is repeated until a stop criterion is met. Each iteration in-
volves 200M instructions for the slowest running program, and the iterative process
continues until the slowest running program in the workload mix has executed 5B
instructions in total. Given that our instruction traces are 1B instructions in size, this
means that the slowest program needs to iterate over its entire trace five times. Faster
running programs may iterate over their trace more than five times. We found that the
performance numbers converged given this stop criterion.

The output produced by MPPM is a CPI estimate for each of the programs in
the multi-program mix. From these CPI estimates we can then compute System
ThroughPut (STP) and average normalized turnaround time (ANTT), as we will
explain later and which are metrics for system-level throughput and per-program
performance, respectively.

2.3. MPPM Evaluation
Validation of the model against detailed simulation for a range of multicore configu-
rations with 2, 4, and 8 cores and 150 multi-program workload mixes demonstrates
MPPM’s accuracy. (We refer to later in the article for a detailed description of the
experimental setup.) Figure 2 reports scatter plots for STP (system throughput) and
ANTT (average normalized turnaround time); the predicted metrics are shown versus
the measured metrics. Each dot represents one multi-program workload mix. Perfect
prediction would imply all dots to lie on the bisector. We observe a strong correlation
between the measured and predicted performance metrics, i.e., all the dots lie around
and are close to the bisector. The average error across these workload mixes equals
1.4%, 1.6%, and 1.7% for STP and 2, 4, and 8 cores, respectively; and 1.5%, 1.9%, and
2.1% for ANTT and 2, 4, and 8 cores, respectively.

Note again that MPPM itself does not involve detailed cycle-accurate multicore sim-
ulation. The process as explained above only involves “analytical” simulation in which
we employ analytical models for estimating multicore performance. This yields a very
fast multicore performance estimation technique: MPPM makes a multicore perfor-
mance estimate in less than a second, provided that the single-core simulation runs
were done beforehand.
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Fig. 2. Accuracy of MPPM for predicting (a) STP and (b) ANTT; measured values on vertical axis versus
predicted values on the horizontal axis.

3. EXPLORING THE HETEROGENEOUS MULTICORE DESIGN SPACE
MPPM thus provides a way for estimating multicore performance based on single-core
simulation results. More specifically, we leverage the MPPM framework to explore the
heterogeneous multicore design space in this article. This is done as follows; see also
Figure 3.

We first perform single-core simulation runs for all of the benchmarks and all of the
core types of interest. In this article, we consider five core types and the SPEC CPU2006
benchmarks as our workloads. These single-core simulations need to be done only once,
and enable us to explore the heterogeneous design space for arbitrary combinations of
number of cores and core types, and for arbitrary job mixes. This matrix of single-core
simulation results serves as input for our design space exploration.

For estimating multicore performance, we consider the single-core simulation results
for the core types of interest; the core types could be diverse in case of a heterogeneous
design or the same in case of a homogeneous design (step no. 1 in Figure 3). We then
randomly pick N benchmarks, with N the number of cores (step no. 2), and we assign
benchmarks to cores (step no. 3). As we will observe later in the article, benchmark-to-
core mapping has an important impact on overall performance. In this article, unless
mentioned otherwise, we map the job that benefits the most to the most aggressive core,
and so forth until all jobs are mapped to cores. (We provide more details on the job-
to-core mapping approach later in the article, and we find this heuristic to be close to
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Fig. 3. Using MPPM for exploring the heterogeneous multicore design space.

optimal; see Section 5.6.) We then use MPPM to estimate multicore performance (step
no. 4). This whole process (steps no. 2 through no. 4) is iterated for a large number of ran-
domly chosen benchmark mixes (500 in total per experiment). The key feature of MPPM
is that it is based on an analytical model that can be evaluated very quickly. One experi-
ment takes approximately one day to complete using MPPM; this includes the one-time
cost of single-core simulations for all workloads and core types, as well as computing
the MPPM model. The traditional methodology using detailed architectural simulation
would take more than 80 days for performing the same experiment. Put differently,
MPPM enables considering a large set of job mixes in limited time, which increases con-
fidence in the results compared to detailed simulation, which would limit the number
of possible job mixes to just a few examples because of simulation time constraints.

3.1. Heterogeneous Multicore Design Space
We consider five core types in our design space exploration: 4-wide and 2-wide out-of-
order cores, and 4-wide, 2-wide, and scalar in-order cores. For the out-of-order cores,
we assume a 128-entry and 32-entry reorder buffer for the 4-wide and 2-wide core,
respectively. We assume a core to have private L1 instruction and data caches, as well
as a private L2 cache. The L1 caches are 32KB in size; the L2 caches are 256KB in
size and are 8-way set-associative. The L3 cache is shared among the cores and is the
last-level cache (LLC) in our setup; we vary the LLC size between 1MB, 2MB, and 4MB
in our experiments, and we assume the LLC to be 16-way set-associative. All caches
implement an LRU replacement policy.

The area cost models for each core type are derived from chip die photos from Intel
Quad-Core Nehalem and Intel Atom processors; see also Table I. Nehalem implements
4-wide out-of-order cores, whereas Intel Atom implements 2-wide in-order cores. We
empirically observed a 1 to 4 ratio in chip area between these core architectures (in
the same chip technology). We also observed that one slice of 512KB LLC corresponds
roughly to half an Intel Atom core or one-eighth of an Intel Nehalem core. Hence, we

ACM Transactions on Architecture and Code Optimization, Vol. 9, No. 4, Article 32, Publication date: January 2013.



Understanding Fundamental Design Choices in Single-ISA Multicore Architectures 32:9

Table I. Chip Area Cost Model

#BCEs
scalar in-order core 1
2-wide in-order core 2
4-wide in-order core 3
2-wide out-of-order core 4
4-wide out-of-order core 8
512KB LLC slice 1

assign one Base Core Equivalent (BCE) [Hill and Marty 2008] to a 512KB LLC slice; 2
BCEs to a 2-wide in-order core (alike Intel Atom), and 8 BCEs to a 4-wide out-of-order
core (alike Intel Nehalem). We extrapolated towards scalar in-order, 4-wide in-order,
and 2-wide out-of-order cores as shown in Table I.

We consider 40 BCEs in total in our experiments. This corresponds to the chip area of
the Intel Quad-Core Nehalem processor, which includes four 4-wide out-of-order cores
along with a 4MB LLC. In the experiments to follow we vary the configuration of the
multicore processor architecture and we consider both homogeneous and heterogeneous
designs, while bounding total chip area to 40 BCEs.

Unless mentioned otherwise, we assume unlimited off-chip bandwidth; however, in
the results section, we do study how limited off-chip bandwidth affects heterogeneous
multicore performance.

3.2. Multicore Performance
An important distinction between this work and prior work in heterogeneous multicore
architectures is that we focus on two metrics for quantifying multicore performance
from two complementary perspectives; prior work primarily focused on a single metric,
namely weighted speedup which quantifies performance from a system perspective
only and does not take into account per-program performance. By using two metrics
we quantify multicore performance when running multi-program workloads from both
a system’s and a user’s perspective. We consider system throughput (STP) as a metric
to quantify system performance, along with average normalized turnaround time
(ANTT) to quantify user-perceived per-program performance. The original definition
by Eyerman and Eeckhout [2008] introduced STP and ANTT assuming homogeneous
multicore architectures. However, these definitions are inappropriate for heteroge-
neous designs. The next subsection describes the original definitions of STP and ANTT,
followed by a discussion on how we extended these metrics for heterogeneous designs.

3.2.1. STP and ANTT for Homogeneous Multicores. STP measures multicore performance
from a system’s perspective and quantifies the accumulated progress by all the pro-
grams in the multi-program workload mix. STP equals weighted speedup proposed by
Snavely and Tullsen [2000] and is a higher-is-better metric:

STP =
n∑

p=1

CPISC,p

CPIMC,p
,

with CPISC,p the CPI for program p when executed on a single core in isolation, and
CPIMC,p the CPI for program p when executed on a multicore processor while being
coexecuted with other jobs on the other cores. In a multicore setup with n independent
jobs and cores, STP is bounded by n, i.e., STP equal to n can only be achieved if all
programs achieve single-core performance on a multicore processor. Obviously, this is
unlikely to happen because of resource sharing in shared caches (e.g., LLC), off-chip
bandwidth, main memory, etc. So, in practice, STP is smaller than n with n the number
of cores.
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ANTT focuses on user-perceived performance and quantifies the average slowdown
during multicore execution relative to single-core, isolated execution. ANTT is the
reciprocal of the hmean metric proposed by Luo et al. [2001].

ANTT = 1
n

∑

p

CPIMC,p

CPISC,p
.

Ideally, a program does not experience any slowdown when coexecuted with other jobs
on the multicore processor, and hence, ANTT would equal one. In practice though,
coexecuting jobs affect each other’s performance, and hence, ANTT is typically larger
than one. Consequently, ANTT is a lower-is-better metric.

3.2.2. STP and ANTT for Heterogeneous Multicores. STP and ANTT as defined above for
homogeneous multicores have no meaning when used for heterogeneous multicores.
The reason is that single-core CPI (CPISC,p) is not well defined in a heterogeneous
multicore because there are different core types, and hence, the question is which one
to measure single-core CPI for. Picking different core types to measure single-core CPI
for the different jobs would preclude comparing heterogeneous designs against each
other. Hence, we need to agree on a single core type on which to measure single-core
CPI (CPISC,p). In this work we arbitrarily consider the 4-wide out-of-order core as our
baseline core to measure CPISC,p; the baseline core is assumed to have the entire cache
hierarchy (including the shared LLC) to its disposal. Both STP and ANTT are then
computed relative to the single-core CPI on this baseline core. In other words, STP
now quantifies system throughput achieved over a single 4-wide out-of-order core, e.g.,
an STP of 8 means that this design achieves an 8× higher total system throughput
compared to a single baseline 4-wide out-of-order core. Likewise, ANTT quantifies the
average normalized turnaround time relative to a single 4-wide out-of-order core, e.g.,
an ANTT of 4 means that this design yields an average per-program slowdown of a
factor 4× relative to a single 4-wide out-of-order core.

4. EXPERIMENTAL SETUP
We use a multicore processor simulator based on CMP$im [Jaleel et al. 2008], which
is an x86 simulator built on top of Pin [Luk et al. 2005]. CMP$im is a user-level simu-
lator and allows for simulating both single-core and multicore processor architectures.
Our version of the CMP$im simulator is the one available from the Cache Replace-
ment Championship1. We use CMP$im for obtaining the single-core simulation results
that serve as input to the performance model. Further, CMP$im was also used in the
validation experiments previously reported in Section 2.3.

We consider all the SPEC CPU2006 benchmarks with their reference inputs. All the
benchmarks were compiled with the GNU C compiler version 4.3.4 and optimization
level -O2. We use SimPoint [Sherwood et al. 2002] to pick representative simulation
points of one billion instructions each.

Figure 4 shows performance in terms of average normalized IPC across all bench-
marks for the five core types considered in this study as a function of the square root
of the area (counted in the number of BCEs; see also Table I). This data complies with
Pollack’s Law [Borkar 2007] which states that core performance is proportional to the
square root of the chip area.

5. RESULTS
We now explore the heterogeneous multicore design space using the methodology just
described. This is done in a number of steps. We start by exploring the homogeneous

1http://www.jilp.org/jwac-1/.
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Fig. 4. Average normalized IPC for the five core configurations considered in this study as a function of the
square root of the area counted in BCEs.
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Fig. 5. Pareto-optimal homogeneous multicore configurations as a function of STP (vertical axis) and ANTT
(horizontal axis).

versus heterogeneous multicore design spaces, and we explore how the number of core
types affects heterogeneous multicore performance. Subsequently, we study the impor-
tance of job-to-core mapping, and how heterogeneous multicore performance is affected
by off-chip bandwidth. Finally, we evaluate how sensitive heterogeneous multicore per-
formance is with respect to LLC size, and which core types should be employed in a
heterogeneous design.

5.1. Homogeneous Multicore processors
Before exploring the heterogeneous multicore processor design space, we start with
exploring the homogeneous multicore design space. For this experiment, we consider
all possible homogeneous multicore design points with all possible LLC cache sizes that
fit in 40 BCEs; further, we assume unlimited off-chip bandwidth for now. Out of this
set of possible homogeneous multicore designs, we determine the Pareto-optimal ones
in terms of system throughput versus average job turnaround time. Figure 5 shows
the Pareto-optimal homogeneous multicore design points as a function of STP (vertical
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Fig. 6. Pareto frontier of multicore configurations, along with all processor configurations explored including
the homogeneous design points.

axis) and ANTT (horizontal axis). The design points vary from a multicore design with
four 4-wide out-of-order cores and a 4MB LLC—alike Intel Quad-Core Nehalem—with
an STP of 3.92 and an ANTT of 1.02, to 38 scalar in-order cores and a 1MB LLC which
achieves an STP of 12.17 and an ANTT of 3.29. In other words, the aggressive out-of-
order core design yields excellent per-program performance, yet, total chip throughput
is limited. Conversely, the simple in-order core design yields more than 3× higher
system throughput, yet, per-program performance is also more than 3× lower.

Finding no. 0: Changing core types in a homogeneous multicore architecture yields
different trade-offs in system throughput and per-program performance. In essence,
simple in-order cores trade per-program performance for throughput, and conversely,
aggressive out-of-order cores trade throughput for per-program performance. Mediocre
cores lead to multicore design points in the spectrum between aggressive out-of-order
cores and simple in-order cores. These trade-offs are well known, but it is important to
restate them here in light of the exploration for heterogeneous architectures.

5.2. Pareto-Optimal Heterogeneous Multicores
Now that we have a good understanding of the homogeneous multicore design space,
we move to heterogeneous architectures. We consider all possible heterogeneous multi-
core configurations with at most two different core types. Again, we assume all possible
LLC cache sizes, a total chip area of 40 BCEs, and off-chip bandwidth being unlimited.
(We consider the impact of limited off-chip bandwidth on heterogeneous multicore de-
sign considerations in the next section; the reason for considering unlimited off-chip
bandwidth here is to solely focus on the impact of core types initially and study the
fundamental impact of core types on heterogeneous multicore performance.) We deter-
mine the Pareto frontier as a function of STP and ANTT out of this set of heterogeneous
multicore configurations. Figure 6 shows all the design points, along with the Pareto
frontier and the homogeneous multicore designs (as points of reference).

Finding no. 1. Heterogeneity poses a trade-off between system throughput and per-
program performance. Prior work motivated heterogeneity as a way for increasing
system throughput within a given power budget [Kumar et al. 2004]. While our re-
sults confirm this finding, Figure 6 shows that heterogeneity also increases average
job turnaround time, or in other words, average per-program performance degrades;
compare the heterogeneous multicore configurations on the Pareto frontier against the
homogeneous design point at the bottom left on the Pareto frontier (consisting of four
4-wide out-of-order cores). Similarly, heterogeneity improves per-program performance
compared to a homogeneous design that achieves the highest throughput at the top
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right on the Pareto frontier (consisting of 38 single-issue in-order cores). Hence, funda-
mentally, heterogeneity trades per-program performance for system throughput, and
vice versa.

Finding no. 2. Heterogeneity enables making more fine-grained performance trade-
offs. Although changing the core types in a homogeneous multicore design enables
trading off system throughput against per-program performance, as discussed in the
previous section, heterogeneity enables more fine-grained performance trade-offs to be
made. Some trade-off points in system throughput versus per-program performance
can only be achieved through heterogeneity.

Finding no. 3. Some heterogeneous multicore configurations outperform specific homo-
geneous architectures in both system throughput and per-program performance. Het-
erogeneity yields a number of configurations with significantly better performance
compared to homogeneous designs. For example, (see also Figure 6) through hetero-
geneity, one can achieve a 37% reduction in ANTT while achieving similar STP, or
conversely, one can achieve a 32% STP increase at the same ANTT. The reason is that
heterogeneity allows for mapping jobs to cores that are most appropriate for the job at
hand.

Finding no. 4. Some homogeneous design points yield optimal performance trade-offs.
Another interesting observation is that some homogeneous designs also appear on the
Pareto frontier for the heterogeneous designs: the three homogeneous configurations
labeled in Figure 5 with scalar in-order cores, dual-issue in-order cores, and aggressive
4-wide out-of-order cores, respectively, also appear on the Pareto frontier in Figure 6. In
other words, heterogeneity does not provide a range of architectures that outperform
homogeneous architectures over the entire STP vs. ANTT range. Instead, heterogene-
ity provides a broader range of STP vs. ANTT trade-offs, and there are many more
design points on the Pareto frontier that can be obtained through heterogeneity than
what can be achieved through homogeneous designs. However, particular trade-offs
are best achieved through a homogeneous design. This, we believe, is an interesting
and novel insight: heterogeneity, fundamentally, trades per-program performance for
system throughput, and while it is true that heterogeneous architectures can outper-
form homogeneous architectures for some throughput versus per-program trade-off
points, heterogeneous designs do not always outperform homogeneous designs, and
some throughput versus per-program performance trade-offs are best achieved through
homogeneous designs.

Finding no. 5. Two core types provide most of the benefits from heterogeneity. In the
previous experiment, we considered at most two core types. An interesting question is
whether adding additional core types improves heterogeneous multicore architecture
performance above two core types. Figure 7 shows the Pareto frontier for at most two,
three, four, and five core types. Interestingly, adding more than two core types does
not improve performance much. The highest improvement observed in throughput and
turnaround time is no larger than 6.6% and 7.9%, respectively, going from two to three
core types; beyond three core types, the improvement is less than 0.3%. Hence, we
conclude that two core types provide most of the benefits through heterogeneity, and
three or more core types does not contribute much.

5.3. Limiting Off-Chip Bandwidth
So far, we assumed that off-chip bandwidth is unlimited. We now study the impact of
limited off-chip bandwidth on heterogeneous multicore processor design. We consider
a simple bandwidth model to this end. We compute the average off-chip bandwidth
requirements for each program in the job mix by multiplying the number of LLC
misses per instruction with the achieved per-program IPC, clock frequency, and
the machine’s LLC cache line size (64 bytes). The sum of the per-program off-chip
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Fig. 8. Evaluating how off-chip bandwidth limitations affect heterogeneous multicore performance.

bandwidth requirements then yields the total off-chip bandwidth requirements. If the
aggregate off-chip bandwidth demands exceed the maximum off-chip bandwidth, we
discard the design point and we consider it to be invalid.

Figure 8 shows the Pareto frontier for unlimited off-chip bandwidth as well as for
limited bandwidth at 30GB/s, 20GB/s, and 15GB/s. As expected, limited off-chip band-
width puts a limit on the maximum achievable system throughput, e.g., compare the
unlimited bandwidth curve versus the 30GB/s curve: the maximum achievable STP
goes down from 12.17 to 10.03; ANTT varies across a similar range. When limiting off-
chip bandwidth even further to 20GB/s and 15GB/s, we observe a decrease in achievable
STP and ANTT. Further, limiting off-chip bandwidth puts a limit on how per-program
performance can be traded for throughput, i.e., the range of possible design points is
reduced.

Finding no. 6. When limiting off-chip bandwidth, increasing system throughput
comes at the cost of a proportionally larger degradation in per-program performance.
Interestingly, we observe an almost linear relationship between STP and ANTT for
the heterogeneous design points on the Pareto frontier under limited bandwidth
constraints; the linear fits are shown in Figure 8. Note that the slope decreases
with decreasing off-chip bandwidth. This implies that if a processor designer aims
at increasing system throughput, limitations in off-chip bandwidth will force the
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width constraints.

designer to tolerate increasingly larger job turnaround times. In other words, if the
goal is to improve system throughput by a given percentage, per-program performance
will degrade by an increasingly larger percentage at lower off-chip bandwidths.

Finding no. 7. Highest throughput can only be achieved through heterogeneity under
off-chip bandwidth constraints. It is interesting to study how homogeneous multicores
fare under limited off-chip bandwidth constraints. Figure 9 shows the Pareto frontier
for heterogeneous and homogeneous designs at 20GB/s of off-chip bandwidth. The key
observation here is that the highest throughput cannot be achieved through homo-
geneity under this particular off-chip bandwidth constraint; only heterogeneity can
achieve these high levels of throughput. The reason is that a large number of small
cores imposes a large LLC to satisfy bandwidth constraints, which leads to suboptimal
performance compared to a heterogeneous design with a few slightly more aggressive
cores and a smaller LLC.

5.4. Impact of LLC Size
As observed in the previous section, off-chip bandwidth has significant impact on (het-
erogeneous) multicore performance. Caches are effective at reducing off-chip band-
width pressure: cache hits do not need to go off chip, thereby saving off-chip traffic.
Figure 10(a) shows the heterogeneous multicore Pareto frontier for different cache
sizes while assuming infinite off-chip bandwidth. Unsurprisingly perhaps, the small-
est LLC (1MB) configuration yields the highest throughput. In other words, unlimited
off-chip bandwidth leads to integrating more cores and not larger caches for optimum
performance.

Finding no. 8. Large LLCs yield highest throughput under off-chip bandwidth con-
straints. Figure 10(b) shows the heterogeneous multicore Pareto frontier with off-chip
bandwidth limited to 20GB/s. We observe a very different result under limited off-
chip bandwidth. Counterintuitively and surprisingly, the highest system throughput
is achieved for the largest LLC (see right-hand side in Figure 10(b)). The reason is
that a large LLC reduces the off-chip bandwidth pressure imposed by employing many
small cores to achieve high throughput. In other words, the high-throughput designs
on the right-hand side of Figure 10(b) are bandwidth-constrained, hence, they benefit
from a larger LLC to reduce bandwidth pressure. Balanced system throughput and
per-program performance (middle part in Figure 10(b)) is achieved by employing more
(or at least a couple) aggressive big cores which impose less off-chip bandwidth traffic,
and hence, a smaller LLC is optimal. However, for the designs on the left-hand side
of Figure 10(a) and (b) which are optimized for per-program performance, a large LLC
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is optimal again. The reason is that a large LLC (along with aggressive out-of-order
cores) yields the highest per-program performance. In other words, these designs are
not bandwidth-constrained but optimized for per-program performance, and hence also
benefit from a large LLC.

5.5. Which Core Types to Employ in a Heterogeneous Design?
As mentioned throughout the article, there is a clear performance benefit to be achieved
from heterogeneity for particular performance trade-offs. An open question though is
what the core types should be for optimum performance. Figure 11 shows the Pareto
frontier for all possible combinations of two core types; we assume off-chip bandwidth
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is limited to 30GB/s. The Pareto-optimal points across all Pareto frontiers per two core
types obviously corresponds to the global Pareto frontier shown in Figure 8.

Finding no. 9. Particular compositions for heterogeneity yield particular performance
trade-offs, and some compositions do not yield Pareto-optimal performance. The inter-
esting observation from Figure 11 is that the composition of a Pareto-optimal heteroge-
neous multicore varies along the Pareto frontier. At high throughput, a Pareto-optimal
heterogeneous multicore is to be composed of single-issue and dual-issue in-order cores.
This is in line with prior work which advocated simple cores for server-type throughput
applications in the datacenter [Kongetira et al. 2005; Kgil et al. 2006; Lim et al. 2008;
Reddi et al. 2010; Mudge and Hölzle 2010]: highest throughput is achieved using many
small cores. For high per-program performance, Pareto-optimal heterogeneous multi-
cores should employ at least one out-of-order core type. Interestingly, a heterogeneous
multicore composition with two particular core types that is Pareto-optimal locally is
not necessarily Pareto-optimal globally, i.e., the exact number of cores of a given type
is important and determines whether the heterogeneous multicore is globally optimal.
If not, there exist compositions with other core types that yield better throughput and
per-program performance.

Note also that some heterogeneous multicore compositions do not yield Pareto-
optimal performance; see for example heterogeneous designs with four-issue in-order
and two-issue out-of-order cores, as well as heterogeneous designs with two-issue and
four-issue in-order cores. This might be unsurprising and can be understood intuitively
given the relatively small performance and chip area differences between these core
types; see also Section 4. However, heterogeneous architectures with single-issue in-
order and four-issue out-of-order cores also fall in this category. This is a surprising
result because these two core types are the most extreme core types in the mix. The
reason is that single-issue in-order cores call for a larger LLC to meet the off-chip
bandwhich constraints. Two-issue in-order cores on the other hand put less aggregate
pressure on off-chip bandwidth (because one two-issue core generates less off-chip traf-
fic than two single-issue cores for the same chip area). As a result, single-issue in-order
cores demand for a larger LLC which is suboptimal compared to having fewer mediocre
(dual-issue in-order) cores and a slightly smaller LLC.

5.6. Job-to-Core Mapping
An important challenge with heterogeneous multicore architectures is how to schedule
or map the jobs across the different core types in order to maximize performance. We
consider four job-to-core mapping strategies.

—Optimal mapping maps jobs to cores so that overall performance is optimized. One
could either optimize throughput or optimize turnaround time; here we maximize
throughput (STP). The optimal mapping is obtained by exhaustively trying out all
possible job-to-core mappings and picking the best one. This is an oracle and cannot
be achieved in practice.

—Cache-miss-rate-based mapping maps the job with the highest LLC miss rate to the
lowest-end core, the job with the second highest LLC miss rate to the second lowest-
end core, etc. In other words, we map compute-intensive jobs to the high-end cores
and the memory-intensive jobs to the low-end cores. The intuition is to map jobs
to the core type where they would presumably benefit the most. Several previously
proposed scheduling algorithms for heterogeneous architectures are based on this
heuristic; see for example Koufaty et al. [2010]; Kumar et al. [2004]. We explored IPC-
based mapping strategies as well, following several other prior proposals [Becchi and
Crowley 2008], but obtained similar results as for cache-miss-rate-based mapping,
hence, the IPC-based mapping results are omitted from the article.
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Fig. 12. Evaluating how job-to-core mapping affects heterogeneous multicore performance.

—A relative slowdown mapping assumes that it knows the relative performance for
each job on each of the core types. This mapper iteratively picks the job in the job mix
that would experience the largest relative slowdown from not being scheduled on the
highest-end core, and maps that job to the highest-end core; the job is removed from
the job mix and the core is no longer schedulable, after which the mapper picks the
next job.

—Random mapping, as it says, performs a random mapping of jobs to cores.

Figure 12 compares these job-to-core mapping strategies for six heterogeneous multi-
core processors with two core types, namely 4-wide out-of-order and 2-wide in-order
cores. Again, we consider 500 randomly chosen multi-program workload mixes.

Finding no. 10. Job-to-core mapping is both important and challenging for achiev-
ing optimum performance on heterogeneous multicore architectures. Clearly, random
mapping as well as a simple heuristic such as cache-miss-rate-based mapping are far
from optimal. Random mapping is oblivious to the fact that the underlying hardware
is heterogeneous and, as a result, it is not surprising that random mapping does not
yield optimum performance. The cache-miss-rate-based mapping strategy apparently
does not have enough information about how to optimally map jobs to cores. The rea-
son is that cache miss rate based mapping in unaware of memory-level parallelism
and how misses translate into overall performance. Relative-slowdown-based mapping
holds enough information for making a (close to) optimal mapping. Note though that
the information needed by relative slowdown mapping is substantial as it requires
the knowledge of how well jobs perform on the different core types; this may require
extensive profiling which may be not be achievable in practice. Hence, we can consider
this approach as an idealized mapping approach. (Note we used the relative slowdown
mapping throughout the article.) We conclude from this experiment that job-to-core
mapping on heterogeneous multicore systems is a nontrivial problem, that simple
heuristics as presented in the literature are suboptimal, and that solving the mapping
problem can yield substantial performance benefits.

5.7. Workloads
Any experimental study is bound to the workloads used in the study. In other words,
some of the conclusions may be somewhat biased by the set of workloads considered.
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However, we expect the more general conclusions to still hold true for other types of
workloads.

Finding no. 11. Although the SPEC CPU benchmark suite comprises a fairly broad
set of workloads, as for any experimental study, some of the conclusions reached in this
article may be bound by the set of chosen workloads, however, we expect the overall
insights to hold true across workload domains. In particular, this article identified
specific heterogeneous multicore configurations to be optimal. We expect this to be
workload dependent, i.e., another set of workloads is likely to yield a different set of
Pareto-optimal architecture configurations. Nevertheless, the more general findings in
this article, we believe, are likely to hold true for other workloads as well.

6. RELATED WORK
The design space of heterogeneous multicore architectures is huge. The weakest form
of heterogeneity involves different cores only varying in clock frequency (microarchi-
tecture and ISA is the same across the cores); this form of heterogeneity may stem from
process variation which may cause cores on the same chip differing substantially in the
amount of power that they consume and in the maximum frequency that they can sup-
port [Teodorescu and Torrellas 2008]. Per-core DVFS is employed in the AMD Opteron
Quad-Core processor [Dorsey et al. 2007] and the Intel Montecito [McGowen et al.
2006] and enables heterogeneity by varying clock frequency per core. A stronger form
of heterogeneity are the so-called single-ISA heterogeneous multicores: all the cores
implement the same ISA but differ in their microarchitecture [Kumar et al. 2003].
Commercial examples are the NVidia Kal-El [NVidia 2011] and the ARM big.LITTLE
chip [Greenhalgh 2011], as mentioned in the Introduction. Overlapping-ISA heteroge-
neous multicores feature different cores with overlapping ISAs, i.e., all cores implement
the same ISA except for a small set of instructions that is unique to each core type [Li
et al. 2010]. The strongest form of heterogeneity involves different cores with differ-
ent ISAs and microarchitectures. Examples are CPU/GPU integration, such as Intel’s
Sandy Bridge [Intel 2008], AMD’s Fusion [AMD 2008], and NVidia’s Tegra [NVidia
2010], or accelerator-based architectures such as the IBM Cell [Kahle et al. 2005]. The
remainder of this related work section focuses on single-ISA heterogeneous architec-
tures, which is the subject of this article.

Kumar et al. [2003] were the first to propose single-ISA heterogeneous multicores.
They propose thread migration during runtime and powering down unused cores to
exploit the time-varying behavior of applications to maximize performance and power
efficiency. In their follow-on work, Kumar et al. [2004] proposed scheduling different
programs to different core types in single-ISA heterogeneous multicore architectures.
They showed that scheduling programs to the most power-efficient core in a heteroge-
neous multicore processor can lead to substantial improvements in system throughput
(weighted speedup) for static workloads and substantial reductions in job response
times for dynamic workloads in which jobs come and go as they complete. In con-
trast to our work, Kumar et al. did not make the observation that heterogeneous
architectures fundamentally trade per-program performance for throughput. Kumar
et al. [2006] explore principles for designing single-ISA heterogeneous multicore ar-
chitectures. They consider in-order as well as out-of-order cores, and they vary core
configurations (pipeline width, number of functional units, number of rename regis-
ters, reorder buffer size, etc.) as well as cache size and associativity, while considering
both area and power cost. In contrast to our work, they limit the design space to four
cores only and assume no interactions among cores (no shared LLC). Further, they
focus on system throughput only, and do not consider per-program performance.

Grochowski et al. [2004] study the trade-off in per-program performance versus
chip throughput in a power-constrained environment. They make the fundamental
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observation that in order to achieve both high per-program performance and high
throughput, a processor needs the ability to dynamically vary the amount of energy
expended per instruction according to the amount of parallelism available in software,
a technique called Energy Per Instruction (EPI) throttling. They survey four architec-
tural techniques to do so: voltage/frequency scaling, heterogeneity, variable-size cores,
and speculation control, and conclude that heterogeneous multicores along with volt-
age/frequency scaling are most promising to dynamically achieve high per-program
performance when few threads are active and high throughput when many threads
are active. Annavaram et al. [2005] experimentally evaluate the idea of EPI throt-
tling using prototype hardware by applying clock throttling to cores in a homogeneous
shared-memory processor, effectively creating a heterogeneous multicore system. They
report substantial performance improvements compared to a homogeneous multicore
within a given power budget while running multithreaded applications. These papers
did not evaluate design trade-offs in a heterogeneous multicore processor and how these
trade-offs affect per-program performance versus throughput. Furthermore, these pa-
pers argue workload phases with limited thread-level parallelism should be sped up
by consuming more energy per instruction, thereby achieving high per-program perfor-
mance; in this work, we find that, even under abundant numbers of independent pro-
grams and threads, heterogeneous multicores provide a trade-off between per-thread
performance and chip throughput.

A substantial body work has been done on scheduling for heterogeneous multicore
processors. Several proposals propose static or offline scheduling based on program
characteristics [Chen and John 2009; Shelepov et al. 2009]. An obvious limitation is
that static or offline scheduling does not allow for taking advantage of time-varying
workload execution behavior. Other proposals employ sampling-based scheduling [Ku-
mar et al. 2003, 2004; Becchi and Crowley 2008; Winter et al. 2010], i.e., a program
is executed on different core types for a short amount of time and the system then
dynamically maps the program on the most performance-/power-efficient core dynam-
ically. Yet other proposals use heuristics such as schedule memory-intensive programs
on small cores and compute-intensive programs on more aggressive cores; see for
example Ghiasi et al. [2005]; Shelepov et al. [2009]; Koufaty et al. [2010]; Li et al.
[2010]. Patsilaras et al. [2012] study how to best integrate an MLP technique (such
as runahead execution [Mutlu et al. 2003]) into a heterogeneous multicore processor.
Van Craeynest et al. [2012] propose PIE, an analytical model for steering scheduling
in heterogeneous multicores, which aims at approaching relative slowdown mapping;
in this article, we found relative slowdown mapping to be close to optimal mapping.

7. CONCLUSION
The single-ISA heterogeneous multicore design space is huge and there are many
fundamental design choices to be made. Hence, getting insight in the design space is far
from trivial. The core types may vary from simple in-order to complex out-of-order cores,
and there are many possible compositions of core types and number of cores. In addition,
the design is constrained by chip area limitations as well as limits in off-chip bandwidth,
which leads to interesting design trade-offs while considering core types, number of
cores, and LLC size. Understanding these design trade-offs is further complicated by
the methodology—which is likely the reason why no such study has not been published
before, to the best of our knowledge: heterogeneous multicore design exploration is
complicated by the huge design space, complex interactions through shared resources
such as the LLC, the very large number of possible workload mixes, and the sensitivity
of the exploration to job-to-core mapping. Clearly, detailed simulation is too slow to be
a useful tool for such exploratory analyses.
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In this article, we used analytical modeling to explore the heterogeneous design
space: analytical modeling is fast and allows for exploring many design trade-offs
in limited time. The input to the analytical model is obtained in linear time in the
number of core types, and workloads of interest; all possible combinations of number
of cores, core types, and workload mixes can be quickly evaluated from this initial
profile while taking into account interactions in the shared LLC. Further, analytical
modeling facilitates focusing on the major performance trends and insights. In contrast
to prior work, we also focus on both system throughput and per-program performance
(prior work work focused on system throughput only) and we explore Pareto-optimal
configurations.

This analysis provides a number of interesting insights. (1) While it is true that
heterogeneity can improve system throughput, it fundamentally trades per-program
performance for chip throughput. (2) Some homogeneous multicore configurations
yield optimal performance trade-offs, however, heterogeneity enables making more
fine-grained design choices, and yields better throughput and per-program perfor-
mance than homogeneous designs for particular performance targets. (3) Two core
types provide most of the benefits from heterogeneity and a larger number of core
types does not contribute much, however, the choice of core types is critical for
optimum performance and for achieving particular performance targets. (4) Limited
off-chip bandwidth changes some of the fundamental design choices in heterogeneous
architectures, such as the need for large on-chip caches for achieving high throughput,
and per-program performance degrading more relative to throughput under con-
strained off-chip bandwidth. Further, while a homogeneous design with many small
cores achieves highest throughput assuming infinite bandwidth, only heterogeneous
designs can achieve the highest possible throughput under bandwidth constraints.
(5) Job-to-core mapping is both important and challenging for heterogeneous multicore
processors to achieve optimum performance.
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