
USENIX Association 	 12th USENIX Conference on File and Storage Technologies  17

Strata: Scalable High-Performance Storage on Virtualized Non-volatile
Memory

Brendan Cully, Jake Wires, Dutch Meyer, Kevin Jamieson, Keir Fraser, Tim Deegan,
Daniel Stodden, Geoffrey Lefebvre, Daniel Ferstay, and Andrew Warfield

Coho Data
{firstname.lastname}@cohodata.com

Abstract
Strata is a commercial storage system designed around
the high performance density of PCIe flash storage. We
observe a parallel between the challenges introduced by
this emerging flash hardware and the problems that were
faced with underutilized server hardware about a decade
ago. Borrowing ideas from hardware virtualization, we
present a novel storage system design that partitions
functionality into an address virtualization layer for high
performance network-attached flash, and a hosted envi-
ronment for implementing scalable protocol implemen-
tations. Our system targets the storage of virtual machine
images for enterprise environments, and we demonstrate
dynamic scale to over a million IO operations per second
using NFSv3 in 13u of rack space, including switching.

1 Introduction

Flash-based storage devices are fast, expensive and de-
manding: a single device is capable of saturating a
10Gb/s network link (even for random IO), consuming
significant CPU resources in the process. That same de-
vice may cost as much as (or more than) the server in
which it is installed1. The cost and performance char-
acteristics of fast, non-volatile media have changed the
calculus of storage system design and present new chal-
lenges for building efficient and high-performance data-
center storage.

This paper describes the architecture of a commercial
flash-based network-attached storage system, built using
commodity hardware. In designing the system around
PCIe flash, we begin with two observations about the ef-
fects of high-performance drives on large-scale storage
systems. First, these devices are fast enough that in most
environments, many concurrent workloads are needed to

1Enterprise-class PCIe flash drives in the 1TB capacity range cur-
rently carry list prices in the range of $3-5K USD. Large-capacity,
high-performance cards are available for list prices of up to $160K.

fully saturate them, and even a small degree of process-
ing overhead will prevent full utilization. Thus, we must
change our approach to the media from aggregation to
virtualization. Second, aggregation is still necessary to
achieve properties such as redundancy and scale. How-
ever, it must avoid the performance bottleneck that would
result from the monolithic controller approach of a tradi-
tional storage array, which is designed around the obso-
lete assumption that media is the slowest component in
the system. Further, to be practical in existing datacenter
environments, we must remain compatible with existing
client-side storage interfaces and support standard enter-
prise features like snapshots and deduplication.

In this paper we explore the implications of these two ob-
servations on the design of a scalable, high-performance
NFSv3 implementation for the storage of virtual machine
images. Our system is based on the building blocks of
PCIe flash in commodity x86 servers connected by 10
gigabit switched Ethernet. We describe two broad tech-
nical contributions that form the basis of our design:

1. A delegated mapping and request dispatch inter-
face from client data to physical resources through
global data address virtualization, which allows
clients to directly address data while still providing
the coordination required for online data movement
(e.g., in response to failures or for load balancing).

2. SDN-assisted storage protocol virtualization that
allows clients to address a single virtual proto-
col gateway (e.g., NFS server) that is transparently
scaled out across multiple real servers. We have
built a scalable NFS server using this technique, but
it applies to other protocols (such as iSCSI, SMB,
and FCoE) as well.

At its core, Strata uses device-level object storage and
dynamic, global address-space virtualization to achieve
a clean and efficient separation between control and data
paths in the storage system. Flash devices are split into

1

18  12th USENIX Conference on File and Storage Technologies 	 USENIX Association

Device Virtualization Layer (§4)

Network Attached Disks (NADs)

Responsibility: Virtualize a PCIe flash device into multiple address

spaces and allow direct client access with controlled sharing.

Protocol Virtualization Layer (§6)

Scalable Protocol Presentation

Responsibility: Allow the transparently scalable implementation of

traditional IP- and Ethernet-based storage protocols.

Scalable NFSv3

Presents a single external NFS IP address, integrates with SDN

switch to transparently scale and manage connections across

controller instances hosted on each microArray.

CLOS (Coho Log-structured Object Store)

Implements a flat object store, virtualizing the PCIe flash

device’s address space and presents an OSD-like interface to

clients.

libDataPath

NFSv3 instance on each microarray links as a dispatch library.

Data path descriptions are read from a cluster-wide registry

and instantiated as dispatch state machines. NFS forwards

requests through these SMs, interacting directly with NADs.

Central services update data paths in the face of failure, etc.

Global Address Space Virtualization Layer (§3,5)

Delegated Data Paths

Responsibility: Compose device level objects into richer storage

primitives. Allow clients to dispatch requests directly to NADs

while preserving centralized control over placement,

reconfiguration, and failure recovery.

Layer name, core abstraction, and responsibility: Implementation in Strata:

Figure 1: Strata network storage architecture.

virtual address spaces using an object storage-style inter-
face, and clients are then allowed to directly communi-
cate with these address spaces in a safe, low-overhead
manner. In order to compose richer storage abstrac-
tions, a global address space virtualization layer allows
clients to aggregate multiple per-device address spaces
with mappings that achieve properties such as striping
and replication. These delegated address space map-
pings are coordinated in a way that preserves direct client
communications with storage devices, while still allow-
ing dynamic and centralized control over data placement,
migration, scale, and failure response.

Serving this storage over traditional protocols like NFS
imposes a second scalability problem: clients of these
protocols typically expect a single server IP address,
which must be dynamically balanced over multiple
servers to avoid being a performance bottleneck. In or-
der to both scale request processing and to take advan-
tage of full switch bandwidth between clients and stor-
age resources, we developed a scalable protocol presen-
tation layer that acts as a client to the lower layers of our
architecture, and that interacts with a software-defined
network switch to scale the implementation of the proto-
col component of a storage controller across arbitrarily
many physical servers. By building protocol gateways
as clients of the address virtualization layer, we preserve
the ability to delegate scale-out access to device storage
without requiring interface changes on the end hosts that
consume the storage.

2 Architecture

The performance characteristics of emerging storage
hardware demand that we completely reconsider storage
architecture in order to build scalable, low-latency shared

persistent memory. The reality of deployed applications
is that interfaces must stay exactly the same in order for
a storage system to have relevance. Strata’s architecture
aims to take a step toward the first of these goals, while
keeping a pragmatic focus on the second.

Figure 1 characterizes the three layers of Strata’s archi-
tecture. The goals and abstractions of each layer of the
system are on the left-hand column, and the concrete em-
bodiment of these goals in our implementation is on the
right. At the base, we make devices accessible over an
object storage interface, which is responsible for virtual-
izing the device’s address space and allowing clients to
interact with individual virtual devices. This approach
reflects our view that system design for these storage de-
vices today is similar to that of CPU virtualization ten
years ago: devices provide greater performance than is
required by most individual workloads and so require a
lightweight interface for controlled sharing in order to
allow multi-tenancy. We implement a per-device object
store that allows a device to be virtualized into an ad-
dress space of 2128 sparse objects, each of which may be
up to 2

64 bytes in size. Our implementation is similar
in intention to the OSD specification, itself motivated by
network attached secure disks [17]. While not broadly
deployed to date, device-level object storage is receiv-
ing renewed attention today through pNFS’s use of OSD
as a backend, the NVMe namespace abstraction, and in
emerging hardware such as Seagate’s Kinetic drives [37].
Our object storage interface as a whole is not a significant
technical contribution, but it does have some notable in-
terface customizations described in Section 4. We refer
to this layer as a Network Attached Disk, or NAD.

The middle layer of our architecture provides a global
address space that supports the efficient composition of

2

USENIX Association 	 12th USENIX Conference on File and Storage Technologies  19

IO processors that translate client requests on a virtual
object into operations on a set of NAD-level physical ob-
jects. We refer to the graph of IO processors for a partic-
ular virtual object as its data path, and we maintain the
description of the data path for every object in a global
virtual address map. Clients use a dispatch library to
instantiate the processing graph described by each data
path and perform direct IO on the physical objects at
the leaves of the graph. The virtual address map is ac-
cessed through a coherence protocol that allows central
services to update the data paths for virtual objects while
they are in active use by clients. More concretely, data
paths allow physical objects to be composed into richer
storage primitives, providing properties such as striping
and replication. The goal of this layer is to strike a bal-
ance between scalability and efficiency: it supports direct
client access to device-level objects, without sacrificing
central management of data placement, failure recovery,
and more advanced storage features such as deduplica-
tion and snapshots.

Finally, the top layer performs protocol virtualization to
allow clients to access storage over standard protocols
(such as NFS) without losing the scalability of direct re-
quests from clients to NADs. The presentation layer is
tightly integrated with a 10Gb software-defined Ethernet
switching fabric, allowing external clients the illusion of
connecting to a single TCP endpoint, while transparently
and dynamically balancing traffic to that single IP ad-
dress across protocol instances on all of the NADs. Each
protocol instance is a thin client of the layer below, which
may communicate with other protocol instances to per-
form any additional synchronization required by the pro-
tocol (e.g., to maintain NFS namespace consistency).

The mapping of these layers onto the hardware that our
system uses is shown in Figure 2. Requests travel from
clients into Strata through an OpenFlow-enabled switch,
which dispatches them according to load to the appropri-
ate protocol handler running on a MicroArray (µArray)
— a small host configured with flash devices and enough
network and CPU to saturate them, containing the soft-
ware stack representing a single NAD. For performance,
each of the layers is implemented as a library, allowing a
single process to handle the flow of requests from client
to media. The NFSv3 implementation acts as a client of
the underlying dispatch layer, which transforms requests
on virtual objects into one or more requests on physical
objects, issued through function calls to local physical
objects and by RPC to remote objects. While the focus
of the rest of this paper is on this concrete implementa-
tion of scale-out NFS, it is worth noting that the design
is intended to allow applications the opportunity to link
directly against the same data path library that the NFS
implementation uses, resulting in a multi-tenant, multi-

VMware

ESX Host

VMware

ESX Host

VMware

ESX Host

Virtual NFS server 10.150.1.1

Protocol Virtualizaiton

(Scalable NFSv3)

Arrows show NFS

connections and

associated requests.

Middle host connection

omited for clarity.

Global Address Space

Virtualization

(libDataDispatch)

Device Virtualization

(CLOS)

microArray

NFS Instance

libDataPath

CLOS

microArray

NFS Instance

libDataPath

CLOS

microArray

NFS Instance

libDataPath

CLOS

10Gb SDN Switch

Figure 2: Hardware view of a Strata deployment

presentation storage system with a minimum of network
and device-level overhead.

2.1 Scope of this Work

There are three aspects of our design that are not consid-
ered in detail within this presentation. First, we only dis-
cuss NFS as a concrete implementation of protocol vir-
tualization. Strata has been designed to host and support
multiple protocols and tenants, but our initial product re-
lease is specifically NFSv3 for VMware clients, so we
focus on this type of deployment in describing the im-
plementation. Second, Strata was initially designed to be
a software layer that is co-located on the same physical
servers that host virtual machines. We have moved to a
separate physical hosting model where we directly build
on dedicated hardware, but there is nothing that prevents
the system from being deployed in a more co-located (or
“converged”) manner. Finally, our full implementation
incorporates a tier of spinning disks on each of the stor-
age nodes to allow cold data to be stored more econom-
ically behind the flash layer. However, in this paper we
configure and describe a single-tier, all-flash system to
simplify the exposition.

In the next sections we discuss three relevant aspects of
Strata—address space virtualization, dynamic reconfig-
uration, and scalable protocol support—in more detail.
We then describe some specifics of how these three com-
ponents interact in our NFSv3 implementation for VM
image storage before providing a performance evaluation
of the system as a whole.

3

20  12th USENIX Conference on File and Storage Technologies 	 USENIX Association

3 Data Paths

Strata provides a common library interface to data that
underlies the higher-level, client-specific protocols de-
scribed in Section 6. This library presents a notion of
virtual objects, which are available cluster-wide and may
comprise multiple physical objects bundled together for
parallel data access, fault tolerance, or other reasons
(e.g., data deduplication). The library provides a su-
perset of the object storage interface provided by the
NADs (Section 4), with additional interfaces to man-
age the placement of objects (and ranges within objects)
across NADs, to maintain data invariants (e.g., replica-
tion levels and consistent updates) when object ranges
are replicated or striped, and to coordinate both concur-
rent access to data and concurrent manipulation of the
virtual address maps describing their layout.

To avoid IO bottlenecks, users of the data path inter-
face (which may be native clients or protocol gateways
such as our NFS server) access data directly. To do so,
they map requests from virtual objects to physical ob-
jects using the virtual address map. This is not simply
a pointer from a virtual object (id, range) pair to a set
of physical object (id, range) pairs. Rather, each vir-
tual range is associated with a particular processor for
that range, along with processor-specific context. Strata
uses a dispatch-oriented programming model in which a
pipeline of operations is performed on requests as they
are passed from an originating client, through a set of
transformations, and eventually to the appropriate stor-
age device(s). Our model borrows ideas from packet pro-
cessing systems such as X-Kernel [19], Scout [25], and
Click [21], but adapts them to a storage context, in which
modules along the pipeline perform translations through
a set of layered address spaces, and may fork and/or col-
lect requests and responses as they are passed.

The dispatch library provides a collection of request pro-
cessors, which can stand alone or be combined with other
processors. Each processor takes a storage request (e.g.,
a read or write request) as input and produces one or
more requests to its children. NADs expose isolated
sparse objects; processors perform translations that allow
multiple objects to be combined for some functional pur-
pose, and present them as a single object, which may in
turn be used by other processors. The idea of request-
based address translation to build storage features has
been used in other systems [24, 35, 36], often as the ba-
sis for volume management; Strata disentangles it from
the underlying storage system and treats it as a first-class
dispatch abstraction.

The composition of dispatch modules bears similarity to
Click [21], but the application in a storage domain car-
ries a number of differences. First, requests are gener-

ally acknowledged at the point that they reach a storage
device, and so as a result they differ from packet for-
warding logic in that they travel both down and then
back up through a dispatch stack; processors contain
logic to handle both requests and responses. Second,
it is common for requests to be split or merged as they
traverse a processor — for example, a replication pro-
cessor may duplicate a request and issue it to multiple
nodes, and then collect all responses before passing a
single response back up to its parent. Finally, while pro-
cessors describe fast, library-based request dispatching
logic, they typically depend on additional facilities from
the system. Strata allows processor implementations ac-
cess to APIs for shared, cluster-wide state which may
be used on a control path to, for instance, store replica
configuration. It additionally provides facilities for back-
ground functionality such as NAD failure detection and
response. The intention of the processor organization is
to allow dispatch decisions to be pushed out to client im-
plementations and be made with minimal performance
impact, while still benefiting from common system-wide
infrastructure for maintaining the system and responding
to failures. The responsibilities of the dispatch library are
described in more detail in the following subsections.

3.1 The Virtual Address Map

/objects/112:
type=regular dispatch={object=111

type=dispatch}

/objects/111:
type=dispatch
stripe={stripecount=8 chunksize=524288

0={object=103 type=dispatch}
1={object=104 type=dispatch}}

/objects/103:
type=dispatch
rpl={policy=mirror storecount=2

{storeid=a98f2... state=in-sync}
{storeid=fc89f... state=in-sync}}

Figure 3: Virtual object to physical object range mapping

Figure 3 shows the relevant information stored in the vir-
tual address map for a typical object. Each object has
an identifier, a type, some type-specific context, and may
contain other metadata such as cached size or modifica-
tion time information (which is not canonical, for reasons
discussed below).

The entry point into the virtual address map is a regular
object. This contains no location information on its own,
but delegates to a top-level dispatch object. In Figure 3,
object 112 is a regular object that delegates to a dispatch
processor whose context is identified by object 111 (the
IDs are in reverse order here because the dispatch graph

4

USENIX Association 	 12th USENIX Conference on File and Storage Technologies  21

is created from the bottom up, but traversed from the top
down). Thus when a client opens file 112, it instantiates
a dispatcher using the data in object 111 as context. This
context informs the dispatcher that it will be delegating
IO through a striped processor, using 2 stripes for the ob-
ject and a stripe width of 512K. The dispatcher in turn in-
stantiates 8 processors (one for each stripe), each config-
ured with the information stored in the object associated
with each stripe (e.g., stripe 0 uses object 103). Finally,
when the stripe dispatcher performs IO on stripe 0, it will
use the context in the object descriptor for object 103 to
instantiate a replicated processor, which mirrors writes
to the NADs listed in its replica set, and issues reads to
the nearest in sync replica (where distance is currently
simply local or remote).

In addition to the striping and mirroring processors de-
scribed here, the map can support other more advanced
processors, such as erasure coding, or byte-range map-
pings to arbitrary objects (which supports among other
things data deduplication).

3.2 Dispatch

IO requests are handled by a chain of dispatchers, each
of which has some common functionality. Dispatchers
may have to fragment requests into pieces if they span
the ranges covered by different subprocessors, or clone
requests into multiple subrequests (e.g., for replication),
and they must collect the results of subrequests and deal
with partial failures.

The replication and striping modules included in the
standard library are representative of the ways processors
transform requests as they traverse a dispatch stack. The
replication processor allows a request to be split and is-
sued concurrently to a set of replica objects. The request
address remains unchanged within each object, and re-
sponses are not returned until all replicas have acknowl-
edged a request as complete. The processor prioritizes
reading from local replicas, but forwards requests to re-
mote replicas in the event of a failure (either an error
response or a timeout). It imposes a global ordering on
write requests and streams them to all replicas in parallel.
It also periodically commits a light-weight checkpoint to
each replica’s log to maintain a persistent record of syn-
chronization points; these checkpoints are used for crash
recovery (Section 5.1.3).

The striping processor distributes data across a collection
of sparse objects. It is parameterized to take a stripe size
(in bytes) and a list of objects to act as the ordered stripe
set. In the event that a request crosses a stripe boundary,
the processor splits that request into a set of per-stripe re-
quests and issues those asynchronously, collecting the re-
sponses before returning. Static, address-based striping

is a relatively simple load balancing and data distribu-
tion mechanism as compared to placement schemes such
as consistent hashing [20]. Our experience has been that
the approach is effective, because data placement tends
to be reasonably uniform within an object address space,
and because using a reasonably large stripe size (we de-
fault to 512KB) preserves locality well enough to keep
request fragmentation overhead low in normal operation.

3.3 Coherence

Strata clients also participate in a simple coordination
protocol in order to allow the virtual address map for a
virtual object to be updated even while that object is in
use. Online reconfiguration provides a means for recov-
ering from failures, responding to capacity changes, and
even moving objects in response to observed or predicted
load (on a device basis — this is distinct from client load
balancing, which we also support through a switch-based
protocol described in Section 6.2).

The virtual address maps are stored in a distributed,
synchronized configuration database implemented over
Apache Zookeeper, which is also available for any low-
bandwidth synchronization required by services else-
where in the software stack. The coherence protocol is
built on top of the configuration database. It is currently
optimized for a single writer per object, and works as fol-
lows: when a client wishes to write to a virtual object, it
first claims a lock for it in the configuration database. If
the object is already locked, the client requests that the
holder release it so that the client can claim it. If the
holder does not voluntarily release it within a reasonable
time, the holder is considered unresponsive and fenced
from the system using the mechanism described in Sec-
tion 6.2. This is enough to allow movement of objects,
by first creating new, out of sync physical objects at the
desired location, then requesting a release of the object’s
lock holder if there is one. The user of the object will
reacquire the lock on the next write, and in the process
discover the new out of sync replica and initiate resyn-
chronization. When the new replica is in sync, the same
process may be repeated to delete replicas that are at un-
desirable locations.

4 Network Attached Disks

The unit of storage in Strata is a Network Attached Disk
(NAD), consisting of a balanced combination of CPU,
network and storage components. In our current hard-
ware, each NAD has two 10 gigabit Ethernet ports, two
PCIe flash cards capable of 10 gigabits of throughput
each, and a pair of Xeon processors that can keep up
with request load and host additional services alongside
the data path. Each NAD provides two distinct services.

5

22  12th USENIX Conference on File and Storage Technologies 	 USENIX Association

First, it efficiently multiplexes the raw storage hardware
across multiple concurrent users, using an object stor-
age protocol. Second, it hosts applications that provide
higher level services over the cluster. Object rebalanc-
ing (Section 5.2.1) and the NFS protocol interface (Sec-
tion 6.1) are examples of these services.

At the device level, we multiplex the underlying storage
into objects, named by 128-bit identifiers and consisting
of sparse 2

64 byte data address spaces. These address
spaces are currently backed by a garbage-collected log-
structured object store, but the implementation of the ob-
ject store is opaque to the layers above and could be re-
placed if newer storage technologies made different ac-
cess patterns more efficient. We also provide increased
capacity by allowing each object to flush low priority or
infrequently used data to disk, but this is again hidden
behind the object interface. The details of disk tiering,
garbage collection, and the layout of the file system are
beyond the scope of this paper.

The physical object interface is for the most part a tradi-
tional object-based storage device [37, 38] with a CRUD
interface for sparse objects, as well as a few extensions
to assist with our clustering protocol (Section 5.1.2). It
is significantly simpler than existing block device inter-
faces, such as the SCSI command set, but is also intended
to be more direct and general purpose than even narrower
interfaces such as those of a key-value store. Providing
a low-level hardware abstraction layer allows the imple-
mentation to be customized to accommodate best prac-
tices of individual flash implementations, and also al-
lows more dramatic design changes at the media inter-
face level as new technologies become available.

4.1 Network Integration

As with any distributed system, we must deal with mis-
behaving nodes. We address this problem by tightly cou-
pling with managed Ethernet switches, which we discuss
at more length in Section 6.2. This approach borrows
ideas from systems such as Sane [8] and Ethane [7],
in which a managed network is used to enforce isola-
tion between independent endpoints. The system inte-
grates with both OpenFlow-based switches and software
switching at the VMM to ensure that Strata objects are
only addressable by their authorized clients.

Our initial implementation used Ethernet VLANs, be-
cause this form of hardware-supported isolation is in
common use in enterprise environments. In the current
implementation, we have moved to OpenFlow, which
provides a more flexible tunneling abstraction for traffic
isolation.

We also expose an isolated private virtual network for

out-of-band control and management operations internal
to the cluster. This allows NADs themselves to access
remote objects for peer-wise resynchronization and reor-
ganization under the control of a cluster monitor.

5 Online Reconfiguration

There are two broad categories of events to which Strata
must respond in order to maintain its performance and
reliability properties. The first category includes faults
that occur directly on the data path. The dispatch library
recovers from such faults immediately and automatically
by reconfiguring the affected virtual objects on behalf of
the client. The second category includes events such as
device failures and load imbalance. These are handled by
a dedicated cluster monitor which performs large-scale
reconfiguration tasks to maintain the health of the system
as a whole. In all cases, reconfiguration is performed
online and has minimal impact on client availability.

5.1 Object Reconfiguration

A number of error recovery mechanisms are built directly
into the dispatch library. These mechanisms allow clients
to quickly recover from failures by reconfiguring individ-
ual virtual objects on the data path.

5.1.1 IO Errors

The replication IO processor responds to read errors in
the obvious way: by immediately resubmitting failed re-
quests to different replicas. In addition, clients maintain
per-device error counts; if the aggregated error count for
a device exceeds a configurable threshold, a background
task takes the device offline and coordinates a system-
wide reconfiguration (Section 5.2.2).

IO processors respond to write errors by synchronously
reconfiguring virtual objects at the time of the failure.
This involves three steps. First, the affected replica is
marked out of sync in the configuration database. This
serves as a global, persistent indication that the replica
may not be used to serve reads because it contains poten-
tially stale data. Second, a best-effort attempt is made to
inform the NAD of the error so that it can initiate a back-
ground task to resynchronize the affected replica. This
allows the system to recover from transient failures al-
most immediately. Finally, the IO processor allocates a
special patch object on a separate device and adds this to
the replica set. Once a replica has been marked out of
sync, no further writes are issued to it until it has been
resynchronized; patches prevent device failures from im-
peding progress by providing a temporary buffer to ab-
sorb writes under these degraded conditions. With the
patch object allocated, the IO processor can continue to

6

USENIX Association 	 12th USENIX Conference on File and Storage Technologies  23

meet the replication requirements for new writes while
out of sync replicas are repaired in the background. A
replica set remains available as long as an in sync replica
or an out of sync replica and all of its patches are avail-
able.

5.1.2 Resynchronization

In addition to providing clients direct access to devices
via virtual address maps, Strata provides a number of
background services to maintain the health of individ-
ual virtual objects and the system as a whole. The most
fundamental of these is the resync service, which pro-
vides a background task that can resynchronize objects
replicated across multiple devices.

Resync is built on top of a special NAD resync API
that exposes the underlying log structure of the object
stores. NADs maintain a Log Serial Number (LSN) with
every physical object in their stores; when a record is
appended to an object’s log, its LSN is monotonically in-
cremented. The IO processor uses these LSNs to impose
a global ordering on the changes made to physical ob-
jects that are replicated across stores and to verify that
all replicas have received all updates.

If a write failure causes a replica to go out of sync,
the client can request the system to resynchronize the
replica. It does this by invoking the resync RPC on
the NAD which hosts the out of sync replica. The server
then starts a background task which streams the miss-
ing log records from an in sync replica and applies them
to the local out of sync copy, using the LSN to identify
which records the local copy is missing.

During resync, the background task has exclusive write
access to the out of sync replica because all clients have
been reconfigured to use patches. Thus the resync task
can chase the tail of the in sync object’s log while clients
continue to write. When the bulk of the data has been
copied, the resync task enters a final stop-and-copy phase
in which it acquires exclusive write access to all repli-
cas in the replica set, finalizes the resync, applies any
client writes received in the interim, marks the replica as
in sync in the configuration database, and removes the
patch.

It is important to ensure that resync makes timely
progress to limit vulnerability to data loss. Very heavy
client write loads may interfere with resync tasks and, in
the worst case, result in unbounded transfer times. For
this reason, when an object is under resync, client writes
are throttled and resync requests are prioritized.

5.1.3 Crash Recovery

Special care must be taken in the event of an unclean
shutdown. On a clean shutdown, all objects are released
by removing their locks from the configuration database.
Crashes are detected when replica sets are discovered
with stale locks (i.e., locks identifying unresponsive IO
processors). When this happens, it is not safe to assume
that replicas marked in sync in the configuration database
are truly in sync, because a crash might have occured
midway through a the configuration database update; in-
stead, all the replicas in the set must be queried directly
to determine their states.

In the common case, the IO processor retrieves the LSN
for every replica in the set and determines which replicas,
if any, are out of sync. If all replicas have the same LSN,
then no resynchronization is required. If different LSNs
are discovered, then the replica with the highest LSN is
designated as the authoritative copy, and all other repli-
cas are marked out of sync and resync tasks are initiated.

If a replica cannot be queried during the recovery pro-
cedure, it is marked as diverged in the configuration
database and the replica with the highest LSN from the
remaining available replicas is chosen as the authorita-
tive copy. In this case, writes may have been committed
to the diverged replica that were not committed to any
others. If the diverged replica becomes available again
some time in the future, these extra writes must be dis-
carded. This is achieved by rolling the replica back to its
last checkpoint and starting a resync from that point in its
log. Consistency in the face of such rollbacks is guaran-
teed by ensuring that objects are successfully marked out
of sync in the configuration database before writes are
acknowledged to clients. Thus write failures are guar-
anteed to either mark replicas out of sync in the config-
uration database (and create corresponding patches) or
propagate back to the client.

5.2 System Reconfiguration

Strata also provides a highly-available monitoring ser-
vice that watches over the health of the system and co-
ordinates system-wide recovery procedures as necessary.
Monitors collect information from clients, SMART di-
agnostic tools, and NAD RPCs to gauge the status of the
system. Monitors build on the per-object reconfigura-
tion mechanisms described above to respond to events
that individual clients don’t address, such as load imbal-
ance across the system, stores nearing capacity, and de-
vice failures.

7

24  12th USENIX Conference on File and Storage Technologies 	 USENIX Association

5.2.1 Rebalance

Strata provides a rebalance facility which is capable of
performing system-wide reconfiguration to repair broken
replicas, prevent NADs from filling to capacity, and im-
prove load distribution across NADs. This facility is in
turn used to recover from device failures and expand onto
new hardware.

Rebalance proceeds in two stages. In the first stage, the
monitor retrieves the current system configuration, in-
cluding the status of all NADs and virtual address map of
every virtual object. It then constructs a new layout for
the replicas according to a customizable placement pol-
icy. This process is scriptable and can be easily tailored
to suit specific performance and durability requirements
for individual deployments (see Section 7.3 for some
analysis of the effects of different placement policies).
The default policy uses a greedy algorithm that consid-
ers a number of criteria designed to ensure that replicated
physical objects do not share fault domains, capacity im-
balances are avoided as much as possible, and migration
overheads are kept reasonably low. The new layout is
formulated as a rebalance plan describing what changes
need to be applied to individual replica sets to achieve
the desired configuration.

In the second stage, the monitor coordinates the execu-
tion of the rebalance plan by initiating resync tasks on
individual NADs to effect the necessary data migration.
When replicas need to be moved, the migration is per-
formed in three steps:

1. A new replica is added to the destination NAD

2. A resync task is performed to transfer the data

3. The old replica is removed from the source NAD

This requires two reconfiguration events for the replica
set, the first to extend it to include the new replica, and
the second to prune the original after the resync has com-
pleted. The monitor coordinates this procedure across all
NADs and clients for all modified virtual objects.

5.2.2 Device Failure

Strata determines that a NAD has failed either when it
receives a hardware failure notification from a respon-
sive NAD (such as a failed flash device or excessive error
count) or when it observes that a NAD has stopped re-
sponding to requests for more than a configurable time-
out. In either case, the monitor responds by taking the
NAD offline and initiating a system-wide reconfiguration
to repair redundancy.

The first thing the monitor does when taking a NAD of-
fline is to disconnect it from the data path VLAN. This is

a strong benefit of integrating directly against an Ether-
net switch in our environment: prior to taking corrective
action, the NAD is synchronously disconnected from the
network for all request traffic, avoiding the distributed
systems complexities that stem from things such as over-
loaded components appearing to fail and then returning
long after a timeout in an inconsistent state. Rather than
attempting to use completely end-host mechanisms such
as watchdogs to trigger reboots, or agreement protocols
to inform all clients of a NAD’s failure, Strata disables
the VLAN and requires that the failed NAD reconnect on
the (separate) control VLAN in the event that it returns
to life in the future.

From this point, the recovery logic is straight for-
ward. The NAD is marked as failed in the configura-
tion database and a rebalance job is initiated to repair
any replica sets containing replicas on the failed NAD.

5.2.3 Elastic Scale Out

Strata responds to the introduction of new hardware
much in the same way that it responds to failures. When
the monitor observes that new hardware has been in-
stalled, it uses the rebalance facility to generate a layout
that incorporates the new devices. Because replication is
generally configured underneath striping, we can migrate
virtual objects at the granularity of individual stripes, al-
lowing a single striped file to exploit the aggregated per-
formance of many devices. Objects, whether whole files
or individual stripes, can be moved to another NAD even
while the file is online, using the existing resync mech-
anism. New NADs are populated in a controlled man-
ner to limit the impact of background IO on active client
workloads.

6 Storage Protocols

Strata supports legacy protocols by providing an execu-
tion runtime for hosting protocol servers. Protocols are
built as thin presentation layers on top of the dispatch
interfaces; multiple protocol instances can operate side
by side. Implementations can also leverage SDN-based
protocol scaling to transparently spread multiple clients
across the distributed runtime environment.

6.1 Scalable NFS

Strata is designed so that application developers can fo-
cus primarily on implementing protocol specifications
without worrying much about how to organize data on
disk. We expect that many storage protocols can be im-
plemented as thin wrappers around the provided dispatch
library. Our NFS implementation, for example, maps
very cleanly onto the high-level dispatch APIs, providing

8

USENIX Association 	 12th USENIX Conference on File and Storage Technologies  25

only protocol-specific extensions like RPC marshalling
and NFS-style access control. It takes advantage of the
configuration database to store mappings between the
NFS namespace and the backend objects, and it relies
exclusively on the striping and replication processors to
implement the data path. Moreover, Strata allows NFS
servers to be instantiated across multiple backend nodes,
automatically distributing the additional processing over-
head across backend compute resources.

6.2 SDN Protocol Scaling

Scaling legacy storage protocols can be challenging, es-
pecially when the protocols were not originally designed
for a distributed back end. Protocol scalability limita-
tions may not pose significant problems for traditional
arrays, which already sit behind relatively narrow net-
work interfaces, but they can become a performance bot-
tleneck in Strata’s distributed architecture.

A core property that limits scale of access bandwidth of
conventional IP storage protocols is the presentation of
storage servers behind a single IP address. Fortunately,
emerging “software defined” network (SDN) switches
provide interfaces that allow applications to take more
precise control over packet forwarding through Ethernet
switches than has traditionally been possible.

Using the OpenFlow protocol, a software controller is
able to interact with the switch by pushing flow-specific
rules onto the switch’s forwarding path. OpenFlow rules
are effectively wild-carded packet filters and associated
actions that tell a switch what to do when a matching
packet is identified. SDN switches (our implementation
currently uses an Arista Networks 7050T-52) interpret
these flow rules and push them down onto the switch’s
TCAM or L2/L3 forwarding tables.

By manipulating traffic through the switch at the gran-
ularity of individual flows, Strata protocol implementa-
tions are able to present a single logical IP address to
multiple clients. Rules are installed on the switch to trig-
ger a fault event whenever a new NFS session is opened,
and the resulting exception path determines which pro-
tocol instance to forward that session to initially. A ser-
vice monitors network activity and migrates client con-
nections as necessary to maintain an even workload dis-
tribution.

The protocol scaling API wraps and extends the conven-
tional socket API, allowing a protocol implementation
to bind to and listen on a shared IP address across all
of its instances. The client load balancer then monitors
the traffic demands across all of these connections and
initiates flow migration in response to overload on any
individual physical connection.

In its simplest form, client migration is handled entirely
at the transport layer. When the protocol load balancer
observes that a specific NAD is overloaded, it updates
the routing tables to redirect the busiest client workload
to a different NAD. Once the client’s traffic is diverted, it
receives a TCP RST from the new NAD and establishes
a new connection, thereby transparently migrating traffic
to the new NAD.

Strata also provides hooks for situations where appli-
cation layer coordination is required to make migra-
tion safe. For example, our NFS implementation reg-
isters a pre-migration routine with the load balancer,
which allows the source NFS server to flush any pending,
non-idempotent requests (such as create or remove)
before the connection is redirected to the destination
server.

7 Evaluation

In this section we evaluate our system both in terms of
effective use of flash resources, and as a scalable, reli-
able provider of storage for NFS clients. First, we estab-
lish baseline performance over a traditional NFS server
on the same hardware. Then we evaluate how perfor-
mance scales as nodes are added and removed from the
system, using VM-based workloads over the legacy NFS
interface, which is oblivious to cluster changes. In addi-
tion, we compare the effects of load balancing and object
placement policy on performance. We then test reliabil-
ity in the face of node failure, which is a crucial feature of
any distributed storage system. We also examine the rela-
tion between CPU power and performance in our system
as a demonstration of the need to balance node power
between flash, network and CPU.

7.1 Test environment

Evaluation was performed on a cluster of the maximum
size allowed by our 48-port switch: 12 NADs, each of
which has two 10 gigabit Ethernet ports, two 800 GB In-
tel 910 PCIe flash cards, 6 3 TB SATA drives, 64 GB of
RAM, and 2 Xen E5-2620 processors at 2 GHz with 6
cores/12 threads each, and 12 clients, in the form of Dell
PowerEdge R420 servers running ESXi 5.0, with two 10
gigabit ports each, 64 GB of RAM, and 2 Xeon E5-2470
processors at 2.3 GHz with 8 cores/16 threads each. We
configured the deployment to maintain two replicas of
every stored object, without striping (since it unneces-
sarily complicates placement comparisons and has little
benefit for symmetric workloads). Garbage collection is
active, and the deployment is in its standard configura-
tion with a disk tier enabled, but the workloads have been
configured to fit entirely within flash, as the effects of

9

26  12th USENIX Conference on File and Storage Technologies 	 USENIX Association

Server Read IOPS Write IOPS
Strata 40287 9960
KNFS 23377 5796

Table 1: Random IO performance on Strata versus
KNFS.

cache misses to magnetic media are not relevant to this
paper.

7.2 Baseline performance

To provide some performance context for our architec-
ture versus a typical NFS implementation, we compare
two minimal deployments of NFS over flash. We set
Strata to serve a single flash card, with no replication
or striping, and mounted it loopback. We ran a fio [34]
workload with a 4K IO size 80/20 read-write mix at a
queue depth of 128 against a fully allocated file. We then
formatted the flash card with ext4, exported it with the
linux kernel NFS server, and ran the same test. The re-
sults are in Table 1. As the table shows, we offer good
NFS performance at the level of individual devices. In
the following section we proceed to evaluate scalability.

Seconds
0 420 840 1260 1680 2100 2520 2940 3360 3780 4200 4620 5040 5460 5880 6300 6720 7140

IO
PS

 0

100000

200000

300000

400000

500000

600000

700000

800000

900000

1000000

1100000

Figure 4: IOPS over time, read-only workload.

7.3 Scalability

In this section we evaluate how well performance scales
as we add NADs to the cluster. We begin each test by de-
ploying 96 VMs (8 per client) into a cluster of 2 NADs.
We choose this number of VMs because ESXi limits the
queue depth for a VM to 32 outstanding requests, but we
do not see maximum performance until a queue depth of
128 per flash card. The VMs are each configured to run
the same fio workload for a given test. In Figure 4, fio
generates 4K random reads to focus on IOPS scalabil-
ity. In Figure 5, fio generates an 80/20 mix of reads and
writes at 128K block size in a Pareto distribution such

that 80% of requests go to 20% of the data. This is meant
to be more representative of real VM workloads, but with
enough offered load to completely saturate the cluster.

Seconds
0 360 720 1080 1440 1800 2160 2520 2880 3240 3600 3960 4320 4680 5040 5400 5760 6120 6480 6840

IO
PS

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

Figure 5: IOPS over time, 80/20 R/W workload.

As the tests run, we periodically add NADs, two at a
time, up to a maximum of twelve2. When each pair of
NADs comes online, a rebalancing process automatically
begins to move data across the cluster so that the amount
of data on each NAD is balanced. When it completes,
we run in a steady state for two minutes and then add
the next pair. In both figures, the periods where rebal-
ancing is in progress are reflected by a temporary drop
in performance (as the rebalance process competes with
client workloads for resources), followed by a rapid in-
crease in overall performance when the new nodes are
marked available, triggering the switch to load-balance
clients to them. A cluster of 12 NADs achieves over
1 million IOPS in the IOPS test, and 10 NADs achieve
70,000 IOPS (representing more than 9 gigabytes/second
of throughput) in the 80/20 test.

We also test the effect of placement and load balancing
on overall performance. If the location of a workload
source is unpredictable (as in a VM data center with vir-
tual machine migration enabled), we need to be able to
migrate clients quickly in response to load. However,
if the configuration is more static or can be predicted
in advance, we may benefit from attempting to place
clients and data together to reduce the network over-
head incurred by remote IO requests. As discussed in
Section 5.2.1, the load-balancing and data migration fea-
tures of Strata make both approaches possible. Figure 4
is the result of an aggressive local placement policy, in
which data is placed on the same NAD as its clients, and
both are moved as the number of devices changes. This
achieves the best possible performance at the cost of con-
siderable data movement. In contrast, Figure 6 shows the

2ten for the read/write test due to an unfortunate test harness prob-
lem

10

USENIX Association 	 12th USENIX Conference on File and Storage Technologies  27

Seconds
0 420 840 1260 1680 2100 2520 2940 3360 3780 4200 4620 5040 5460 5880 6300 6720 7140 7560

IO
PS

 0

100000

200000

300000

400000

Figure 6: IOPS over time, read-only workload with ran-
dom placement

performance of an otherwise identical test configuration
when data is placed randomly (while still satisfying fault
tolerance and even distribution constraints), rather than
being moved according to client requests. The pareto
workload (Figure 5) is also configured with the default
random placement policy, which is the main reason that
it does not scale linearly: as the number of nodes in-
creases, so does the probability that a request will need
to be forwarded to a remote NAD.

7.4 Node Failure

As a counterpoint to the scalability tests run in the pre-
vious section, we also tested the behaviour of the cluster
when a node is lost. We configured a 10 NAD cluster
with 10 clients hosting 4 VMs each, running the 80/20
Pareto workload described earlier. Figure 7 shows the
behaviour of the system during this experiment. After
the VMs had been running for a short time, we powered
off one of the NADs by IPMI, waited 60 seconds, then
powered it back on. During the node outage, the system
continued to run uninterrupted but with lower through-
put. When the node came back up, it spent some time
resynchronizing its objects to restore full replication to
the system, and then rejoined the cluster. The client load
balancer shifted clients onto it and throughput was re-
stored (within the variance resulting from the client load
balancer’s placement decisions).

7.5 Protocol overhead

The benchmarks up to this point have all been run in-
side VMs whose storage is provided by a virtual disk
that Strata exports by NFS to ESXi. This configuration
requires no changes on the part of the clients to scale
across a cluster, but does impose overheads. To quan-
tify these overheads we wrote a custom fio engine that

Seconds
0 60 120 180 240 300 360 420

G
B/

s

0

1

2

3

4

5

6

7

8

9

10

11

12

Figure 7: Aggregate bandwidth for 80/20 clients during
failover and recovery

CPU IOPS Freq (Cores) Price
E5-2620 127K 2 GHz (6) $406
E5-2640 153K (+20%) 2.5 GHz (6) $885
E5-2650v2 188K (+48%) 2.6 GHz (8) $1166
E5-2660v2 183K (+44%) 2.2 GHz (10) $1389

Table 2: Achieved IOPS on an 80/20 random 4K work-
load across 2 MicroArrays

is capable of performing IO directly against our native
dispatch interface (that is, the API by which our NFS
protocol gateway interacts with the NADs). We then
compared the performance of a single VM running a ran-
dom 4k read fio workload (for maximum possible IOPS)
against a VMDK exported by NFS to the same workload
run against our native dispatch engine. In this experi-
ment, the VMDK-based experiment produced an average
of 50240 IOPS, whereas direct access achieved 54060
IOPS, for an improvement of roughly 8%.

7.6 Effect of CPU on Performance

A workload running at full throttle with small requests
completely saturates the CPU. This remains true de-
spite significant development effort in performance de-
bugging, and a great many improvements to minimize
data movement and contention. In this section we re-
port the performance improvements resulting from faster
CPUs. These results are from random 4K NFS requests
in an 80/20 readwrite mix at 128 queue depth over four
10Gb links to a cluster of two NADs, each equipped with
2 physical CPUs.

Table 2 shows the results of these tests. In short, it is
possible to “buy” additional storage performance under
full load by upgrading the CPUs into a more “balanced”
configuration. The wins are significant and carry a non-
trivial increase in the system cost. As a result of this

11

28  12th USENIX Conference on File and Storage Technologies 	 USENIX Association

experimentation, we elected to use a higher performance
CPU in the shipping version of the product.

8 Related Work

Strata applies principles from prior work in server virtu-
alization, both in the form of hypervisor [5, 32] and lib-
OS [14] architectures, to solve the problem of sharing
and scaling access to fast non-volatile memories among
a heterogeneous set of clients. Our contributions build
upon the efforts of existing research in several areas.

Recently, researchers have begin to investigate a broad
range of system performance problems posed by stor-
age class memory in single servers [3], including current
PCIe flash devices [30], next generation PCM [1], and
byte addressability [13]. Moneta [9] proposed solutions
to an extensive set of performance bottlenecks over the
PCIe bus interface to storage, and others have investi-
gated improving the performance of storage class mem-
ory through polling [33], and avoiding system call over-
heads altogether [10]. We draw from this body of work
to optimize the performance of our dispatch library, and
use this baseline to deliver a high performance scale-out
network storage service. In many cases, we would ben-
efit further from these efforts—for example, our imple-
mentation could be optimized to offload per-object ac-
cess control checks, as in Moneta-D [10]. There is also a
body of work on efficiently using flash as a caching layer
for slower, cheaper storage in the context of large file
hosting. For example, S-CAVE [23] optimizes cache uti-
lization on flash for multiple virtual machines on a single
VMware host by running as a hypervisor module. This
work is largely complementary to ours; we support us-
ing flash as a caching layer and would benefit from more
effective cache management strategies.

Prior research into scale-out storage systems, such as
FAWN [2], and Corfu [4] has considered the impact of
a range of NV memory devices on cluster storage per-
formance. However, to date these systems have been de-
signed towards lightweight processors paired with sim-
ple flash devices. It is not clear that this balance is
the correct one, as evidenced by the tendency to eval-
uate these same designs on significantly more powerful
hardware platforms than they are intended to operate [4].
Strata is explicitly designed for dense virtualized server
clusters backed by performance-dense PCIe-based non-
volatile memory. In addition, like older commodity disk-
oriented systems including Petal [22, 29] and FAB [28],
prior storage systems have tended to focus on building
aggregation features at the lowest level of their designs,
and then adding a single presentation layer on top. Strata
in contrasts isolates shares each powerful PCIe-based
storage class memory as its underlying primitive. This

has allowed us to present a scalable runtime environment
in which multiple protocols can coexist as peers with-
out sacrificing the raw performance that today’s high per-
formance memory can provide. Many scale-out storage
systems, including NV-Heaps [12], Ceph/RADOS [31],
and even PNFS [18] are unable to support the legacy for-
mats in enterprise environments. Our agnosticism to any
particular protocol is similar to approach used by Ursa
Minor [16], which also boasted a versatile client library
protocol to share access to a cluster of magnetic disks.

Strata does not attempt to provide storage for datacenter-
scale environments, unlike systems including Azure [6],
FDS [26], or Bigtable [11]. Storage systems in this space
differ significantly in their intended workload, as they
emphasize high throughput linear operations. Strata’s
managed network would also need to be extended to
support datacenter-sized scale out. We also differ from
in-RAM approaches such a RAMCloud [27] and mem-
cached [15], which offer a different class of durability
guarantee and cost.

9 Conclusion

Storage system design faces a sea change resulting from
the dramatic increase in the performance density of its
component media. Distributed storage systems com-
posed of even a small number of network-attached flash
devices are now capable of matching the offered load
of traditional systems that would have required multiple
racks of spinning disks.

Strata is an enterprise storage architecture that responds
to the performance characteristics of PCIe storage de-
vices. Using building blocks of well-balanced flash,
compute, and network resources and then pairing the
design with the integration of SDN-based Ethernet
switches, Strata provides an incrementally deployable,
dynamically scalable storage system.

Strata’s initial design is specifically targeted at enterprise
deployments of VMware ESX, which is one of the dom-
inant drivers of new storage deployments in enterprise
environments today. The system achieves high perfor-
mance and scalability for this specific NFS environment
while allowing applications to interact directly with vir-
tualized, network-attached flash hardware over new pro-
tocols. This is achieved by cleanly partitioning our stor-
age implementation into an underlying, low-overhead
virtualization layer and a scalable framework for imple-
menting storage protocols. Over the next year, we intend
to extend the system to provide general-purpose NFS
support by layering a scalable and distributed metadata
service and small object support above the base layer of
coarse-grained storage primitives.

12

USENIX Association 	 12th USENIX Conference on File and Storage Technologies  29

References

[1] AKEL, A., CAULFIELD, A. M., MOLLOV, T. I.,
GUPTA, R. K., AND SWANSON, S. Onyx: a pro-
toype phase change memory storage array. In Pro-
ceedings of the 3rd USENIX conference on Hot
topics in storage and file systems (Berkeley, CA,
USA, 2011), HotStorage’11, USENIX Association,
pp. 2–2.

[2] ANDERSEN, D. G., FRANKLIN, J., KAMINSKY,
M., PHANISHAYEE, A., TAN, L., AND VASUDE-
VAN, V. Fawn: a fast array of wimpy nodes. In
Proceedings of the ACM SIGOPS 22nd symposium
on Operating systems principles (2009), SOSP ’09,
pp. 1–14.

[3] BAILEY, K., CEZE, L., GRIBBLE, S. D., AND
LEVY, H. M. Operating system implications of
fast, cheap, non-volatile memory. In Proceedings
of the 13th USENIX conference on Hot topics in
operating systems (Berkeley, CA, USA, 2011), Ho-
tOS’13, USENIX Association, pp. 2–2.

[4] BALAKRISHNAN, M., MALKHI, D., PRAB-
HAKARAN, V., WOBBER, T., WEI, M., AND
DAVIS, J. D. Corfu: a shared log design for flash
clusters. In Proceedings of the 9th USENIX confer-
ence on Networked Systems Design and Implemen-
tation (2012), NSDI’12.

[5] BARHAM, P., DRAGOVIC, B., FRASER, K.,
HAND, S., HARRIS, T., HO, A., NEUGEBAUER,
R., PRATT, I., AND WARFIELD, A. Xen and the art
of virtualization. In Proceedings of the nineteenth
ACM symposium on Operating systems principles
(2003), SOSP ’03, pp. 164–177.

[6] CALDER, B., WANG, J., OGUS, A., NILAKAN-
TAN, N., SKJOLSVOLD, A., MCKELVIE, S., XU,
Y., SRIVASTAV, S., WU, J., SIMITCI, H., HARI-
DAS, J., UDDARAJU, C., KHATRI, H., EDWARDS,
A., BEDEKAR, V., MAINALI, S., ABBASI, R.,
AGARWAL, A., HAQ, M. F. U., HAQ, M. I. U.,
BHARDWAJ, D., DAYANAND, S., ADUSUMILLI,
A., MCNETT, M., SANKARAN, S., MANIVAN-
NAN, K., AND RIGAS, L. Windows azure storage:
a highly available cloud storage service with strong
consistency. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles
(2011), SOSP ’11, pp. 143–157.

[7] CASADO, M., FREEDMAN, M. J., PETTIT, J.,
LUO, J., MCKEOWN, N., AND SHENKER, S.
Ethane: Taking control of the enterprise. In In SIG-
COMM Computer Comm. Rev (2007).

[8] CASADO, M., GARFINKEL, T., AKELLA, A.,
FREEDMAN, M. J., BONEH, D., MCKEOWN, N.,
AND SHENKER, S. Sane: a protection architec-
ture for enterprise networks. In Proceedings of the
15th conference on USENIX Security Symposium -
Volume 15 (Berkeley, CA, USA, 2006), USENIX-
SS’06, USENIX Association.

[9] CAULFIELD, A. M., DE, A., COBURN, J., MOL-
LOW, T. I., GUPTA, R. K., AND SWANSON,
S. Moneta: A high-performance storage array ar-
chitecture for next-generation, non-volatile mem-
ories. In Proceedings of the 2010 43rd Annual
IEEE/ACM International Symposium on Microar-
chitecture (2010), MICRO ’43, pp. 385–395.

[10] CAULFIELD, A. M., MOLLOV, T. I., EISNER,
L. A., DE, A., COBURN, J., AND SWANSON,
S. Providing safe, user space access to fast, solid
state disks. In Proceedings of the seventeenth in-
ternational conference on Architectural Support for
Programming Languages and Operating Systems
(2012), ASPLOS XVII, pp. 387–400.

[11] CHANG, F., DEAN, J., GHEMAWAT, S., HSIEH,
W. C., WALLACH, D. A., BURROWS, M., CHAN-
DRA, T., FIKES, A., AND GRUBER, R. E.
Bigtable: A distributed storage system for struc-
tured data. ACM Trans. Comput. Syst. 26, 2 (June
2008), 4:1–4:26.

[12] COBURN, J., CAULFIELD, A. M., AKEL, A.,
GRUPP, L. M., GUPTA, R. K., JHALA, R., AND
SWANSON, S. Nv-heaps: making persistent objects
fast and safe with next-generation, non-volatile
memories. In Proceedings of the sixteenth interna-
tional conference on Architectural support for pro-
gramming languages and operating systems (New
York, NY, USA, 2011), ASPLOS XVI, ACM,
pp. 105–118.

[13] CONDIT, J., NIGHTINGALE, E. B., FROST, C.,
IPEK, E., LEE, B., BURGER, D., AND COETZEE,
D. Better i/o through byte-addressable, persistent
memory. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles (New
York, NY, USA, 2009), SOSP ’09, ACM, pp. 133–
146.

[14] ENGLER, D. R., KAASHOEK, M. F., AND
O’TOOLE, JR., J. Exokernel: an operating system
architecture for application-level resource manage-
ment. In Proceedings of the fifteenth ACM sym-
posium on Operating systems principles (1995),
SOSP ’95, pp. 251–266.

13

30  12th USENIX Conference on File and Storage Technologies 	 USENIX Association

[15] FITZPATRICK, B. Distributed caching with mem-
cached. Linux J. 2004, 124 (Aug. 2004), 5–.

[16] GANGER, G. R., ABD-EL-MALEK, M., CRA-
NOR, C., HENDRICKS, J., KLOSTERMAN, A. J.,
MESNIER, M., PRASAD, M., SALMON, B., SAM-
BASIVAN, R. R., SINNAMOHIDEEN, S., STRUNK,
J. D., THERESKA, E., AND WYLIE, J. J. Ursa
minor: versatile cluster-based storage, 2005.

[17] GIBSON, G. A., AMIRI, K., AND NAGLE, D. F.
A case for network-attached secure disks. Tech.
Rep. CMU-CS-96-142, Carnegie-Mellon Univer-
sity.Computer science. Pittsburgh (PA US), Pitts-
burgh, 1996.

[18] HILDEBRAND, D., AND HONEYMAN, P. Ex-
porting storage systems in a scalable manner
with pnfs. In IN PROCEEDINGS OF 22ND
IEEE/13TH NASA GODDARD CONFERENCE
ON MASS STORAGE SYSTEMS AND TECH-
NOLOGIES (MSST (2005).

[19] HUTCHINSON, N. C., AND PETERSON, L. L. The
x-kernel: An architecture for implementing net-
work protocols. IEEE Trans. Softw. Eng. 17, 1 (Jan.
1991), 64–76.

[20] KARGER, D., LEHMAN, E., LEIGHTON, T., PAN-
IGRAHY, R., LEVINE, M., AND LEWIN, D.
Consistent hashing and random trees: distributed
caching protocols for relieving hot spots on the
world wide web. In Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing
(1997), STOC ’97, pp. 654–663.

[21] KOHLER, E., MORRIS, R., CHEN, B., JANNOTTI,
J., AND KAASHOEK, M. F. The click modular
router. ACM Trans. Comput. Syst. 18, 3 (Aug.
2000), 263–297.

[22] LEE, E. K., AND THEKKATH, C. A. Petal: dis-
tributed virtual disks. In Proceedings of the seventh
international conference on Architectural support
for programming languages and operating systems
(1996), ASPLOS VII, pp. 84–92.

[23] LUO, T., MA, S., LEE, R., ZHANG, X., LIU, D.,
AND ZHOU, L. S-cave: Effective ssd caching to
improve virtual machine storage performance. In
Parallel Architectures and Compilation Techniques
(2013), PACT ’13, pp. 103–112.

[24] MEYER, D. T., CULLY, B., WIRES, J., HUTCHIN-
SON, N. C., AND WARFIELD, A. Block mason. In
Proceedings of the First conference on I/O virtual-
ization (2008), WIOV’08.

[25] MOSBERGER, D., AND PETERSON, L. L. Making
paths explicit in the scout operating system. In Pro-
ceedings of the second USENIX symposium on Op-
erating systems design and implementation (1996),
OSDI ’96, pp. 153–167.

[26] NIGHTINGALE, E. B., ELSON, J., FAN, J., HOF-
MANN, O., HOWELL, J., AND SUZUE, Y. Flat
datacenter storage. In Proceedings of the 10th
USENIX conference on Operating Systems Design
and Implementation (Berkeley, CA, USA, 2012),
OSDI’12, USENIX Association, pp. 1–15.

[27] OUSTERHOUT, J., AGRAWAL, P., ERICKSON,
D., KOZYRAKIS, C., LEVERICH, J., MAZIÈRES,
D., MITRA, S., NARAYANAN, A., ONGARO,
D., PARULKAR, G., ROSENBLUM, M., RUMBLE,
S. M., STRATMANN, E., AND STUTSMAN, R.
The case for ramcloud. Commun. ACM 54, 7 (July
2011), 121–130.

[28] SAITO, Y., FRØLUND, S., VEITCH, A., MER-
CHANT, A., AND SPENCE, S. Fab: building
distributed enterprise disk arrays from commodity
components. In Proceedings of the 11th interna-
tional conference on Architectural support for pro-
gramming languages and operating systems (New
York, NY, USA, 2004), ASPLOS XI, ACM, pp. 48–
58.

[29] THEKKATH, C. A., MANN, T., AND LEE, E. K.
Frangipani: a scalable distributed file system. In
Proceedings of the sixteenth ACM symposium on
Operating systems principles (1997), SOSP ’97,
pp. 224–237.

[30] VASUDEVAN, V., KAMINSKY, M., AND ANDER-
SEN, D. G. Using vector interfaces to deliver mil-
lions of iops from a networked key-value storage
server. In Proceedings of the Third ACM Sympo-
sium on Cloud Computing (New York, NY, USA,
2012), SoCC ’12, ACM, pp. 8:1–8:13.

[31] WEIL, S. A., WANG, F., XIN, Q., BRANDT,
S. A., MILLER, E. L., LONG, D. D. E., AND
MALTZAHN, C. Ceph: A scalable object-based
storage system. Tech. rep., 2006.

[32] WHITAKER, A., SHAW, M., AND GRIBBLE, S. D.
Denali: A scalable isolation kernel. In Proceed-
ings of the Tenth ACM SIGOPS European Work-
shop (2002).

[33] YANG, J., MINTURN, D. B., AND HADY, F. When
poll is better than interrupt. In Proceedings of the
10th USENIX conference on File and Storage Tech-
nologies (Berkeley, CA, USA, 2012), FAST’12,
USENIX Association, pp. 3–3.

14

USENIX Association 	 12th USENIX Conference on File and Storage Technologies  31

[34] Flexible io tester. http://git.kernel.dk/?p=
fio.git;a=summary.

[35] Linux device mapper resource page. http://
sourceware.org/dm/.

[36] Linux logical volume manager (lvm2) resource
page. http://sourceware.org/lvm2/.

[37] Seagate kinetic open storage documenta-
tion. https://developers.seagate.
com/display/KV/Kinetic+Open+Storage+
Documentation+Wiki.

[38] Scsi object-based storage device commands -
2, 2011. http://www.incits.org/scopes/
1729.htm.

15

