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top us if you’ve heard this one before: 
In the near future, we’ll be able to build machines 
that learn, reason, and even emote their way to 
solving problems, the way people do.

If you’ve ever been interested in artificial intel-
ligence, you’ve seen that promise broken countless 
times. Way back in the 1960s, the relatively recent 
invention of the transistor prompted breathless 
predictions that machines would outsmart their 

human handlers within 20 years. Now, 50 years later, it seems the best 
we can do is automated tech support, intoned with a preternatural calm 
that may or may not send callers into a murderous rage.

So why should you believe us when we say we finally have the 
technology that will lead to a true artificial intelligence? Because of 
MoNETA, the brain on a chip. MoNETA (Modular Neural Exploring 
Traveling Agent) is the software we’re designing at Boston University’s 
department of cognitive and neural systems, which will run on a brain-
inspired microprocessor under development at HP Labs in California. 
It will function according to the principles that distinguish us mam-
mals most profoundly from our fast but witless machines. MoNETA 
(the goddess of memory—cute, huh?) will do things no computer ever 
has. It will perceive its surroundings, decide which information is 
useful, integrate that information into the emerging structure of its 
reality, and in some applications, formulate plans that will ensure 
its survival. In other words, MoNETA will be motivated by the same 
drives that motivate cockroaches, cats, and humans.

Researchers have suspected for decades that real artificial intelli-
gence can’t be done on traditional hardware, with its rigid adherence to 
Boolean logic and vast separation between memory and processing. But 
that knowledge was of little use until about two years ago, when HP built 
a new class of electronic device called a memristor. Before the memristor, 
it would have been impossible to create something with the form factor 
of a brain, the low power requirements, and the instantaneous internal 
communications. Turns out that those three things are key to making 
anything that resembles the brain and thus can be trained and coaxed 
to behave like a brain. In this case, form is function, or more accurately, 
function is hopeless without form. 

Basically, memristors are small enough, cheap enough, and efficient 
enough to fill the bill. Perhaps most important, they have key character-
istics that resemble those of synapses. That’s why they will be a crucial 
enabler of an artificial intelligence worthy of the term. 

The entity bankrolling the research that will yield this new arti-
ficial intelligence is the U.S. Defense Advanced Research Projects 
Agency (DARPA). When work on the brain-inspired microprocessor 
is complete, MoNETA’s first starring role will likely be in the U.S. mil-
itary, standing in for irreplaceable humans in scout vehicles searching 
for roadside bombs or navigating hostile terrain. But we don’t expect 
it to spend much time confined to a niche. Within five years, powerful, 
brainlike systems will run on cheap and widely available hardware.

How brainlike? We’re not sure. But we expect that the changes 
MoNETA will foment in the electronics industry over the next couple of 
decades will be astounding.

Artificial intelligence hasn’t stood still over the past half cen-
tury, even if we never got the humanlike assistants that some thought 
we’d have by now. Computers diagnose patients over the Internet. 
High-end cars help keep you from straying out of your lane. Gmail’s 
Priority Inbox does a pretty decent job of prioritizing your e-mails. 

But even the most helpful AI must be programmed explicitly to 
carry out its one specific task. What we want is a general-purpose intel-
ligence that can be set loose on any problem; one that can adapt to a 
new environment without having to be retrained constantly; one that 

Now consider the humble rat.  Its biologi-
cal intelligence uses general-purpose “wetware”—
the biochemical hardware and software puree that 
is the brain—to solve tasks like those of the Grand 
Challenge cars, with much better results. First, a hun-
gry rat will explore creatively for food. It might follow 
familiar, memorized routes that it has learned are safe, 
but at the same time it must integrate signals from dif-
ferent senses as it encounters various objects in the 
environment. The rat can recognize dangerous objects 
such as a mousetrap and will often avoid them even 
though it may never have seen the object at that partic-
ular angle before. After eating, the rat can quickly dis-
engage its current plan and switch to its next priority. 
All these simultaneous challenges, with all their varied 
complexities, are impractical for a machine, because 
you can’t fit a computer that size into a vehicle smaller 
than a semi. And yet they are negotiated by a brain 
whose networks of millions of neurons and billions of 
synapses are distributed across many brain areas—
a brain that weighs no more than 2 grams and can 
operate on the power budget of a Christmas-tree bulb.

Why is the rat brain so superior? In a word, archi-
tecture. The brain of an adult rat is composed of 
21 million nerve cells called neurons (the human brain 
has about 100 billion). Neurons talk to each other by 
way of dendrites and axons. You can think of these 
tendrils as the in-boxes (dendrites) and out-boxes 
(axons) of the individual neuron, transmitting electri-
cal impulses from one neuron to another. Most of the 
processing performed in the nervous system happens 
in the junctions between neurons. Such a junction, 
between one neuron’s dendrite and a neighboring neu-
ron’s axon, is a space called a synapse. 

Computational neuroscience has focused largely 
on building software that can simulate or replicate 
a mammal’s brain in the classic von Neumann com-
puter architecture. This architecture separates the 
place where data is processed from the place where 
it is stored, and it has been the staple of computer 
architectures since the 1960s [see sidebar, “The Great 
Brain Race”]. Researchers figured that, given enough 
powerful CPUs, creating programs that emulate the 

“software” of the brain is a logical outcome. 
But that’s a little like saying that given enough 

words, creating a novel is the logical outcome. 
Architecture is key here. To understand why, com-
pare the path of a hypothetical bit of data inside a con-
ventional microprocessor with its path inside a brain.

Recall that on a standard computer, the memory 
and processor are separated by a data channel, or bus, 
between the area where the data’s stored and where it’s 
worked on [see illustration, “Hardware vs. Wetware”]. 
That channel’s fixed capacity means that only limited 
amounts of data can be “checked out” and worked on 
at any given instant. The processor reserves a small 
number of slots, called registers, for storing data during 
computation. After doing all the necessary computation, 
the processor writes the result back to memory—again, 
using the data bus. Usually, this routine doesn’t pose 
much of a problem: To minimize the amount of traffic 
flowing on the fixed-capacity bus, most modern proces-

can tease the single significant morsel out of a glutton-
ous banquet of information the way we humans have 
evolved to do over millions of years.

Think about that MoNETA-enabled military scout 
vehicle for a moment. It will be able to go into a mission 
with partially known objectives that change suddenly. 
It will be able to negotiate unfamiliar terrain, recognize 
a pattern that indicates hostile activity, make a new 
plan, and hightail it out of the hostile area. If the road 
is blocked, it will be able to make a spur-of-the-moment 
decision and go off-road to get home. Intuition, pattern 
recognition, improvisation, and the ability to negoti-
ate ambiguity: All of these things are done really well 
by mammalian brains—and absolutely abysmally by 
today’s microprocessors and software. 

Consider Deep Blue, IBM’s 1.4-ton supercomputer, 
which in 1997 faced then world chess champion Garry 
Kasparov. In prior years, Kasparov had defeated the 
computer’s predecessors five times. After a taut series 
comprising one win apiece and three draws, Deep Blue 
finally trounced Kasparov in game six. Nevertheless, 
Deep Blue was not intelligent. To beat Kasparov, its 
special-purpose hardware used a brute-force strategy 
of simply calculating the value of 200 million possi-
ble chess moves each second. In the same amount of 
time, Kasparov could plan roughly two chess positions. 

Over the next 10 years, computing capabilities 
skyrocketed: By 2007 the processing power of that 
1.4-ton supercomputer had been contained within 
a Cell microprocessor roughly the size of a thumb-
nail. In the decade between them, transistor counts 
had jumped from 7.5 million on an Intel Pentium II 
to 234 million on the Cell. But that explosion of com-
puting power did not bring artificial intelligence the 
slightest bit closer, as DARPA’s Grand Challenge has 
amply demonstrated. 

DARPA had launched the Grand Challenge 
to create autonomous vehicles that could drive 
themselves without human intervention. AI had 
been credited (again) with a major victory, when 
Stanley, Stanford’s Volkswagen Touareg, drove 
itself 212 kilometers (132 miles) across California’s 
Mojave desert to claim the US $2 million prize. One 
giant leap for AI! 

Not really. The next phase of DARPA’s chal-
lenge upped the ante, demanding AI-controlled cars 
whose intelligence could conquer not just the wide-
open desert but busy city streets. For eight days in 
2007, DARPA set research teams loose on George 
Air Force Base, a desolate speck in Victorville, Calif. 
This time, the cars had to navigate basic traffic con-
ditions according to California law, merging, passing, 
parking, negotiating intersections—the stuff most 
American teenagers can do by age 16. 

The results were sobering. Cars tricked out with 
state-of-the-art sensors, positioning systems, and in 
one case, 14 blade servers, were utterly undone by 
obstacles as common as a breadbox-size rock. Within 
a few hours, almost half the teams had been removed 
from the race for such infractions as running amok in 
a parking lot or smashing into each other while try-
ing to share a single lane on a road.

S
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now consider the humble rat.  Its biologi-
cal intelligence uses general-purpose “wetware”—
the  biochemical hardware and software puree that 
is the brain—to solve tasks like those of the Grand 
Challenge cars, with much better results. First, a hun-
gry rat will explore creatively for food. It might follow 
familiar, memorized routes that it has learned are safe, 
but at the same time it must integrate signals from dif-
ferent senses as it encounters various objects in the 
environment. The rat can recognize dangerous objects 
such as a mousetrap and will often avoid them even 
though it may never have seen the object at that partic-
ular angle before. After eating, the rat can quickly dis-
engage its current plan and switch to its next priority. 
All these simultaneous challenges, with all their varied 
complexities, are impractical for a machine, because 
you can’t fi t a computer that size into a vehicle smaller 
than a semi. And yet they are negotiated by a brain 
whose networks of millions of neurons and billions of 
synapses are distributed across many brain areas—
a brain that weighs no more than 2 grams and can 
operate on the power budget of a Christmas-tree bulb.

Why is the rat brain so superior? In a word, archi-
tecture. The brain of an adult rat is composed of 
21 million nerve cells called neurons (the human brain 
has about 100 billion). Neurons talk to each other by 
way of dendrites and axons. You can think of these 
tendrils as the in-boxes (dendrites) and out-boxes 
(axons) of the individual neuron, transmitting electri-
cal impulses from one neuron to another. Most of the 
processing performed in the nervous system  happens 
in the junctions between neurons. Such a junction, 
between one neuron’s dendrite and a neighboring neu-
ron’s axon, is a space called a synapse. 

Computational neuroscience has focused largely 
on building software that can simulate or replicate 
a mammal’s brain in the classic von Neumann com-
puter architecture. This architecture separates the 
place where data is processed from the place where 
it is stored, and it has been the staple of computer 
architectures since the 1960s [see sidebar, “The Great 
Brain Race”]. Researchers fi gured that, given enough 
powerful CPUs, creating programs that emulate the 

“software” of the brain is a logical outcome. 
But that’s a little like saying that given enough 

words, creating a novel is the logical outcome. 
Architecture is key here. To understand why, com-
pare the path of a hypothetical bit of data inside a con-
ventional microprocessor with its path inside a brain.

Recall that on a standard computer, the memory 
and processor are separated by a data channel, or bus, 
between the area where the data’s stored and where it’s 
worked on [see illustration, “Hardware vs. Wetware”]. 
That channel’s fi xed capacity means that only limited 
amounts of data can be “checked out” and worked on 
at any given instant. The processor reserves a small 
number of slots, called registers, for storing data during 
computation. After doing all the necessary computation, 
the processor writes the result back to memory—again, 
using the data bus. Usually, this routine doesn’t pose 
much of a problem: To minimize the amount of traffi  c 
fl owing on the fi xed-capacity bus, most modern proces-

can tease the single signifi cant morsel out of a glutton-
ous banquet of information the way we humans have 
evolved to do over millions of years.

Think about that MoNETA-enabled military scout 
vehicle for a moment. It will be able to go into a mission 
with partially known objectives that change suddenly. 
It will be able to negotiate unfamiliar terrain, recognize 
a pattern that indicates hostile activity, make a new 
plan, and hightail it out of the hostile area. If the road 
is blocked, it will be able to make a spur-of-the-moment 
decision and go off -road to get home. Intuition, pattern 
recognition, improvisation, and the ability to negoti-
ate  ambiguity: All of these things are done really well 
by mammalian brains—and absolutely abysmally by 
today’s microprocessors and software.

Consider Deep Blue, IBM’s 1.4-ton supercomputer, 
which in 1997 faced then world chess champion Garry 
Kasparov. In prior years, Kasparov had defeated the 
computer’s predecessors fi ve times. After a taut series 
comprising one win apiece and three draws, Deep Blue 
fi nally trounced Kasparov in game six. Nevertheless, 
Deep Blue was not intelligent. To beat Kasparov, its 
special-purpose hardware used a brute-force strategy  
of simply calculating the value of 200 million possi-
ble chess moves each second. In the same amount of 
time, Kasparov could plan roughly two chess positions. 

Over the next 10 years, computing capabilities 
skyrocketed: By 2007 the processing power of that 
1.4-ton supercomputer had been contained within 
a Cell microprocessor roughly the size of a thumb-
nail. In the decade between them, transistor counts 
had jumped from 7.5 million on an Intel Pentium II 
to 234 million on the Cell. But that explosion of com-
puting power  did not bring artifi cial intelligence the 
slightest bit closer, as DARPA’s Grand Challenge has 
amply demonstrated. 

DARPA had launched the Grand Challenge 
to create autonomous vehicles that could drive 
themselves without human intervention. AI had 
been credited (again) with a major victory, when 
Stanley, Stanford’s Volkswagen Touareg, drove 
itself 212 kilometers (132 miles) across California’s 
Mojave desert to claim the US $2 million prize. One 
giant leap for AI! 

Not really. The next phase of DARPA’s chal-
lenge upped the ante, demanding AI-controlled cars 
whose intelligence could conquer not just the wide-
open desert but busy city streets. For eight days in 
2007, DARPA set research teams loose on George 
Air Force Base, a desolate speck in Victorville, Calif. 
This time, the cars had to navigate basic traffi  c con-
ditions according to California law, merging, passing, 
parking, negotiating intersections—the stuff most 
American teenagers can do by age 16. 

The results were sobering. Cars tricked out with 
state-of-the-art sensors, positioning systems, and in 
one case, 14 blade servers, were utterly undone by 
obstacles as common as a breadbox-size rock. Within 
a few hours, almost half the teams had been removed 
from the race for such infractions as running amok in 
a parking lot or smashing into each other while try-
ing to share a single lane on a road.

sors augment the registers with a cache memory that provides temporary 
storage very close to the point of computation. If an often-repeated com-
putation demands multiple pieces of data, the processor will keep them 
in that cache, which the computational unit can then access much more 
quickly and more effi  ciently than it can the main memory. 

However, that caching scheme won’t work for the sort of compu-
tational challenges you’d encounter trying to simulate a brain. Even 
 relatively simple brains have tens of millions of neurons connected by 
billions of synapses, so any attempt to simulate such a vast interconnec-
tion would gobble up a cache as big as the computer’s main memory—
which would render the machine immediately useless.

Why? The vast majority of the computing and power budget of 
such a brain-simulating system—computer scientists call it a neuro-
morphic architecture—goes to mimicking the sort of signal pro-
cessing that happens inside the brain’s synapses. Indeed, modeling 
just one individual synapse requires the following to happen in the 
machinery: The synapse’s state—how likely it is to pass on a signal-
like input from a neuron, which is the major factor in how strong 
the association is between any two neurons—is in a location in main 
memory. To change that state, the processor must package an elec-
tronic signal for transfer over the main bus. That signal must travel 
between 2 and 10 centimeters to reach the physical memory and then 
must be unpackaged to actually access the desired memory location.

Now multiply that sequence by up to 8000 synapses—as much as 
a single rat neuron might have. Then multiply that by the number 
of neurons in the brain you’re emulating—billions. Congratulations! 
You’ve just modeled an entire millisecond of brain activity.

A biological brain is able to quickly execute this massive simul-
taneous information orgy —and do it in a small package—because it 
has evolved a number of stupendous shortcuts. Here’s what happens 
in a brain: Neuron 1 spits out an impulse, and the resultant informa-
tion is sent down the axon to the synapse of its target, Neuron 2. The 
synapse of Neuron 2, having stored its own state locally, evaluates 
the importance of the information coming from Neuron 1 by integrat-

BLUE BRAIN: In 2005, Henry 
Markram and his team of neuro‑
scientists and computer scientists 
at the École Polytechnique Fédérale 
de Lausanne, in Switzerland, use an 
IBM supercomputer to simulate one 
square centimeter of cerebral cortex.

C2: In 2009, IBM Almaden, in 
California, builds a cortical 
simulator on Dawn, a Blue Gene/P 
supercomputer at Lawrence Livermore 
National Laboratory. Integrating 
data from the fields of computation, 
communication, and neuroscience, 
the C2 simulator re‑creates 1 billion 
neurons connected by 10 trillion 
individual synapses, or about the 
amount found in a small mammal. 

NEUROGRID: Kwabena Boahen at 
Stanford is developing a silicon chip 
that can be used to simulate the 
dynamics and learning of several 
hundreds of thousands of neurons 
and a few billion synapses. One of 
the goals of this research is 
to build artificial retinas 
to be used as medical 
implants for the blind. 

IFAT 4G: At Johns Hopkins 
University, Ralph Etienne‑
Cummings’s fourth‑generation sys‑
tem, the Integrate and Fire Array 
Transceiver, will consist of over 
60 000 neurons with 120 million 
synaptic connections. An earlier 
version of the chip has been used to 
implement a visual cortex model 
for object recognition. 

BRAINSCALES: In the European 
Union’s neuromorphic chip 
program, called Fast Analog 
Computing with Emergent 
Transient States (FACETS), more 
than 100 computer scientists, 
engineers, and neuroscientists 
worked on a chip that exploits the 
concepts experimentally obser ved 
in biological ner vous systems. 
The non–von Neumann hardware 
included a complex neuron model 
with up to 16 000 synaptic inputs 
per neuron. Star ting in Januar y 
2011, the BrainScaleS project will 

build on the research 
under taken in FACETS.  

The Great Brain Race

the goals of this research is 
to build artificial retinas 
to be used as medical 
implants for the blind. 

build on the research 
under taken in FACETS.  

12.BuildABrain.NA.indd   33 11/18/10   1:50 PM



spectrum.ieee.org34   NA   •   iEEE Spectrum   •   December 2010 spectrum.ieee.org

ing it with its own previous state and the strength of its connection 
to Neuron 1. Then, these two pieces of information—the information 
from Neuron 1 and the state of Neuron 2’s synapse—flow toward the 
body of Neuron 2 over the dendrites. And here is the important part: 
By the time that information reaches the body of Neuron 2, there is 
only a single value—all processing has already taken place during the 
information transfer. There is never any need for the brain to take 
information out of one neuron, spend time processing it, and then 
return it to a different set of neurons. Instead, in the mammalian 
brain, storage and processing happen at the same time and in the 
same place.

That difference is the main reason the human brain can run on 
the same power budget as a 20-watt lightbulb. But reproducing the 
brain’s functionality on even the most advanced supercomputers 
would require a dedicated power plant. To be sure, locality isn’t the 
only difference. The brain has some brilliantly efficient components 
that we just can’t reproduce yet. Most crucially, brains can operate at 
around 100 millivolts. Complementary metal-oxide-semiconductor 
logic circuits, however, require a much higher voltage to function 
properly (close to 1 volt), and the higher operating voltage means that 
more power is expended in transmitting the signal over wires.

Now, replicating the structure we’ve described above is not totally 
impossible with today’s silicon technology. A true artificial intelli-
gence could hypothetically run on conventional hardware, but it 

component, after the resistor, capacitor, and induc-
tor. The concept wasn’t new. In 1971, professor Leon 
Chua of the University of California, Berkeley, rea-
soned that a memristor would behave like a resis-
tor with a conductance that changed as a function 
of its internal state and the voltage applied. In other 
words, because a memristor could remember how 
much current had gone through it, it could work as 
an essentially nonvolatile memory. And sure enough, 
Korean dynamic RAM giant Hynix Semiconductor 
made a splash recently when it chose the device as a 
possible foundation for its next-generation memory. 
But because memristors can remember their past 
state without using any power, their biggest poten-
tial all along has been as a realistic analogue to syn-
apses in brains. 

Here’s why. A memristor is a two-terminal device 
whose resistance changes depending on the amount, 
direction, and duration of voltage that’s applied to it. 
But here’s the really interesting thing about a mem-
ristor: Whatever its past state, or resistance, it freezes 
that state until another voltage is applied to change 
it. Maintaining that state requires no power. That’s 
different from a dynamic RAM cell, which requires 
regular charge to maintain its state. The upshot is 
that thousands of memristors could substitute for 
massive banks of power-hogging memory. Just to 
be clear, the memristor is not magic—its memristive 
state does decay over time. That decay can take hours 
or centuries depending on the material, and stabil-
ity must often be traded for energy requirements—
which is one of the major research reasons memris-
tors aren’t flooding the market yet.

Physically, a memristor is just an oxide junc-
tion between two perpendicular metal wires. The 
generic memristor can be thought of as a nano-
size sandwich—the bread is the intersection of the 
two crossing wires. Between the “bread” slices is 
an oxide; charge-carrying bubbles of oxygen move 
through that oxide and can be pushed up and down 
through the material to determine the state—the last 
resistance—across the memristor. This resistance 
state is what freezes when the power is cut. Recent 
DARPA-sponsored work at HP has yielded more 
complex memristors, so this description is necessar-
ily a bit generic. The important thing to recall is that 
the memristor’s “state” can be considered analogous 
to the state of the synapse that we mentioned earlier: 
The state of the synapse depends how closely any two 
neurons are linked, which is a key part of the mam-
malian ability to learn new information. 

The architecture of the brain-inspired micro-
processor under development at HP Labs can be 
thought of as a kind of memristor-based multicore 
chip [see illustration, “MoNETA: A Mind Made of 
Memristors”]. Nowadays, high-end microproces-
sors all have multiple cores, or processing units. 
But instead of the eight or so cores typical of such a 
microprocessor, the HP hardware will contain hun-
dreds of simple, garden-variety silicon processing 
cores, and each of these will have its own ultradense 
thicket of memristor lattices.

would be fantastically inefficient. Inefficient hard-
ware won’t stop us from running neuromorphic 
algorithms (such as machine vision), but we would 
need an entire massive cluster of high-performance 
graphics processing units (GPUs) to handle the par-
allel computations, which would also come with the 
power requirements of a midwestern college town. 

So how do you build something that has an architec-
ture like the brain’s? Here’s DARPA’s gambit: Change 
your architecture to merge memory and computation. 
The memristor is the best technology out there for the 
task. That’s because the memristor is the first memory 
technology with enough power efficiency and density 
to rival biological computation. With these devices, we 
are confident we can build an AI that can approximate 
the size and power requirements of a mammal’s brain. 

Partly to avoid the folly of trying to coax 
intelligence from fundamentally dumb hardware, 
DARPA launched a program called SyNAPSE 
(Systems of Neuromorphic Adaptive Plastic Scalable 
Electronics) in 2008. The timing was good. That 
year, HP Labs had created a functioning memristor, 
a device hailed as the fourth fundamental electronic 

Hardware vs. Wetware  To understand the difference between the architecture of the brain and a standard 
computer, compare the path of a hypothetical bit of data in a brain with that in a brain simulation.

computer On a computer, the 
memory and processor are physically 
separated—a significant physical 
distance separates the areas where the 
data is stored from the areas where it 
is manipulated. Modeling just a single 
synapse requires the following to happen 
in the machinery: The synapse’s state is in 
a location in main memory. To change that 
state, a signal must originate somewhere 
on the processor, travel to the edge of 
the processor, be packaged for transfer 
over the main bus, travel between 2 and 
10 centimeters to reach the physical 
memory, and then be unpackaged to 
actually access the desired memory 
location. Multiplying that sequence by 
up to 8000 synapses—as many as in a 
single rat neuron—and then again by the 
brain’s billions of neurons yields a single 
millisecond of brain activity.

Brain In the mammalian brain, 
storage and computation happen 
at the same time and in the same 
place. Neuron 1 sends a signal down 
the axon to Neuron 2. The synapse of 
Neuron 2 evaluates the importance 
of the information coming from 
Neuron 1 by contrasting it with its 
own previous state and the strength 
of its connection to Neuron 1. Then, 
these two pieces of information—
the information from Neuron 1 and 
the state of Neuron 2’s synapse—
flow toward the body of Neuron 2 
over the dendrites. By the time that 
information reaches the body of 
Neuron 2, there is only a single value—
all computation has already taken 
place during the information transfer. Neuron 1
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Electrical 
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12.BuildABrain.NA.indd   34 11/18/10   1:50 PM



December 2010   •   IEEE Spectrum   •   NA    35spectrum.ieee.orgspectrum.ieee.org

component, after the resistor, capacitor, and induc-
tor. The concept wasn’t new. In 1971, professor Leon 
Chua of the University of California, Berkeley, rea-
soned that a memristor would behave like a resis-
tor with a conductance that changed as a function 
of its internal state and the voltage applied. In other 
words, because a memristor could remember how 
much current had gone through it, it could work as 
an essentially nonvolatile memory. And sure enough, 
Korean dynamic RAM giant Hynix Semiconductor 
made a splash recently when it chose the device as a 
possible foundation for its next-generation memory. 
But because memristors can remember their past 
state without using any power, their biggest poten-
tial all along has been as a realistic analogue to syn-
apses in brains. 

Here’s why. A memristor is a two-terminal device 
whose resistance changes depending on the amount, 
direction, and duration of voltage that’s applied to it. 
But here’s the really interesting thing about a mem-
ristor: Whatever its past state, or resistance, it freezes 
that state until another voltage is applied to change 
it. Maintaining that state requires no power. That’s 
different from a dynamic RAM cell, which requires 
regular charge to maintain its state. The upshot is 
that thousands of memristors could substitute for 
massive banks of power-hogging memory. Just to 
be clear, the memristor is not magic—its memristive 
state does decay over time. That decay can take hours 
or centuries depending on the material, and stabil-
ity must often be traded for energy requirements—
which is one of the major research reasons memris-
tors aren’t flooding the market yet.

Physically, a memristor is just an oxide junc-
tion between two perpendicular metal wires. The 
generic memristor can be thought of as a nano-
size sandwich—the bread is the intersection of the 
two crossing wires. Between the “bread” slices is 
an oxide; charge-carrying bubbles of oxygen move 
through that oxide and can be pushed up and down 
through the material to determine the state—the last 
resistance—across the memristor. This resistance 
state is what freezes when the power is cut. Recent 
DARPA-sponsored work at HP has yielded more 
complex memristors, so this description is necessar-
ily a bit generic. The important thing to recall is that 
the memristor’s “state” can be considered analogous 
to the state of the synapse that we mentioned earlier: 
The state of the synapse depends how closely any two 
neurons are linked, which is a key part of the mam-
malian ability to learn new information. 

The architecture of the brain-inspired micro-
processor under development at HP Labs can be 
thought of as a kind of memristor-based multicore 
chip [see illustration, “MoNETA: A Mind Made of 
Memristors”]. Nowadays, high-end microproces-
sors all have multiple cores, or processing units. 
But instead of the eight or so cores typical of such a 
microprocessor, the HP hardware will contain hun-
dreds of simple, garden-variety silicon processing 
cores, and each of these will have its own ultradense 
thicket of memristor lattices.

would be fantastically inefficient. Inefficient hard-
ware won’t stop us from running neuromorphic 
algorithms (such as machine vision), but we would 
need an entire massive cluster of high-performance 
graphics processing units (GPUs) to handle the par-
allel computations, which would also come with the 
power requirements of a midwestern college town. 

So how do you build something that has an architec-
ture like the brain’s? Here’s DARPA’s gambit: Change 
your architecture to merge memory and computation. 
The memristor is the best technology out there for the 
task. That’s because the memristor is the first memory 
technology with enough power efficiency and density 
to rival biological computation. With these devices, we 
are confident we can build an AI that can approximate 
the size and power requirements of a mammal’s brain. 

Partly to avoid the folly of trying to coax 
intelligence from fundamentally dumb hardware, 
DARPA launched a program called SyNAPSE 
(Systems of Neuromorphic Adaptive Plastic Scalable 
Electronics) in 2008. The timing was good. That 
year, HP Labs had created a functioning memristor, 
a device hailed as the fourth fundamental electronic 

Each silicon core is directly connected to its own immediately 
accessible megacache made up of millions of memristors, meaning 
that every single core has its own private massive bank of memory. 
Memristors are incredibly tiny, even by the standards of today’s semi-
conductor transistors: HP senior fellow Stan Williams claims that 
with advances in fabrication processes for stacking many crossbars 
on a single chip, within a couple of decades it will be possible to build 
a nonvolatile memristor-based memory with a petabit (a quadrillion 
bits) per square centimeter. 

Though memristors are dense, cheap, and tiny, they also have a 
high failure rate at present, characteristics that bear an intriguing 
resemblance to the brain’s synapses. It means that the architecture 
must by definition tolerate defects in individual circuitry, much the 
way brains gracefully degrade their performance as synapses are lost, 
without sudden system failure. 

Basically, memristors bring data close to computation, the way bio-
logical systems do, and they use very little power to store that informa-
tion, just as the brain does. For a comparable function, the new hardware 
will use two to three orders of magnitude less power than Nvidia’s Fermi-
class GPU. For the first time we will begin to bridge the main divide 
between biological computation and traditional computation. The use 
of the memristor addresses the basic hardware challenges of neuromor-
phic computing: the need to simultaneously move and manipulate data, 
thereby drastically cutting power consumption and space. You might 
think that to achieve processing that’s more like thinking than computa-
tion would require more than just new hardware—it would also require 
new software. You’d be wrong, but in a way that might surprise you. 

Basically, without this paradigm shift in hardware architecture, 
you couldn’t even think about building MoNETA.

To build a brain, you need to throw away the conceit of separate 
hardware and software because the brain doesn’t work that way. 
In the brain it’s all just wetware. If you really wanted to replicate a 
mammalian brain, software and hardware would need to be inex-
tricable. We have no idea how to build such a system at the moment, 
but the memristor has allowed us to take a big step closer by approx-
imating the biological form factor: hardware that can be both small 
and ultralow power.

Where HP is taking care of the hardware component of the neuro-
morphic processor, we are building the software—the brain models 
that will populate the hardware. Our biological algorithms will cre-
ate this entity: MoNETA. Think of MoNETA as the application soft-
ware that does the recognizing, reasoning, and learning. HP chose 
our team at Boston University to build it because of our experience 
at the Center of Excellence for Learning in Education, Science, and 
Technology (CELEST), funded by the National Science Foundation. 
At CELEST, computational modelers, neuroscientists, psycholo-
gists, and engineers collaborate with researchers from Harvard, MIT, 
Brandeis, and BU’s own department of cognitive and neural systems. 
CELEST was established to study basic principles of how the brain 
plans, organizes, communicates, and remembers.

To allow the brain models and the neuromorphic hardware to 
interact, HP built a kind of special-purpose operating system called 
Cog Ex Machina. Cog, built by HP principal investigator Greg Snider, 
lets system designers interact with the underlying hardware to do 
neuromorphic computation. Neuromorphic computation means com-
putation that can be divided up between hardware that processes like 
the body of a neuron and hardware that processes the way dendrites 
and axons do. 

The two kinds of cores deal with processing in fundamentally dif-
ferent ways. A “neuron-type” CPU architecture makes this core flex-
ible, letting it handle any operation you throw at it. In that way, its 

Hardware vs. Wetware  To understand the difference between the architecture of the brain and a standard 
computer, compare the path of a hypothetical bit of data in a brain with that in a brain simulation.
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12.BuildABrain.NA.indd   35 11/18/10   1:50 PM



spectrum.ieee.org36   NA   •   iEEE Spectrum   •   December 2010 spectrum.ieee.org

characteristics resemble those of the neuron. But the 
trade-off is that the core sucks up a lot of power, so like 
neurons, these elements should make up only a small 
percentage of the system. 

A “dendritic” core works more like a GPU, an inexpen-
sive and high-performance microprocessor. Like a den-
drite, a GPU has a rigid architecture that is optimized for 
only a specific kind of computation—in this case, the com-
plicated linear algebra operations that approximate what 
happens inside a dendrite. Because GPUs are optimized 
for parallel computation, we can use them to approximate 
the distributed computation that dendrites carry out. But 
there’s a cost to using these, too: GPU cores perform only 
a limited set of operations. The dendrite cores in the final 
DARPA hardware will be much less flexible than neuron 
cores, but they will store extraordinary amounts of state 
information in their massive memristor-based memory 
banks, and like the tendrils of neurons, they will make 
up the vast bulk of the system’s computational elements. 
Memristors, finally, will act as the synapses that medi-
ate the information transfer between the dendrites and 
axons of different neurons. For a programmer, taking full 
advantage of a machine like this—with its two different 
core types and complicated memory-storage overlay—is 
tremendously challenging, because the problems need to 
be properly partitioned across those two radically differ-
ent types of processors. Thanks to Cog, we computational 
neuroscientists can forget about the hardware and focus 
on developing the soul inside the machine. 

MoNETA will be a general-purpose mammalian-
type intelligence, an artificial, generic creature known 
as an animat. With the DARPA hardware, we think we 
will be able to fit this level of intelligence into a shoebox. 

The key feature distinguishing MoNETA from other 
AIs is that it won’t have to be explicitly programmed. We 
are engineering MoNETA to be as adaptable and effi-
cient as a mammal’s brain. We intend to set it loose on a 
variety of situations, and it will learn dynamically.

Biological intelligence is the result of the coordi-
nated action of many highly interconnected and plastic brain areas. 
Most prior research has focused on modeling those individual parts 
of the brain. The results, while impressive in some cases, have been 
a piecemeal assortment of experiments, theories, and models that 
each nicely describes the architecture and function of a single brain 
area and its contribution to perception, emotion, and action. But if 
you tried to stitch those findings together, you would more likely 
end up with a nonfunctioning Frankenstein’s monster than any-
thing like a mammalian intelligence.

Truly general-purpose intelligence can emerge only when every-
thing happens all at once: In intelligent creatures like our humble 
rat, all perception (including auditory and visual inputs, or the brain 
areas responsible for the generation of fine finger movements), emo-
tion, actions, and reactions combine and interact to guide behavior. 
Perceiving without action, emotion, higher reasoning, and learning 
would not only fail to lead to a general purpose AI, it wouldn’t even 
pass a commonsense Turing test.

Creating this grail-like unified architecture has been precluded by 
several practical limitations. The most important is the lack of a unified 
theory of the brain. But the creation of large centers such as CELEST 
has advanced our understanding of what key aspects of biological intel-
ligence might be applicable to our task of building a general-purpose AI. 

How will we know we’ve succeeded? How will we 
know that all this effort and new hardware and new 
software have yielded what we want—an artificial 
intelligence? We’ll know we have successfully built 
an animat when we are able to motivate MoNETA to 
run, swim, and find food dynamically, without being 
programmed explicitly to do so. 

It should learn throughout its lifetime without 
needing constant reprogramming or needing to be 
told a priori what is good for it, and what is bad. This 
is a true challenge for traditional AI: It is not possi-
ble to preprogram a lifetime of knowledge into a vir-
tual or robotic animat. Such wisdom has to be learned 
from the interaction between a brain—with its large 
(but not infinite) number of synapses that store 
memories—and an environment that is constantly 
changing and dense with information.

The animat will learn about objects in its envi-
ronment, navigate to reach its goals, and avoid 
dangers without the need for us to program spe-
cific objects or behaviors. Such an ability comes 
standard-issue in mammals, because our brains are 

plastic throughout our lives. We learn to recognize 
new people and places, and we acquire new skills 
without being told to do so. MoNETA will need to 
do the same.

We will test our animat in a classic trial called 
the Morris water navigation task. In this experi-
ment, neuroscientists teach a rat to swim through a 
water maze, using visual cues, to a submerged plat-
form that the rat can’t see. That task might seem sim-
ple, but it’s anything but. To get to the platform, the 
rat must use many stupendously sophisticated brain 
areas that synchronize vision, touch, spatial navi-
gation, emotions, intentions, planning, and motor 
commands. Neuroscientists have studied the water 
maze task at great length, so we know a great deal 
about how a rat’s anatomy and physiology react 
to the task. If we can train the animat to negotiate 
this maze, we’ll be confident that we have taken an 
important first step toward simulating a mamma-
lian intelligence. 

 By the middle of next year, our researchers will 
be working with thousands of candidate animats 

Human Cortex
• �About 106 neurons per

square centimeter 

• �About 1010 synapses 
per square centimeter

• �About 2 milliwatts per
square centimeter

• �Total power 
consumption: 20 watts

DARPA SyNAPSE 
Hardware Goals
• �106 “neurons” (neuron 
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MoNETA:  
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Made of 
Memristors
DARPA’s neuromorphic 
chip is still a long way 
from reaching biological 
efficiency. Even with 
optimistic assumptions 
about how much 
information single 
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store, the hardware still 
has one‑hundredth the 
efficiency of biology. 
Still, that’s 2000 times as 
power efficient as today’s 
best supercomputers.
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How will we know we’ve succeeded? How will we 
know that all this effort and new hardware and new 
software have yielded what we want—an artificial 
intelligence? We’ll know we have successfully built 
an animat when we are able to motivate MoNETA to 
run, swim, and find food dynamically, without being 
programmed explicitly to do so. 

It should learn throughout its lifetime without 
needing constant reprogramming or needing to be 
told a priori what is good for it, and what is bad. This 
is a true challenge for traditional AI: It is not possi-
ble to preprogram a lifetime of knowledge into a vir-
tual or robotic animat. Such wisdom has to be learned 
from the interaction between a brain—with its large 
(but not infinite) number of synapses that store 
memories—and an environment that is constantly 
changing and dense with information.

The animat will learn about objects in its envi-
ronment, navigate to reach its goals, and avoid 
dangers without the need for us to program spe-
cific objects or behaviors. Such an ability comes 
standard-issue in mammals, because our brains are 

at once, all with slight variations in their 
brain architectures. Playing intelligent 
designers, we’ll cull the best ones from 
the bunch and keep tweaking them until 
they unquestionably master tasks like 
the water maze and other, progressively 
harder experiments. We’ll watch each of 
these simulated animats interacting with 
its environment and evolving like a natu-
ral organism. We expect to eventually find 
the “cocktail” of brain areas and connec-
tions that achieves autonomous intelligent 
behavior. We will then incorporate those 
elements into a memristor-based neural-
processing chip. Once that chip is manu-
factured, we will build it into robotic plat-
forms that venture into the real world. 
Robot companions for the elderly, robots 
to be sent to Mars to forage autonomously, 
and unmanned aerial vehicles will be just 
the beginning. 

Will these chips “experience” vision 
and emotions by simulating and appropri-
ately connecting the brain areas known to 
be involved in the subjective experience 
associated with them? It’s too soon to say. 
However, our goal is not to replicate subjec-
tive experience—consciousness—in a chip 
but rather to build functional machines 
that can behave intelligently in complex 
environments. In other words, the idea is 
to make machines that behave as if they are 
intelligent, emotionally biased, and moti-
vated, without the constraint that they are 
actually aware of these feelings, thoughts, 
and motivations.

Neuromorphic chips won’t just power 
niche AI applications. The architectural 
lessons we learn here will revolutionize all 

future CPUs. The fact is, conventional computers will just not get sig-
nificantly more powerful unless they move to a more parallel and 
locality-driven architecture. While neuromorphic chips will first sup-
plement today’s CPUs, soon their sheer power will overwhelm that of 
today’s computer architectures.

The semiconductor industry’s relentless push to focus on 
smaller and smaller transistors will soon mean transistors have 
higher failure rates. This year, the state of the art is 22-nanometer 
feature sizes. By 2018, that number will have shrunk to 12 nm, at 
which point atomic processes will interfere with transistor func-
tion; in other words, they will become increasingly unreliable. 
Companies like Intel, Hynix, and of course HP are putting a lot 
of resources into finding ways to rely on these unreliable future 
devices. Neuromorphic computation will allow that to happen on 
both memristors and transistors. 

It won’t be long until all multicore chips integrate a dense, low-
power memory with their CMOS cores. It’s just common sense. 

Our prediction? Neuromorphic chips will eventually come in as 
many flavors as there are brain designs in nature: fruit fly, earthworm, 
rat, and human. All our chips will have brains.� o

plastic throughout our lives. We learn to recognize 
new people and places, and we acquire new skills 
without being told to do so. MoNETA will need to 
do the same.

We will test our animat in a classic trial called 
the Morris water navigation task. In this experi-
ment, neuroscientists teach a rat to swim through a 
water maze, using visual cues, to a submerged plat-
form that the rat can’t see. That task might seem sim-
ple, but it’s anything but. To get to the platform, the 
rat must use many stupendously sophisticated brain 
areas that synchronize vision, touch, spatial navi-
gation, emotions, intentions, planning, and motor 
commands. Neuroscientists have studied the water 
maze task at great length, so we know a great deal 
about how a rat’s anatomy and physiology react 
to the task. If we can train the animat to negotiate 
this maze, we’ll be confident that we have taken an 
important first step toward simulating a mamma-
lian intelligence. 

 By the middle of next year, our researchers will 
be working with thousands of candidate animats tell us what you think at http://spectrum.ieee.org/moneta1210
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