
USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 267

Shielding applications from an untrusted cloud with Haven

Andrew Baumann Marcus Peinado Galen Hunt
Microsoft Research

Abstract

Today’s cloud computing infrastructure requires substan-
tial trust. Cloud users rely on both the provider’s staff and
its globally-distributed software/hardware platform not to
expose any of their private data.

We introduce the notion of shielded execution, which
protects the confidentiality and integrity of a program and
its data from the platform on which it runs (i.e., the cloud
operator’s OS, VM and firmware). Our prototype, Haven,
is the first system to achieve shielded execution of un-
modified legacy applications, including SQL Server and
Apache, on a commodity OS (Windows) and commod-
ity hardware. Haven leverages the hardware protection of
Intel SGX to defend against privileged code and physi-
cal attacks such as memory probes, but also addresses the
dual challenges of executing unmodified legacy binaries
and protecting them from a malicious host. This work
motivated recent changes in the SGX specification.

1 Introduction

Although users of cloud computing infrastructure may
expect their data to remain confidential, today’s clouds
are built using a classical hierarchical security model that
aims only to protect the privileged code (of the cloud
provider) from untrusted code (the user’s virtual ma-
chine), and does nothing to protect user data from access
by privileged code. As a result, besides the hardware used
to execute their applications, the cloud user must trust:
(i) the provider’s software, including privileged software
such as a hypervisor and firmware but also the provider’s
full stack of management software; and (ii) the provider’s
staff, including system administrators but also those with
physical access to hardware such as cleaners and secu-
rity guards. Furthermore, as the Snowden leaks demon-
strate [18, 19], the cloud user also implicitly trusts (iii) law
enforcement bodies in any jurisdiction where their data
may be replicated. By any measure, this is a large and in-
scrutable trusted computing base, and the related concerns
are a significant factor limiting cloud adoption [13, 43].

The current best practice for protecting secrets in the
cloud uses hardware security modules (HSMs) [e.g., 1].
These dedicated appliances rely on tamper-proof hard-
ware to protect critical secrets, such as keys, and support
a range of cryptographic functions, but come at a signif-
icant cost, and do not usually run general-purpose appli-
cations. Typical deployments use HSMs to protect key
material, but transiently decrypt data on untrusted nodes
for computation, rendering the data vulnerable to the
threats outlined above. Previous research relied on trusted
hypervisors to protect an application from a malicious
OS [11, 25, 54, 60, 63], but cannot protect against a hy-
pervisor controlled by a malicious or compromised cloud
provider. Finally, although some applications can operate
on encrypted data [4, 46, 55], cryptographic schemes for
general-purpose computing [20, 21] have severe perfor-
mance limitations.

Our objective is to run existing server applications in
the cloud with a level of trust and security roughly equiv-
alent to a user operating their own hardware in a locked
cage at a colocation facility. Like the colocation provider
(who is responsible only for power, cooling and network
connectivity), the cloud provider is limited to offering raw
resources: processor cycles, storage, and networking; it
can deny service, but cannot observe or modify any user
data except what is transmitted over the network. We refer
to this property as shielded execution, and define it in §2.
Essentially the inverse of sandboxing, it protects the confi-
dentiality and integrity of code and data from an untrusted
host. The high-level guarantee to the user is that secrecy
is always preserved, and if their program executes, it be-
haves as if it ran on reference hardware under the user’s
control. The provider retains control of resource alloca-
tion, and may protect itself from a malicious guest.

Our prototype, Haven, implements shielded execution
of unmodified Windows applications. It leverages Intel
software guard extensions (SGX) [28, 29, 41], a set of
new instructions and memory access changes summarised
in §3.1. SGX allows a process to instantiate a secure re-
gion of address space known as an enclave; it then pro-
tects execution of code within the enclave, even from ma-
licious privileged code or hardware attacks such as mem-

268 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

ory probes. While SGX was designed to enable new trust-
worthy applications to protect specific secrets by placing
portions of their code and data inside enclaves [24], Haven
aims to shield entire unmodified legacy applications writ-
ten without any knowledge of SGX. This leads to two key
challenges. First, executing legacy binary code inside an
enclave pushes the limits of the SGX execution model:
our target applications are large, raise and handle excep-
tions, dynamically allocate memory, and may execute ar-
bitrary x86 instructions. Second, the code we seek to pro-
tect was written assuming that the OS it ran on would op-
erate correctly, but the host OS may be malicious. To
defeat such “Iago attacks” [10], where a malicious OS
subverts a protected application by exploiting the applica-
tion’s reliance on correct results of system calls, we use an
in-enclave library OS (LibOS). The LibOS used by Haven
is derived from Drawbridge [47]; it implements the Win-
dows 8 API using a small set of primitives such as threads,
virtual memory, and file I/O. As we describe in §4, Haven
implements these primitives using a mutually-distrusting
interface with the host OS. This ensures shielded execu-
tion of unmodified applications; a malicious host cannot
trick an application into divulging its secrets nor executing
incorrectly. Combined with a remote attestation mecha-
nism [2], Haven gives the user an end-to-end guarantee of
application security without trusting the cloud provider,
its software, or any hardware beyond the processor itself.

We developed Haven on an instruction-accurate SGX
emulator provided by Intel, but evaluate it using our own
model of SGX performance. Haven goes beyond the orig-
inal design intent of SGX, so while the hardware was
mostly sufficient, it did have three fundamental limitations
for which we proposed fixes (§5.4). These are incorpo-
rated in a revised version of the SGX specification [29],
published concurrently by Intel.

The contributions of this paper are:

• We define the concept of shielded execution (§2), de-
scribe how SGX supports it (§3.1), and later outline
generalised hardware requirements (§7.4).
• We present Haven, the first system to implement

shielded execution of unmodified binaries for a com-
modity OS, achieving mutual distrust with the entire
host software stack (§4–5). Haven shields applica-
tions using mechanisms such as private scheduling,
distrustful virtual memory management, and an en-
crypted and integrity-protected file system.
• We evaluate Haven’s performance using unmodified

server applications: SQL Server and Apache (§6).
• We identify minimal changes to SGX to enable effi-

cient shielded execution of unmodified applications
(§5.4), and note optimisation opportunities (§7.3).

2 Security Overview

2.1 Shielded execution
Like others [41, 44, 59], we use the term isolated execu-
tion to refer generally to mechanisms that protect the con-
fidentiality and integrity of specific code and data from
other actors. In contrast to previous protection mech-
anisms such as process isolation, sandboxing, managed
code, etc. which serve to confine an untrusted program
and protect the rest of a system from its actions, isolated
execution refers to the inverse: protecting specific code
from the rest of the system, however large or privileged.

Various forms of isolated execution are possible. Soft-
ware implementations rely on a trusted component such
as a hypervisor that implements isolation (e.g., using page
protection and/or encryption) [11, 14, 25, 39, 54, 60, 63].
Conversely, in pure-hardware implementations, no soft-
ware other than the isolated code is in the trusted comput-
ing base. While several hardware isolation mechanisms
exist [9, 31, 34, 44, 59], SGX is the first commodity hard-
ware that permits efficient multiplexing among multiple
isolated programs without relying on trusted software.

However, isolation alone is not sufficient to protect ap-
plications. In order to be useful, an isolation mecha-
nism must permit interaction with untrusted software or
hardware, to communicate results or access system ser-
vices, and it is at these points that a naı̈ve isolated pro-
gram is vulnerable [10]. For example, SGX isolates
self-contained sequences of x86 instructions (typically,
individual modules or functions) that are aware of the
SGX protection model and are explicitly written to de-
fend against threats outside the enclave, that do not handle
faults or exceptions, and do not interact with the OS.

Shielded execution builds on an isolation mechanism to
provide higher-level security properties; specifically, for
an abstract program, it guarantees:

• Confidentiality: The execution of the shielded pro-
gram appears as a “black box” to the rest of the sys-
tem. Only its inputs and outputs, but no intermediate
states, are observable.
• Integrity: The system cannot affect the behaviour of

the program, except by choosing not to execute it
at all or withholding resources (denial of service at-
tacks). If the program completes, its output is the
same as a correct execution on a reference platform.

While the term may be new, the underlying concept is
not. In using a new term, we attempt to generalise be-
yond specific implementations such as cloaking [11, 12],
“pieces of application logic” [33, 38, 39], protected mod-
ules [45] and high-assurance processes [25] that provide

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 269

shielded execution under a specific set of constraints.
Moreover, in Haven, our goal is to relax those constraints
to achieve shielded execution for unmodified application
binaries with complex OS dependencies.

Note that shielded execution is necessary but not suf-
ficient to meet our goal of confidential execution in the
cloud. We also require an attestation mechanism to estab-
lish confidence in the integrity of a remote shielded pro-
gram, and a mechanism to provision secrets directly to it,
allowing it to operate on encrypted inputs and extend con-
fidentiality beyond the confines of the shield mechanism.
We describe how SGX supports this in §3.1.

2.2 Threat model and assumptions

We seek to protect the confidentiality and integrity of a
user’s unmodified server application from an untrusted
cloud provider. We specifically exclude software-based
isolation mechanisms, because besides their vulnerabil-
ity to simple hardware attacks, we wish to give the cloud
provider the unfettered ability to patch and update its priv-
ileged software (we expand on this later in §8). We there-
fore assume a powerful adversary that controls most of the
provider’s hardware and all its software.

At the hardware level, we assume that the processor it-
self is implemented correctly, and not compromised (so
the adversary cannot extract secrets residing within it).
The adversary has full control beyond the physical pack-
age of the processor, including memory and all I/O de-
vices. They may probe memory, and arbitrarily alter or
inject I/O including network traffic.

The adversary also controls the cloud provider’s entire
software stack, including the host OS, hypervisor, man-
agement software, platform firmware, BIOS, code exe-
cuting in system management mode, and device firmware.
As a result, they may interrupt execution of the user’s pro-
gram indefinitely, and may pass arbitrary values across
the isolation boundary (e.g., the SGX enclave), including
the results of calls to OS services and arbitrarily-injected
upcalls. We assume a secure source of random numbers
(which recent processors provide). However, the adver-
sary may interfere with other sources of non-determinism
such as thread interleaving, subject to the constraints of
the hardware specification (e.g., the memory model).

We do not consider any side-channel attacks. Common
side-channels, such as timing and cache-collision, have
known (but expensive) attack mitigations [e.g., 8] that can
be implemented by application software; others, such as
power analysis, require hardware modifications, and are
ultimately a limitation of our approach.

Enclave
TCS
TCS

Code/data

Virtual address space
Physical memory

RAM

EPC

E
nc

ry
pt

ed
 &

in
te

gr
ity

-p
ro

te
ct

ed

Page table
mappings
verified by
SGX HW

Figure 1: SGX virtual and physical memory layout

3 Background

3.1 Intel SGX

In this section, we summarise the SGX functionality rel-
evant to Haven; readers are directed to the specifica-
tion [28, 29, 41] for full details. Although SGX protects
against any malicious privileged code (OS, hypervisor,
firmware, system management mode, etc.), we refer to it
collectively as simply the “OS”.

Memory protection SGX protects the confidentiality
and integrity of pages in an enclave, a region of a user-
mode address space (Figure 1). While cache-resident, en-
clave data is protected by CPU access controls (the TLB).
However, it is encrypted and integrity protected when
written to memory, and if the data in memory is modified,
a subsequent load will signal a fault.

SGX mediates page mappings at enclave setup and
maintains shadow state for each page. Enclaves are cre-
ated by an ECREATE instruction, which initialises a con-
trol structure in protected memory. Once an enclave has
been created, pages of memory are added to it using EADD.
These pages are allocated by the OS, but must occupy
a specific region of physical memory: the enclave page
cache (EPC). For each EPC page, hardware tracks its
type, the enclave to which it is mapped, the virtual ad-
dress within the enclave, and permissions (read, write, ex-
ecute). On each enclave page access, after walking the
page table, SGX ensures that the processor is in enclave
mode, the page belongs to the EPC and is correctly typed,
the current enclave maps the page at the accessed virtual
address, and the access agrees with the page permissions.

Like the RAM backing it, EPC is a limited resource.
Therefore, SGX enables the OS to virtualise EPC by pag-
ing its contents to other storage [28, §3.5]. Privileged in-
structions cause the hardware to free an EPC page cho-

270 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

sen by the OS, writing its contents to an encrypted buffer
in main memory, which the OS may then relocate. To
prevent rollback attacks on page-in, the hardware keeps a
version number for the page in EPC. It also requires the
OS to follow a hardware-verified protocol to ensure that
TLB shootdown has completed when evicting a page.

Attestation SGX supports CPU-based attestation [2],
enabling a remote system to verify cryptographically that
specific software has been loaded within an enclave, and
establish shared secrets allowing it to bootstrap an end-to-
end encrypted channel with the enclave.

During enclave creation, a secure hash known as a mea-
surement is established of the enclave’s initial state. The
enclave may later retrieve a report signed by the proces-
sor that proves its identity to, and communicates a unique
value (such as a public key) with, another local enclave.
Using a trusted quoting enclave, this mechanism can be
leveraged to obtain an attestation known as a quote which
proves to a remote system that the report comes from an
enclave running on a genuine SGX implementation [2].
Ultimately, the processor manufacturer (e.g., Intel) is the
root of trust for attestation.

Enclave entry and exit Besides protecting the content
and integrity of memory mappings, SGX also mediates
transitions into and out of the enclave, and protects the
enclave’s register file from OS exception handlers. This is
managed using a thread control structure (TCS).

User code begins executing an enclave by invoking
EENTER on an idle TCS; this acts as a call gate, transferring
control to a defined entry point within the enclave. En-
clave code may access enclave pages according to the pro-
tection model outlined above; it may also read and write
memory outside the enclave region (as permitted by OS
page tables), but any attempt to execute code there faults.
The processor continues in enclave mode until software
explicitly leaves it by invoking EEXIT, or until an interrupt
or exception returns control to the OS, which is known
as an asynchronous exit. After an explicit exit, control
resumes outside the enclave at an address chosen by the
enclave; in this way EENTER and EEXIT can be used with
stubs that wrap invocations of enclave functions, taking
care to validate inputs on entry and scrub secrets on exit
from any registers not used as return values.

After an asynchronous exit, control transfers to the OS
exception handler; typically this would save the registers
for later use (e.g., when next scheduled), but the OS can-
not be trusted with the enclave’s register state. Instead,
SGX saves the full context and information about the
cause of the exit in the TCS, replacing it with a synthetic
context before reporting the exception to the OS. The en-
clave may later be resumed by ERESUME on the TCS, which

restores its last saved context. Alternatively, the OS can
re-enter the enclave, giving it the opportunity to inspect
and modify its own state before resuming; this is used to
report an exception which must be handled by the enclave.

SGX is an imperfect implementation of shielded exe-
cution according to our definition in §2.1, because the OS
exception handler observes some of the enclave’s internal
state: the exception vector, and in the case of a page fault,
the type of access and base address of the page [28, §4.4].
This allows the OS to retain control over resource man-
agement (i.e., CPU time and memory); in general, it can
deny service to the enclave, but cannot cause it to execute
incorrectly. We discuss hardware designs to decouple re-
source management from observations of guest behaviour
later in §7.4.

Dynamic memory allocation As described, SGX does
not allow enclave pages to be added after creation, nor
EPC permissions changed, which is clearly insufficient
for Haven to run unmodified applications. However, revi-
sion 2 of the SGX specification [29] includes new instruc-
tions allowing the enclave and host OS to cooperatively
add/remove enclave pages and modify their permissions.

Allocation requires cooperation, because the host man-
ages EPC but cannot be trusted to arbitrarily add enclave
pages (e.g., in an unallocated region). To allocate a new
page, the host invokes EAUG to place an unused EPC page
at a specific offset in an enclave; this must then be ac-
knowledged by the enclave executing EACCEPT, before it
becomes accessible. Similarly, reducing permissions or
removing pages also requires cooperation, because like
page eviction, hardware must help ensure TLB shootdown
has occurred. SGX includes instructions (EMODT, EMODPR,
EBLOCK, ETRACK and EACCEPT) to enable this.

These operations do not change the enclave measure-
ment established by EINIT; since the modified pages come
under the full control of the enclave, its identity is equiv-
alent for trust purposes.

3.2 Drawbridge
Haven builds on Drawbridge [6, 47], a system support-
ing low-overhead sandboxing of Windows applications.
Drawbridge consists of two core mechanisms, both of
which Haven leverages: the picoprocess, and library OS.

The picoprocess is a secure isolation container con-
structed from a hardware address space, but with no ac-
cess to traditional OS services or system calls [15]; in-
stead, a narrow ABI of OS primitives is provided, im-
plemented using a security monitor. The ABI consists
of 40 downcalls and three upcalls [6]. Downcalls are re-
quests for OS services including virtual memory, thread-

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 271

ing, and I/O streams (e.g., files and network sockets). Up-
calls are initiated by the host, have only input parameters,
and do not return; they are used for initialisation, thread
startup, and exception delivery. In Haven, as in Draw-
bridge, the picoprocess serves to protect the host (i.e., the
cloud provider) from a potentially-malicious guest.

The Drawbridge LibOS is a version of Windows 8
refactored to run as a set of libraries within the picopro-
cess, depending only on the ABI. It consists of lightly-
modified binaries for most user-mode and some kernel
components of Windows, and a “user-mode kernel” that
implements the interfaces on which they depend.

Together, the picoprocess and LibOS enable sandbox-
ing of unmodified Windows applications with comparable
security to virtual machines, but substantially lower over-
heads. While Drawbridge aims only to protect the host
from an untrusted guest, Haven shields the execution of
the application and LibOS from an untrusted host, thereby
enabling mutual distrust between host and guest.

4 Design

We now present the design of Haven, which leverages the
instruction-level isolation mechanism of SGX to achieve
shielded execution of entire legacy application binaries.
In doing this, we address two key challenges: protecting
from a malicious host OS, and executing existing binaries
in an enclave. We first discuss these in more detail.

4.1 Design challenges

Malicious host OS A general class of threats known
as Iago attacks arises when a malicious OS attempts to
subvert an isolated application by exploiting its assump-
tion of correct OS behaviour, for example when using
the results of system calls [10]. Besides simply return-
ing semantically-incorrect results from system calls (e.g.,
returning the address of an already-allocated region for a
new memory allocation), the malicious OS may seek to
exploit latent bugs in the application. For example, it may
allocate valid but abnormally-high virtual addresses, re-
turn unusual values for parameters such as memory size
and number of processors, alter timing to seek to exploit
latent race conditions, inject spurious exceptions, return
unexpected error codes from system calls, or simply fail
calls that an application naively assumes will succeed.

Our approach to this challenge is twofold. First, we
limit its scope using a LibOS within the enclave. The
LibOS implements the full OS API using a much nar-
rower set of core OS primitives. Since the LibOS is under

Drawbridge ABI, SGX priv. ops

Picoprocess (protects host from guest)

Untrusted Interface

Enclave (protects guest from host)

Windows 8 API

Drawbridge ABI

Host kernel (Windows)

Untrusted runtime

Application (unmodified binary)

Library OS

Shield module

Drawbridge hostSGX driver

U
pc

al
ls

(e
xc

ep
tio

ns
)

D
ow

nc
al

ls
(O

S
 s

er
vi

ce
s)

• Threads
•Scheduling

•Virtual memory
• File system

Figure 2: Haven components and interfaces

user control, and can be arbitrarily tested or inspected of-
fline, we assume that it is not malicious (to the user), even
though it may be large, complex, and contain bugs. Sec-
ond, having reduced the scope of attacks by narrowing
the interface they must traverse, we use established tech-
niques to correctly implement the OS primitives in the
presence of a malicious host: careful defensive coding,
exhaustive validation of untrusted inputs, and encryption
and integrity protection of any private data exposed to un-
trusted code.

Unmodified binaries SGX was designed to protect lim-
ited subsets of application logic [24], however full appli-
cation binaries have properties that make them challeng-
ing to execute in an enclave. They load code and data at
runtime, dynamically allocate and change protection on
virtual memory, execute arbitrary user-mode instructions
(including some not supported by SGX), raise and handle
exceptions (e.g., page faults, divide-by-zero or floating-
point exceptions), and use thread-local storage.

Haven addresses each of these challenges. For some,
such as thread-local storage, we rely on enhancements to
SGX described later in §5.4. For most, we work around
the limitations, by emulating unsupported instructions,
carefully validating and handling exceptions that occur
within an enclave, and modifying LibOS behaviour.

4.2 Architecture

Figure 2 shows the architecture of Haven. We create an
enclave within the Drawbridge picoprocess containing the
entire application and LibOS. To protect the LibOS and
application from a malicious host, Haven augments Draw-
bridge with two layers: a shield module below the LibOS
in the enclave, and an untrusted runtime outside the en-

272 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Upcalls:
ExceptionDispatch(ExceptionInfo)

ThreadEntry()

Downcalls:
AsyncCancel(AsyncHandle)

AsyncPoll(AsyncHandle) -> Results

DebugStringPrint(Message)

EventClear(EventHandle)

EventSet(EventHandle)

ObjectClose(Handle)

ObjectsWaitAny(Count, Handles, Timeout) -> Index

ProcessExit(ExitCode)

StreamAttributesQueryByHandle(StreamHandle) -> Attribs

StreamFlush(StreamHandle)

StreamGetEvent(StreamHandle, EventId) -> EventHandle

StreamOpen(URI, Options) -> StreamHandle

StreamRead(StreamHandle, Off, Len, Buf) -> AsyncHandle

StreamWrite(StreamHandle, Off, Len, Buf) -> AsyncHandle

SystemTimeQuery() -> Time

ThreadCreate(Tcs) -> ThreadHandle

ThreadExit()

ThreadInterrupt(ThreadHandle)

ThreadYieldExecution()

VirtualMemoryCommit(Addr, Size, Prot)

VirtualMemoryFree(Addr, Size)

VirtualMemoryProtect(Addr, Size, Prot)

Figure 3: Untrusted interface to enclave.

clave. These effectively interpose on the LibOS/host inter-
face (the Drawbridge ABI) [6], implementing a shielded
version in the enclave by calling out to the untrusted host.

Our design is independent of the specific LibOS; recent
Linux LibOSes [6, 27, 58] might also be used.1

Shield module As with all code inside the enclave, this
is in the application’s trusted computing base. Its high-
level role is to implement the Drawbridge ABI required
by the LibOS in terms of a more limited subset of core
OS operations. It therefore includes private implementa-
tions of typical kernel functionality such as memory man-
agement, a file system, and thread synchronisation. It also
acts as a trusted bootloader for the LibOS and application.

The shield is responsible for protecting the LibOS and
application from Iago attacks outside the enclave. It does
this by careful validation of all parameters and results
passed across a narrow interface with the untrusted run-
time. At its most basic, this validation consists of ensur-
ing that the parameters of upcalls and results of downcalls
are consistent with their specification. For example, the
number of bytes read from a stream cannot be more than
the requested size, and it is not acceptable to return an
error code indicating a timeout for an operation that can-
not do so (more generally, each downcall has a specific
list of acceptable failure codes). Specific calls require fur-
ther validation, using either hardware support (e.g., when
changing virtual memory permissions), or additional soft-
ware (e.g., for thread synchronisation), and are discussed
in the relevant sections below.

Since our threat model permits denial of service, the
shield can and does handle any incorrect host behaviour
by panicking: it emits a short debug message, requests
the host to terminate its process, and rejects subsequent

1We note however that fork() would be both complex and expen-
sive, as it requires a new enclave communicating via untrusted channels.

attempts to enter the enclave.

Untrusted interface The interface at the enclave
boundary must allow the shield to verify the correctness of
all operations while also enabling an efficient implementa-
tion. Besides minimality, our guiding principle in design-
ing it was a form of policy/mechanism separation [32]:
the guest controls policy for virtual resources (virtual ad-
dress allocation, threads, etc.), while the host manages
policy only for physical resources (e.g., memory and CPU
time). In general, this prevents operations that give any
implementation freedom to the host beyond physical re-
source allocation, makes verification efficient, and limits
the scope of attacks.

The interface is summarised in Figure 3; it is expressed
as a Drawbridge ABI subset, with fewer (22 rather than
40) calls and fewer permissible arguments; specifically:

• calls to commit, free and protect specific pages;
• thread management and signalling;
• I/O streams to access untrusted storage and network;
• a source of system time.

Untrusted runtime Primarily bootstrap and glue code,
this is trusted by neither enclave nor host kernel. Its main
tasks are creating the enclave, loading the shield, and for-
warding calls between the enclave and host OS.

4.3 Shield services
Virtual memory The virtual address region occupied
by a Haven enclave always starts at zero (enforced by a
check at startup), allowing the enclave to reliably detect
and handle NULL pointer dereferences. Otherwise, a ma-
licious host OS could map pages there, and redirect NULL
accesses to data of their choosing. The enclave’s virtual
size must be large enough for all possible allocations by

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 273

the application/LibOS, and small enough to leave some
address space for the untrusted runtime and host OS. In
our prototype, enclaves occupy 64GB of address space.

The shield manages virtual memory within the enclave.
It includes a region allocator, tracking sub-regions of the
enclave that are reserved for use. For each reserved re-
gion, it tracks which pages are committed (i.e., accessi-
ble to the application), and for those pages, their permis-
sions (read, write, execute). For each allocation, the shield
chooses an address based on its knowledge of allocated
regions. When memory is committed or its protection is
changed, the shield calls out to the host to make the appro-
priate changes (e.g., allocating and mapping EPC pages
and performing TLB shootdown if necessary), then uses
the dynamic memory allocation instructions described in
§3.1 to ensure that the expected changes were made. To
prevent exploits of latent bugs in the application or LibOS,
the shield never allows the host to choose virtual ad-
dresses. It also blocks the application from using non-
enclave memory, by failing requests to allocate it.

Storage While SGX provides confidentiality and in-
tegrity protection for data in memory, Haven must also
support secure persistent storage. Rather than simply
encrypting file contents, which risks leaking guest state
through file metadata, the shield implements a private
filesystem. Our prototype uses a FAT32 filesystem inside
an encrypted virtual hard disk (VHD) image.

The shield encrypts each disk block independently with
an authenticated encryption algorithm (AES-GCM [40]),
keying the encryption to the block number. Like other
systems [16, 17, 26, 36, 62], a Merkle tree [42] protects
the integrity of the overall disk. This can be implemented
with little overhead, as only the root and the leaf nodes of
the tree are persisted to disk [26]. Like InkTag [25], we
store the crypto metadata (message authentication codes
of data blocks, nonces, and the Merkle tree root) in sep-
arate blocks from filesystem data. We also adapted Ink-
Tag’s two-hash-versions scheme to maintain consistency
after crashes. We discuss rollback attacks in §7.2.

Threads and synchronisation To prevent the host from
exploiting the application, for example by allowing two
threads to concurrently acquire a mutex, the shield imple-
ments a form of user-level scheduling [3, 37]. At startup,
it creates a fixed number of threads according to the de-
sired level of parallelism (typically, the number of hard-
ware threads). These operate as virtual CPUs support-
ing an arbitrary number of application threads inside the
enclave. Besides multiplexing application threads across
the virtual CPUs, the shield’s scheduler implements prim-
itives for events, mutexes and semaphores. It maintains its
internal state (run queues and synchronisation objects) us-

Table 1: Summary of component sizes

LoCa Size

Drawbridge LibOS millionsb 209 MBc

Shield module 23,095 180 kB
Untrusted runtime 7,446 52 kB
SGX driver 4,520 41 kB

a Lines of code counted by David A. Wheeler’s “SLOCCount”.
b See Porter et al. [47] for a breakdown (of a previous version).
c We report file size for all binaries in the LibOS; the subset that is

loaded depends on the application, but is usually much smaller.

ing atomic instructions for safety, and uses the untrusted
interface’s event and interrupt mechanisms to support sus-
pending/resuming and signalling the virtual CPUs.

The untrusted host can deny service by delaying wake-
ups or interrupts, but cannot cause the application to ex-
ecute incorrectly. Moreover, its ability to exploit latent
race conditions in the application by delaying guest exe-
cution is severely curtailed by the multiplexing of applica-
tion threads (which it cannot observe) onto virtual CPUs.

Miscellaneous The shield handles calls for entropy gen-
eration (using RDRAND, a secure source of randomness) and
dynamic loading/relocation of application binaries. Our
loader does not yet implement address-space layout ran-
domisation [7]; this is planned for future work.

Process creation is not supported. While not inconceiv-
able, it would be extremely complex and expensive to im-
plement on SGX, requiring the creation of a new enclave
(in a separate address space), and communication with
it over untrusted channels. One advantage of the Win-
dows OS is that surprisingly few applications use child
processes [6, 47]. For those that do, it is often sufficient to
run the “subprocess” in a different portion of the parent’s
address space (i.e., in the same enclave), since the API has
no fork() operation; this is supported by the LibOS.

5 Implementation
Table 1 reports the size of various components in our cur-
rent prototype. Besides implementing the shield and un-
trusted runtime, we added SGX support to our host OS
(Windows 8.1) by writing a driver and making some ker-
nel changes. The driver implements SGX kernel-mode
operations: allocating and mapping EPC pages, and cre-
ating and destroying enclaves. It is trusted by the host,
but untrusted by enclave code. We also modified the host
kernel to enable efficient mapping of EPC pages to user-
mode. This was necessary, because EPC regions appear
as reserved device space to the kernel, and the existing

274 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

driver APIs for mapping device memory to user-mode did
not anticipate the need for efficient page-granular map-
ping and protection changes. We also implemented sup-
port for debugging an enclave using the SGX debug mech-
anisms [28, Chapter 7]. Finally, we made minor modifi-
cations (249 lines of code) to the LibOS to avoid using
shared memory within the picoprocess,2 which SGX does
not support.

5.1 Application deployment and attestation

Haven applications are deployed similarly to cloud VMs,
with an extra attestation step we now describe. A user
constructs a disk image containing application and LibOS
binaries and data, and then encrypts it symmetrically, re-
taining the key. The encrypted VHD and shield binary are
sent to the cloud provider. The shield is not encrypted,
but its integrity will be verified.3 The cloud provider es-
tablishes a picoprocess, and loads the untrusted runtime,
which then creates an enclave and loads the shield mod-
ule. While the shield is loaded, the SGX hardware attes-
tation mechanism (§3.1) is used to measure (i.e., compute
a secure hash of) its code and initial state. The shield
receives two startup parameters: a structure of untrusted
parameters chosen by the host, such as addresses of down-
call functions in the untrusted runtime, and trusted param-
eters chosen by the user, such as configuration options and
environment variables, which form part of the enclave’s
measurement.

After initialising itself, the shield generates a pub-
lic/private key pair, and then uses its parameters to estab-
lish a network connection with the user – this may be a
machine physically under the control of the user, or an-
other enclave in the cloud. In either case, the shield uses
the SGX attestation mechanism to produce a quote con-
taining its public key which it sends to the user, proving
that it has been correctly loaded and executes in an SGX
enclave. If the enclave’s measurement is as expected (i.e.,
if the shield was loaded correctly with the desired param-
eters), the user encrypts the VHD key using the public key
contained in the quote, and sends it back to the shield; any
tampering with the shield binary is detected and subverted
at this point. Assuming it was loaded correctly, the shield
may now decrypt the VHD key using its private key, and
use it to access the contents of the VHD, allowing it to
continue to load the LibOS and application.

2Code that relied on making multiple mappings of a shared memory
section within the process was changed to use a single virtual address.

3If confidentiality of the shield was desirable, a smaller trusted boot-
loader could be used whose only task would be to perform attestation at
startup and then decrypt and load the shield binary.

From this point onward, communication with the out-
side world, and therefore access to any secrets contained
in the VHD, is under application control. Typical server
applications supporting SSL-encrypted connections may
be configured using certificates and keys stored directly
in the VHD, and accessed over the cloud provider’s un-
trusted network. For future work, we are planning to add
support for encrypted virtual private networks between a
user’s enclaves (or trusted hosts), providing a secure net-
work to applications that require one.

5.2 Enclave entry/exit
In Haven, an application performs most of its execution in
the enclave, calling out to the untrusted host only for sys-
tem services. This is the opposite of the typical SGX us-
age model of untrusted code calling into an enclave [24].
To perform an upcall, the untrusted runtime loads the up-
call parameters into specific registers, and invokes EENTER,
which does not return to its caller but instead delivers con-
trol to the shield entry point inside the enclave.

To perform a downcall, the shield passes arguments
in registers while clearing any unused registers (to pre-
vent leaking secrets), stores the return address and stack
pointer inside the shield’s thread record, and invokes
EEXIT with a target address of the relevant downcall han-
dler. SGX leaves the enclave and executes the untrusted
handler, which first loads a stack pointer before calling C
code. When the downcall returns (generally, after a sys-
tem call) its results are delivered to the enclave by EENTER,
which re-enters the enclave at the shield entry point.

The shield must disambiguate the different entry
causes. To do so it inspects the SGX thread structure,
which identifies whether an exception occurred, and its
own thread record, which records whether a downcall was
in progress. It then reloads the stack pointer, and either
calls (on an upcall) or returns to (on a downcall) C code.

Parameters that are passed by reference (e.g., I/O
buffers) cannot be located inside the enclave, since they
are inaccessible to the host. Instead, the shield allocates
a “bounce buffer” from a memory region outside the en-
clave, and copies the parameters appropriately. We are
considering (but have not yet implemented) an optimisa-
tion to the file system to encrypt directly into the bounce
buffer on writes, and decrypt from it on reads; this would
reduce the copy overhead for most file I/O.

5.3 Exception handling
When a page fault occurs within an enclave, SGX saves
the register context and fault information to an in-enclave
data structure (see §3.1). It then delivers an exception

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 275

to the host OS, which may choose to handle the fault
(e.g., by lazily updating a page table) and resume exe-
cution, or to report it to the user process. In the latter
case, the untrusted runtime upcalls the shield in the en-
clave, which must then determine the true cause using the
information and register context provided by SGX. The
shield exception handler performs sanity-checks to ensure
that the exception is valid and should be reported to the
LibOS. These include checking that: an exception actu-
ally occurred (as reported by SGX); the instruction is in
the enclave but not the shield module (which should never
fault); and the fault type (read, write, or execute) is con-
sistent with the page’s expected permissions.

The shield prepares to deliver the exception to the
LibOS, by copying the context and cause in a format de-
fined by the Drawbridge ABI, and modifying the context
to run the LibOS exception handler. Haven must now re-
sume the modified context. Unfortunately, SGX only al-
lows ERESUME outside an enclave, so the shield must EEXIT
to a small (untrusted) stub that immediately resumes the
enclave, restoring the context. We discuss the perfor-
mance implications of this additional exit later, in §7.3.

Most other exceptions are handled similarly to page
faults. The one special case is illegal instructions: as we
describe later in §5.4, some user-mode instructions are il-
legal in an enclave. The trusted exception handler decodes
and emulates these, by modifying the processor context
and advancing the instruction pointer.

5.4 SGX limitations and workarounds
In addition to the need for dynamic memory allocation,
we encountered three architectural limitations with SGX
as initially specified [28] that made it impossible to run
existing application and LibOS binaries. We summarise
these issues, our workarounds, and proposed changes.
Working with Intel, these changes are now incorporated
in the revised SGX specification [29].

Exception handling SGX allows an enclave to handle
its own exceptions by reporting the exception cause and
register context securely in the TCS. However, while the
registers are always saved, not all exception causes are
reported to the enclave. For example, hardware inter-
rupts are of no relevance to the enclave and may reveal
private information about the host configuration, so they
are not reported. As originally specified [28, §2.6.3], the
list of reported exceptions included program faults such
as division by zero, breakpoint instructions, undefined in-
structions, and floating point / SIMD exceptions, but not
page faults or general protection faults. This prevented
an enclave from handling these faults without trusting

the host for information such as faulting address and ac-
cess type. However, page faults are commonly handled
by user-mode code, for example in demand loading or
stack allocation. General protection faults are less com-
mon, but may also occur, e.g. in a LibOS emulating priv-
ileged instructions. SGX now reports these faults to the
enclave [29].

Permitted instructions SGX disallows in-enclave exe-
cution of instructions that may cause a VM exit or change
software privilege levels [28, §3.6]. Unfortunately, three
of these instructions are commonly encountered in LibOS
and application binaries: CPUID, RDTSC, and IRET.
CPUID This instruction queries processor features,

generally to test for extended instructions. SGX prevents
its use within an enclave, because a virtual machine may
be configured to trap and emulate it, but emulation is im-
possible since the enclave’s registers are not visible to the
hypervisor. Instead, the processor signals an invalid in-
struction, and Haven’s exception handler emulates CPUID
using static knowledge of features available on SGX.
RDTSC and RDTSCP These instructions return the cycle

counter, and are commonly used as a low-overhead time
source, e.g. to measure hold-time in adaptive spinlocks.
The initial version of SGX prevented their use because,
like CPUID, they may cause a VM exit. However, unlike
CPUID, they are not feasible to emulate: first, there is no
reliable source of time, and second, most uses of RDTSC
rely on its low overhead, which emulation cannot achieve.
Instead, the SGX specification was revised to permit these
instructions if VM exiting is disabled [29].
IRET Nominally an “interrupt return”, this is used at

the end of an exception handler when restoring proces-
sor state. It pops registers including instruction and stack
pointers, and returns in the new context.4 Since IRET can
also change protection level, SGX disallows its execution
in an enclave. Haven presently emulates IRET, but this
adds overhead to exceptions, as we discuss later in §7.3.

Thread-local storage For legacy reasons, thread-local
data on x86 is accessed via FS or GS segments. On
SGX, EENTER and ERESUME load private FS and GS base
addresses from the TCS. However, because a TCS is im-
mutable once created, the addresses must be known at
startup. Instructions exist to change FS/GS (WRFSBASE,
WRGSBASE), but these could not reliably be used in an en-
clave, since the changes were not saved on asynchronous
exits, and ERESUME restored FS and GS from the TCS.

As a result of this limitation, it was not possible to
context-switch a TCS between application threads, and

4IRET is used since, to our knowledge, it is the only user-mode in-
struction that can restore a complete context, including volatile registers.

276 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

therefore impossible to perform user-mode scheduling
within an enclave. As a workaround, the Haven proto-
type maps application threads 1:1 onto TCSs and host
threads.5 Although the shield’s scheduler still ensures the
correct behaviour of all synchronisation primitives, the
host’s ability to control scheduling of application threads
makes it more likely that a malicious host could exploit
application-level bugs by arbitrarily delaying threads.

This problem has been addressed in the revised SGX
specification [29], but an implementation was not yet
available to us, so our prototype relies on the workaround.

5.5 Unimplemented aspects

Our prototype implements the full design, with three ex-
ceptions. Rather than the attestation mechanism, we send
the VHD key in the clear. We also built a simplified ver-
sion of the disk integrity scheme that has equivalent per-
formance, but cannot detect all block rollback attacks. Fi-
nally, we “emulate” CPUID by exiting the enclave to exe-
cute the instruction. We do not expect these shortcuts to
materially impact performance.

6 Performance Evaluation

We developed and tested Haven using a functional emula-
tor for SGX provided by Intel. However, in the absence of
an SGX CPU or cycle-accurate emulator, we must do our
own performance modelling. Our approach is to measure
Haven’s sensitivity to key SGX performance parameters.

In this section, we first describe our performance
model, before reporting results for two typical cloud ap-
plications: Microsoft SQL Server, and Apache HTTP
Server. Our performance experiments were run on a sys-
tem comprised of a 4-core Intel Core i7-4700HQ CPU
running at 2.4GHz with 8GB of 1600MHz DDR3 RAM, a
240GB SSD (Intel SC2CW240A3), and a gigabit Ethernet
interface (Intel I217-LM) running Windows 8.1 Pro. We
used this mobile-optimised platform, because it permits
us to adjust the DRAM frequency and timings, allowing
us to simulate a variable memory penalty for SGX.

6.1 Performance model

To model performance, we assume that an SGX imple-
mentation will perform the same as a current CPU, ex-
cept for (i) additional costs (direct and indirect) of SGX

5This workaround is possible since the storage sizes for FS and GS
are constant and Drawbridge does not choose their location [6, §3.1].

instructions and asynchronous exits, and (ii) an addi-
tional memory penalty (latency and/or bandwidth of cache
misses) for memory encryption when accessing EPC.

Many SGX instructions are executed only at enclave
startup, and are therefore irrelevant to the performance
of long-running server applications. We also assume that
the EPC will be large enough to hold the working set of
our applications, and therefore do not model the over-
head of paging it to backing store. The only remaining
direct overheads for Haven performance on SGX are the
instructions for dynamic memory allocation (§3.1), and
transitions into and out of enclave mode: EENTER, EEXIT,
ERESUME, and asynchronous exits. The dynamic allocation
instructions only check and update page protection meta-
data. The transitions are documented as requiring a TLB
flush [28] and also perform a series of checks and updates.

For our evaluation, we implemented a second version of
Haven that does not use SGX. Instead, it simulates SGX
performance for the above critical instructions by busy-
waiting for a configurable number of processor cycles,
which we vary. In addition, for each enclave transition a
system call is used to flush the TLB. Since the system call
itself adds overhead not present on SGX, we view this as
a conservative estimate for the performance of SGX. We
cannot simulate the overhead of disallowed instructions
such as IRET and CPUID, since there is no practical way to
make them trap without SGX. However, we know from
experience with the emulator that CPUID is only invoked
at startup, and IRET is relatively rare (e.g., we observed
around 100 IRETs per second for a web server workload).

Memory penalties for EPC access are more difficult to
model. We simulate the impact of slower EPC by artifi-
cially reducing the system’s DRAM frequency.

6.2 Application workloads

Database We run Microsoft SQL Server 2014, Enter-
prise Edition, and TPC-E [56], a standard online transac-
tion processing benchmark. We use the default configu-
ration for SQL Server when running natively or in a VM,
but for Drawbridge and Haven we varied some parame-
ters. Drawbridge does not support large pages or locked
physical allocations, so we disabled them. We also limited
the buffer cache to 6.5GB (the best-performing size), be-
cause the LibOS does not report physical memory usage,
and the server’s default behaviour led to excessive paging.

The TPC-E clients run on a single machine connected
to our test system by a local gigabit network. We gen-
erated a database of 1000 customers6 and left other pa-

6Our database is smaller than the minimum for official TPC-E results
(5000 customers), but sufficient to saturate our test system.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 277

N
at

iv
e

H
yp

er
−V

 V
M

D
ra

w
br

id
ge

H
av

en
H

os
t F

S
H

av
en

V
H

D
H

av
en

E
nc

. V
H

Dtp
sE

0
20
40
60
80

100
120
140

(a) SQL Server, TPC-E

N
at

iv
e

H
yp

er
−V

 V
M

D
ra

w
br

id
ge

H
av

en
H

os
t F

S
H

av
en

V
H

D
H

av
en

E
nc

. V
H

D

Th
ro

ug
hp

ut
 (r

eq
/s

)

0
10

20

30

40

50

60

(b) MediaWiki on Apache

Figure 4: Performance breakdown

rameters at the default settings. For each run we allowed
at least 30 minutes of warm-up time, and then measured
transaction performance for one hour, reporting the over-
all throughput. Error bars show minimum and maximum
throughput over the run for a sliding 1-minute interval.

Web server We run Apache HTTP server7 version 2.4.7
and PHP 5.5.11. We configured Drawbridge to run
Apache’s worker processes in the same address space (and
enclave), and modified Apache’s configuration to avoid
using AcceptEx, which exposed a compatibility bug in
the LibOS socket code. We installed MediaWiki 1.22.5
backed by a SQLite database, and enabled the Alternative
PHP Cache for intermediate code and MediaWiki page
data. We benchmarked the server using 50 worker threads
on the client that repeatedly fetched the 14kB main page
over persistent SSL connections for a period of 5 minutes.

6.3 Results
Overall performance We begin by comparing the per-
formance of Haven to alternative host environments (none
of which provide shielded execution). Figure 4 shows a
performance breakdown for several configurations of each
workload: native execution on Windows 8.1, in a Hyper-
V VM, in Drawbridge, and three different configurations
of Haven: one that trusts the host to implement the filesys-
tem, the next using the private (VHD-backed) filesystem
but not encrypting it, and finally the full system with VHD
encryption and integrity protection enabled. In all Haven
workloads, we flush the TLB on enclave crossings, but do
not insert any additional delay for the SGX instructions.
We verified that the server’s CPU (and not network or stor-
age I/O) is the bottleneck in all non-Haven runs, so these
results give a reasonable indication of the overhead of the
various software components.

For SQL Server, the extra runtime layers and TLB
flush on enclave crossings give Haven a 13% slowdown
vs. Drawbridge. Furthermore, Haven’s unoptimised FAT
filesystem is a bottleneck for the I/O-intensive SQL work-
load. Besides a further 25% slowdown (with encryption),

7We used the 64-bit VC11 build from www.apachelounge.com.

Simulated delay (kcycles)
0 10 20 30 40 50

tp
sE

0

20

40

60

80

100

120

(a) SQL Server, TPC-E
Simulated delay (kcycles)

0 10 20 30 40 50

Th
ro

ug
hp

ut
 (r

eq
/s

)

0

10

20

30

40

50

Memory allocation
Enclave crossing

(b) MediaWiki on Apache

Figure 5: Sensitivity to SGX instruction overhead

it shows significant drops in throughput when limited I/O
bandwidth causes the server to periodically delay transac-
tion processing to allow checkpoint writes to complete.

Drawbridge and Haven exhibit relatively poor network-
ing performance with Apache, because all socket op-
erations traverse a security monitor in a separate pro-
cess. Moreover, Haven performs substantially (40%)
worse than Drawbridge with the host filesystem, because
of many small file operations that flush the TLB. The pri-
vate filesystem avoids this and even outperforms Draw-
bridge, since the workload is read-intensive and served
almost entirely from the buffer cache inside the enclave.

Sensitivity to SGX instruction overhead Figure 5
shows the sensitivity of our workloads to SGX overheads.
We vary the delay for either dynamic memory manage-
ment instructions or enclave crossings while keeping the
other at zero; the TLB is flushed on enclave crossings
in all cases. SQL Server is sensitive to crossing over-
head, with diminishing effects beyond 30k cycles, but un-
affected by memory allocation overhead because few allo-
cations occur in its steady state. The web server’s through-
put is sensitive to both parameters, because memory is al-
located in request handlers, but drops less overall.

Sensitivity to EPC performance We artificially re-
duced the memory performance of our system, by lower-
ing the DRAM clock rate from 1600MHz to 1067MHz.8

This slowed the memory system by a third overall,
but only reduced TPC-E throughput by 21%, and web
throughput by 7%. We conclude that memory-intensive
workloads are sensitive to EPC performance, but note that
our experiment over-estimates its effect, since only some
of the system’s memory accesses would go to EPC.

Summary For now, we must speculate about perfor-
mance of SGX implementations, but find our results
encouraging: for large, complex, CPU and memory-
intensive applications such as SQL Server, and for OS-
intensive applications like a modern web stack, even given

8We reduced the DRAM clock multiplier, but kept the delay times
(such as CAS latency, expressed in clock cycles) unchanged.

278 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

our inefficient prototype and assuming 10,000+ cycles for
SGX instructions, Haven’s performance penalty vs. a VM
is 31–54%. We suspect that significant classes of users
will readily accept such overheads, in return for not need-
ing to trust the cloud.

7 Discussion

This section discusses various issues, starting with an
analysis of the trusted computing base. We then cover
future work, suggest SGX optimisations, and discuss gen-
eral hardware support for shielded execution.

7.1 Trusted computing base

As Table 1 shows, the trusted computing base (TCB) of
Haven is substantial, because the LibOS includes a large
subset of Windows. However, in contrast to the current
cloud model, all code in the enclave, and thus all code in
the user’s TCB, is under user control. They may use any
means to achieve trust, including scanning for malware,
code inspection, etc., and update it at will.

Ultimately, our goal is not to minimise the TCB, but
rather to give the user equivalent trust in the confidential-
ity and integrity of their data when moving an application
from a private data centre to a public cloud. In this re-
gard, Haven addresses two real threats: a malicious em-
ployee of the cloud provider with either admin privileges
or hardware access, or a government subpoena.

Besides the software TCB, Haven also relies on the pro-
cessor’s correctness. While a feature like SGX undoubt-
edly adds complexity, hardware (even microcode) is ex-
tremely hard for an attacker to modify, and hardware ven-
dors perform significant validation to ensure correctness.

7.2 Future work

Storage rollback Haven does not currently prevent roll-
back of filesystem state beyond the enclave’s lifetime. It
cannot avoid the following attack: the enclave is termi-
nated (e.g., the host fakes a crash), and its in-memory state
is lost. A new instance of the enclave accessing the VHD
is guaranteed to read consistent data, but not necessarily
the latest version. Protecting against such attacks requires
secure non-volatile storage [45]. Such storage may be lo-
cated on other nodes, but the cost of network communica-
tion on every write is likely prohibitive. Instead, we plan
to communicate only on “critical” writes (e.g., transaction
commits) to balance this cost against the likely risks.

Untrusted time Our prototype relies on the host for sys-
tem time and timeouts. However, a malicious host may
lie about the time or signal timeouts early. We are plan-
ning two mitigations. One is to ensure the clock always
runs forward. The other uses the cycle counter as an al-
ternative time source; after calibrating it via network time
synchronisation, we can check for early timeouts.

Cloud management Besides isolation, virtual ma-
chines can be saved, resumed and migrated. However,
the implementation of these features depends on the host’s
ability to capture and recreate guest state, something that
Haven explicitly prevents. We aim to support similar fea-
tures cooperatively, using prior work that implemented
checkpoint and resume at the Drawbridge ABI level [6].
In its simplest form, the host could request the Haven
guest to suspend itself, which it would do by capturing
its own state to an encrypted image. The host may then
establish a new enclave to resume execution on another
node. Before gaining access to the encrypted image, the
new guest would perform an attestation step, giving it the
keys necessary to access the encrypted checkpoint image.
If the guest failed to complete these operations in a timely
manner, the host could simply terminate it.

7.3 SGX optimisations
Besides the limitations identified in §5.4, two further op-
portunities exist to optimise SGX performance for Haven.

Exception handling As mentioned in §5.3 and §5.4,
two aspects of SGX combine to substantially increase the
overhead of exception handling: ERESUME and IRET are
both illegal in an enclave. Haven’s exception handler
must EEXIT to a tiny stub that ERESUMEs a modified con-
text within the enclave. This then runs the LibOS and
application exception handlers, which typically finish by
executing IRET to restore the original context. However,
this causes another illegal instruction exception. Overall,
a single application exception (e.g., stack growth) results
in two exceptions and eight enclave crossings. As there
appear to be no insurmountable security implications, we
suggest permitting (or providing equivalent replacements
for) these instructions within the enclave.

Demand loading Haven’s shield loads application and
LibOS binaries. Modern systems typically load lazily:
virtual address space is reserved, but pages are allocated
and filled only on first access, in response to faults. Since
other threads may also access the same pages while they
are loaded, demand loading is done using a private mem-
ory mapping before remapping pages with appropriate
permissions in the final location. However, since SGX

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 279

does not support moving an existing page, Haven must ea-
gerly load all binaries. This adds time and memory over-
head, particularly at startup. For example, running Pow-
erShell until it displays a prompt causes 124MB of DLLs
to be loaded, but only 4% of those pages are accessed.

The revised SGX specification includes an
EACCEPTCOPY instruction [29], which allows a new
page to be both allocated and initialised with a copy of
data located elsewhere in the enclave before it becomes
accessible to software. This should enable demand-
loading, although we have not yet had the opportunity to
experiment with an implementation.

7.4 Hardware for shielded execution
Shielded VMs As we noted in §2.1, SGX is the first
commodity hardware that permits efficient multiplexing
among multiple isolated programs without relying on
trusted software. However, for many use-cases including
cloud deployments, hardware capable of isolating full vir-
tual machines (rather than portions of a user-mode address
space, as in SGX) would be desirable from a compatibil-
ity standpoint: it would support complete guest operating
systems. There are many performance and complexity-
related challenges to building such hardware, including
multiple levels of address translation, privileged instruc-
tions and virtual devices. However, if it were available, we
suspect that a Haven-like shield module would be a suit-
able architecture to protect unmodified guest VMs from
a malicious hypervisor, since the same trust issues ad-
dressed by Haven in the OS also arise in VM interfaces.

Shielding without information leakage Our definition
of shielded execution (§2.1) requires confidentiality for
intermediate state of the guest. As we noted (§3.1), SGX
limits our ability to achieve this, because it exposes to the
host information such as exceptions and page faults, and
because side-channels such as cache footprint leak guest
state information. At first glance, this concession seems
necessary for the OS to dynamically manage resources.
If all resources were allocated statically for the life of the
guest, a host would have no reason to observe guest states.
However, an OS relies on seeing application behaviour
to efficiently multiplex resources over varying demands;
e.g., by monitoring faulting addresses it can use page re-
placement algorithms to manage physical memory.

We conjecture that a hardware isolation mechanism
supporting true shielded execution can in fact permit dy-
namic resource multiplexing by changing the role of the
resource manager. Present mechanisms conflate deter-
mining the quantity of resources (e.g., the number of
physical pages) to allocate with the selection of specific

resources (the virtual-to-physical mapping). We propose
decoupling these, giving the host control only over re-
source quantities, and allowing the guest to choose spe-
cific resources to relinquish when allocations change. For
example, memory would be managed by allocating phys-
ical pages in the host, but allowing the guest to control
its virtual mappings, and using self-paging [22] to permit
oversubscription. The host may ask a guest to relinquish
pages, and kill it if it did not meet a deadline. We antici-
pate that hardware could also support cache partitioning,
achieving similar results to page colouring [64] without
constraints on physical allocation; a host could flush and
repartition caches without exposing guest access patterns.

8 Related Work
We survey related work in two areas: trusted hardware,
and systems to isolate applications from an untrusted
OS. Notwithstanding prior research [9, 12, 31, 34, 44],
hardware security modules (HSMs) [1, 53], trusted plat-
form modules (TPMs) [57] and ARM TrustZone [5] are
presently the main hardware sources of trust on commod-
ity platforms, and we focus on them.

Hardware security modules HSMs [53] are often used
to protect high-value secrets (e.g., keys) in the cloud. An
HSM is a protected computing element made tamper-
proof using a physical barrier and a self-destruct mech-
anism to erase data if the barrier is compromised. Cloud
HSMs such as AWS CloudHSM [1] offer APIs for key
manipulation, signing, and encryption. As a result, the
cloud user’s keys are protected, but other data must still
be transiently decrypted in a general-purpose node in or-
der to use it. This reduces, but does not eliminate, the at-
tack window compared to storing data persistently in the
clear. As dedicated hardware, HSMs are also expensive.

Trusted hardware TPMs [57] are hardware devices in-
cluded in many PCs supporting a similar attestation mech-
anism to SGX. The original approach to TPM-based attes-
tation builds a chain of trust using progressive measure-
ment of code during system boot, such as the bootloader,
OS, etc. [50]. More recent CPU extensions enable the late
launch and dynamic attestation of an isolated “secure ker-
nel”. This can reduce a platform’s software TCB to just
the late-launched code, a form of isolated execution, al-
beit one with two key drawbacks compared to SGX: vul-
nerability to relatively-simple hardware attacks including
memory snooping, and lack of support for efficient multi-
plexing of distinct late-launch environments.

There are two general approaches to multiplexing TPM
systems. The first, taken by Flicker [38], is to time-

280 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

multiplex the entire PC between secure kernels and an
untrusted host OS. Unfortunately, because it uses a sep-
arate chip, TPM dynamic attestation is notoriously slow –
Flicker’s transition times are tens to hundreds of millisec-
onds for small modules. The second approach is to attest a
trusted hypervisor or OS, which implements isolated ex-
ecution in software [39, 49, 52]; the main downside for
our scenario is that, regardless of its size, the hypervisor
remains under the cloud provider’s control. A cloud user
may compare a TPM attestation to a known hash of the
hypervisor binary, but we assume that the provider must
be able to update the hypervisor (e.g., to patch security
flaws, but also to insert arbitrary backdoors), and the user
must ultimately trust them. This approach may be feasible
given a hypervisor that is verified (down to binary code)
to protect guest confidentiality and integrity, so that the
attestation a user receives is meaningfully connected to
a proof of the isolation mechanism, but current progress
on OS-level formal verification is some way from this
goal [23, 30].

A set of extensions in many ARM processors, Trust-
Zone enables a “secure world” execution environment that
is isolated from the OS [5]. Like the TPM, systems using
TrustZone rely on software to multiplex the secure world;
for example, to enable a runtime for security-critical com-
ponents of mobile applications [51].

Shielding apps from an untrusted OS A number of
systems seek to defend applications from a malicious OS.
While XOMOS [35] used custom hardware, most recent
approaches rely on the support of a trusted hypervisor.
Proxos [54] runs isolated applications in a separate VM,
but allows them to interact with a commodity OS. Over-
shadow [11] and SP3 [60] pioneered transparent encryp-
tion of user memory when visible to the OS, protecting
application data from direct tampering. CloudVisor [63]
extended this technique to full VMs using nested virtu-
alisation, while SecureME [12] accelerated it in hard-
ware. More recently, InkTag [25] showed how to opti-
mise the guest OS and protect persistent storage, and Vir-
tual Ghost [14] used compiler techniques to implement a
similar mechanism within the OS kernel.

However, systems based solely on protecting applica-
tion memory from an untrusted OS are vulnerable to Iago
attacks through the system call interface [10]. Systems
such as InkTag [25] attempt to defeat Iago attacks by in-
terposing on system calls (e.g., in a custom libc) and
checking their results, but we feel that this approach is
unlikely to be tractable for arbitrary applications given
the complexity of modern OS interfaces – Linux today
includes more than 300 system calls, and Windows well
over 1000, as well as exceptions and asynchronous event

mechanisms. Instead, Haven defeats Iago attacks by de-
sign, using a LibOS, shield module, and a substantially
smaller (≈20 calls) mutually-distrusting host interface; it
also avoids the need for a trusted hypervisor through SGX
assistance.

Cloud security Finally, other research tackles the prob-
lem of removing trust from the cloud. Although fully
homomorphic encryption schemes which allow arbitrary
computation on encrypted data suffer intractably high
overhead [20, 21], partially homomorphic encryption has
been successfully applied in some domains; e.g., some
database queries [4, 46] and MapReduce programs [55]
can be implemented without ever decrypting data. While
this cannot support existing applications, it also does not
require trusted hardware.

MiniBox [33] combines the isolation of TrustVisor [39]
with the sandbox of Native Client [61]. Like Haven, Mini-
Box achieves mutual distrust between application code
and the host OS. Unlike Haven, MiniBox relies on a
trusted hypervisor, and its isolated execution environment
supports only small pieces of application logic, rather than
complete unmodified applications.

PrivateCore vCage [48] is a virtual machine moni-
tor implementing full memory encryption for commodity
hardware by executing guest VMs entirely in-cache and
encrypting their data before it is evicted to main memory.
Although it relies on a trusted hypervisor, and thus cannot
meet our security goals, it shares with SGX a resistance
to memory probes and similar physical attacks.

9 Conclusion
Today’s cloud platforms offer many advantages, but these
are often outweighed by the risks inherent in a hierarchi-
cal security architecture: the provider is trusted with full
access to user data. To eliminate this risk, Haven imple-
ments shielded execution of unmodified server applica-
tions in an untrusted cloud host. Haven brings us one step
closer to a true “utility computing” model for the cloud,
where the utility provides resources (processor cores, stor-
age, and networking) but has no access to user data.

Acknowledgements
We appreciate the assistance and collaboration of Intel
Labs, especially Matthew Hoekstra, Simon Johnson, Re-
bekah Leslie-Hurd, Frank McKeen, Carlos Rozas and
Krystof Zmudzinski. We are also grateful to all who pro-
vided feedback, in particular Steve Hand, Jon Howell, Re-
becca Isaacs, Rama Kotla, Bryan Parno, Oriana Riva, Em-
mett Witchel and the anonymous reviewers.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 281

References
[1] AWS CloudHSM Getting Started Guide. Amazon Web

Services, Nov. 2013. http://aws.amazon.com/cloudhsm/.
[2] I. Anati, S. Gueron, S. P. Johnson, and V. R. Scarlata. In-

novative technology for CPU based attestation and seal-
ing. In 2nd International Workshop on Hardware and Ar-
chitectural Support for Security and Privacy, 2013.

[3] T. E. Anderson, B. N. Bershad, E. D. Lazowska, and H. M.
Levy. Scheduler activations: Effective kernel support for
the user-level management of threads. ACM Transactions
on Computer Systems, 10:53–79, 1992.

[4] A. Arasu, S. Blanas, K. Eguro, R. Kaushik, D. Kossmann,
R. Ramamurthy, and R. Venkatesan. Orthogonal security
with Cipherbase. In 6th Conference on Innovative Data
Systems Research, Jan. 2013.

[5] Building a Secure System using TrustZone Technology.
ARM Limited, Apr. 2009. Ref. PRD29-GENC-009492C.

[6] A. Baumann, D. Lee, P. Fonseca, L. Glendenning, J. R.
Lorch, B. Bond, R. Olinsky, and G. C. Hunt. Compos-
ing OS extensions safely and efficiently with Bascule. In
EuroSys Conference, pages 239–252, Apr. 2013.

[7] S. Bhatkar, D. C. DuVarney, and R. Sekar. Address obfus-
cation: an efficient approach to combat a broad range of
memory error exploits. In 12th USENIX Security Sympo-
sium, pages 105–120, Aug. 2003.

[8] E. Brickell, G. Graunke, M. Neve, and J.-P. Seifert. Soft-
ware mitigations to hedge AES against cache-based soft-
ware side channel vulnerabilities. Report 2006/052, Cryp-
tology ePrint Archive, 2006.

[9] D. Champagne and R. B. Lee. Scalable architectural sup-
port for trusted software. In 16th IEEE International Sym-
posium on High-Performance Computer Architecture, Jan.
2010.

[10] S. Checkoway and H. Shacham. Iago attacks: why the sys-
tem call API is a bad untrusted RPC interface. In 18th In-
ternational Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Mar. 2013.

[11] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam,
C. A. Waldspurger, D. Boneh, J. Dwoskin, and D. R.
Ports. Overshadow: a virtualization-based approach to
retrofitting protection in commodity operating systems.
In 13th International Conference on Architectural Sup-
port for Programming Languages and Operating Systems,
pages 2–13, 2008.

[12] S. Chhabra, B. Rogers, Y. Solihin, and M. Prvulovic. Se-
cureME: a hardware-software approach to full system se-
curity. In International Conference on Supercomputing,
pages 108–119, 2011.

[13] Cloud Security Alliance. Government access to informa-
tion survey. https://cloudsecurityalliance.org/research/
surveys/# nsa prism, July 2013.

[14] J. Criswell, N. Dautenhahn, and V. Adve. Virtual Ghost:
Protecting applications from hostile operating systems. In

19th International Conference on Architectural Support
for Programming Languages and Operating Systems, AS-
PLOS ’14, pages 81–96, 2014.

[15] J. R. Douceur, J. Elson, J. Howell, and J. R. Lorch. Lever-
aging legacy code to deploy desktop applications on the
web. In 8th USENIX Symposium on Operating Systems
Design and Implementation, pages 339–354, Dec. 2008.

[16] K. Fu, F. Kaashoek, and D. Mazières. Fast and secure dis-
tributed read-only file system. In 4th USENIX Symposium
on Operating Systems Design and Implementation, pages
181–196, 2000.

[17] B. Gassend, E. Suh, D. Clarke, M. van Dijk, and S. De-
vadas. Caches and hash trees for efficient memory in-
tegrity verification. In 9th IEEE International Symposium
on High-Performance Computer Architecture, pages 295–
306, 2003.

[18] B. Gellman and L. Poitras. U.S., British intelligence min-
ing data from nine U.S. Internet companies in broad secret
program. The Washington Post, June 2013.

[19] B. Gellman and A. Soltani. NSA infiltrates links to Yahoo,
Google data centers worldwide, Snowden documents say.
The Washington Post, Oct. 2013.

[20] C. Gentry. A fully homomorphic encryption scheme. PhD
thesis, Stanford University, 2009.

[21] C. Gentry, S. Halevi, and N. Smart. Homomorphic evalu-
ation of the AES circuit. In 32nd International Cryptology
Conference, 2012.

[22] S. M. Hand. Self-paging in the Nemesis operating system.
In 3rd USENIX Symposium on Operating Systems Design
and Implementation, pages 73–86, 1999.

[23] C. Hawblitzel, J. Howell, J. R. Lorch, A. Narayan,
B. Parno, D. Zhang, and B. Zill. Ironclad apps: End-
to-end security via automated full-system verification. In
11th USENIX Symposium on Operating Systems Design
and Implementation, Oct. 2014.

[24] M. Hoekstra, R. Lal, P. Pappachan, V. Phegade, and
J. Del Cuvillo. Using innovative instructions to create
trustworthy software solutions. In 2nd International Work-
shop on Hardware and Architectural Support for Security
and Privacy, 2013.

[25] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and
E. Witchel. InkTag: secure applications on an untrusted
operating system. In 18th International Conference on Ar-
chitectural Support for Programming Languages and Op-
erating Systems, pages 265–278, 2013.

[26] F. Hou, N. Xiao, F. Liu, H. He, and D. Gu. Perfor-
mance and consistency improvements of hash tree based
disk storage protection. In 2009 IEEE International Con-
ference on Networking, Architecture, and Storage (NAS
2009), pages 51–56, 2009.

[27] J. Howell, B. Parno, and J. R. Douceur. How to run POSIX
apps in a minimal picoprocess. In 2013 USENIX Annual
Technical Conference, pages 321–332, June 2013.

[28] Software Guard Extensions Programming Reference. Intel

282 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) USENIX Association

Corp., Sept. 2013. Ref. #329298-001 http://software.intel.
com/sites/default/files/329298-001.pdf.

[29] Software Guard Extensions Programming Reference,
Rev. 2. Intel Corp., Oct. 2014. Ref. #329298-002.

[30] G. Klein, K. Elphinstone, G. Heiser, J. Andronick,
D. Cock, P. Derrin, D. Elkaduwe, K. Engelhardt,
R. Kolanski, M. Norrish, T. Sewell, H. Tuch, and S. Win-
wood. seL4: Formal verification of an OS kernel. In 22nd
ACM Symposium on Operating Systems Principles, pages
207–220, 2009.

[31] R. B. Lee, P. C. S. Kwan, J. P. McGregor, J. Dwoskin,
and Z. Wang. Architecture for protecting critical secrets
in microprocessors. In 32nd International Symposium on
Computer Architecture, pages 2–13, 2005.

[32] R. Levin, E. Cohen, W. Corwin, F. Pollack, and W. Wulf.
Policy/mechanism separation in HYDRA. In 5th ACM
Symposium on Operating Systems Principles, pages 132–
140, 1975.

[33] Y. Li, J. M. McCune, J. Newsome, A. Perrig, B. Baker,
and W. Drewry. MiniBox: A two-way sandbox for x86
native code. In 2014 USENIX Annual Technical Confer-
ence, June 2014.

[34] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh,
J. Mitchell, and M. Horowitz. Architectural support for
copy and tamper resistant software. In 9th International
Conference on Architectural Support for Programming
Languages and Operating Systems, Nov. 2000.

[35] D. Lie, C. A. Thekkath, and M. Horowitz. Implementing
an untrusted operating system on trusted hardware. In 19th
ACM Symposium on Operating Systems Principles, pages
178–192, 2003.

[36] U. Maheshwari, R. Vingralek, and W. Shapiro. How to
build a trusted database system on untrusted storage. In
4th USENIX Symposium on Operating Systems Design
and Implementation, pages 135–150, 2000.

[37] B. D. Marsh, M. L. Scott, T. J. LeBlanc, and E. P.
Markatos. First-class user-level threads. In 13th ACM
Symposium on Operating Systems Principles, pages 110–
121, Oct. 1991.

[38] J. M. McCune, B. J. Parno, A. Perrig, M. K. Reiter, and
H. Isozaki. Flicker: an execution infrastructure for TCB
minimization. In EuroSys Conference, pages 315–328,
2008.

[39] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor,
and A. Perrig. TrustVisor: Efficient TCB reduction and
attestation. In IEEE Symposium on Security and Privacy,
pages 143–158, May 2010.

[40] D. McGrew and J. Viega. The Galois/counter mode of
operation (GCM). http://csrc.nist.gov/groups/ST/toolkit/
BCM/documents/proposedmodes/gcm/gcm-spec.pdf,
2004.

[41] F. McKeen, I. Alexandrovich, A. Berenzon, C. V. Rozas,
H. Shafi, V. Shanbhogue, and U. R. Savagaonkar. Inno-
vative instructions and software model for isolated exe-

cution. In 2nd International Workshop on Hardware and
Architectural Support for Security and Privacy, 2013.

[42] R. Merkle. A digital signature based on a conven-
tional encryption function. In Advances in Cryptology –
CRYPTO’87, pages 369–378, 1987.

[43] C. C. Miller. Revelations of N.S.A. spying cost U.S. tech
companies. The New York Times, Mar. 2014.

[44] E. Owusu, J. Guajardo, J. McCune, J. Newsome, A. Per-
rig, and A. Vasudevan. OASIS: On achieving a sanctuary
for integrity and secrecy on untrusted platforms. In 20th
ACM Conference on Computer and Communications Se-
curity, pages 13–24, 2013.

[45] B. Parno, J. R. Lorch, J. R. Douceur, J. Mickens, and J. M.
McCune. Memoir: Practical state continuity for protected
modules. In IEEE Symposium on Security and Privacy,
pages 379–394, 2011.

[46] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Bal-
akrishnan. CryptDB: Protecting confidentiality with en-
crypted query processing. In 23rd ACM Symposium on
Operating Systems Principles, pages 85–100, 2011.

[47] D. E. Porter, S. Boyd-Wickizer, J. Howell, R. Olinksy,
and G. C. Hunt. Rethinking the library OS from the top
down. In 16th International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, pages 291–304, Mar. 2011.

[48] PrivateCore. Trustworthy computing for OpenStack with
vCage. http://privatecore.com/vcage/, 2014.

[49] H. Raj, D. Robinson, T. B. Tariq, P. England, S. Saroiu,
and A. Wolman. Credo: Trusted computing for guest VMs
with a commodity hypervisor. Technical Report MSR-TR-
2011-130, Microsoft Research, Dec. 2011.

[50] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. De-
sign and implementation of a TCG-based integrity mea-
surement architecture. In 13th USENIX Security Sympo-
sium, Aug. 2004.

[51] N. Santos, H. Raj, S. Saroiu, and A. Wolman. Using ARM
TrustZone to build a trusted language runtime for mobile
applications. In 19th International Conference on Archi-
tectural Support for Programming Languages and Oper-
ating Systems, pages 67–80, 2014.

[52] E. G. Sirer, W. de Bruijn, P. Reynolds, A. Shieh, K. Walsh,
D. Williams, and F. B. Schneider. Logical attestation: An
authorization architecture for trustworthy computing. In
23rd ACM Symposium on Operating Systems Principles,
pages 249–264, 2011.

[53] S. W. Smith and S. Weingart. Building a high-
performance, programmable secure coprocessor. Com-
puter Networks, 31(9):831–860, Apr. 1999. ISSN 1389-
1286.

[54] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: Mak-
ing trust between applications and operating systems con-
figurable. In 7th USENIX Symposium on Operating Sys-
tems Design and Implementation, pages 279–292, 2006.

USENIX Association 11th USENIX Symposium on Operating Systems Design and Implementation (OSDI ’14) 283

[55] S. D. Tetali, M. Lesani, R. Majumdar, and T. Mill-
stein. MrCrypt: Static analysis for secure cloud compu-
tations. In 2013 ACM SIGPLAN Conference on Object-
Oriented Programming Systems, Languages, and Appli-
cations, pages 271–286, 2013.

[56] TPC benchmark E standard specification. Transaction
Processing Performance Council, June 2010. Rev. 1.12.0.

[57] TPM Main Specification Level 2. Trusted Computing
Group, Mar. 2011. Version 1.2, Revision 116.

[58] C.-C. Tsai, K. S. Arora, N. Bandi, B. Jain, W. Jannen,
J. John, H. A. Kalodner, V. Kulkarni, D. Oliveira, and
D. E. Porter. Cooperation and security isolation of library
OSes for multi-process applications. In EuroSys Confer-
ence, Apr. 2014.

[59] A. Vasudevan, E. Owusu, Z. Zhou, J. Newsome, and J. M.
McCune. Trustworthy execution on mobile devices: What
security properties can my mobile platform give me? In
5th International Conference on Trust and Trustworthy
Computing, pages 159–178, June 2012.

[60] J. Yang and K. G. Shin. Using hypervisor to provide
data secrecy for user applications on a per-page basis. In
4th International conference on Virtual Execution Envi-
ronments, pages 71–80, 2008.

[61] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Or-
mandy, S. Okasaka, N. Narula, and N. Fullagar. Native
Client: A sandbox for portable, untrusted x86 native code.
In IEEE Symposium on Security and Privacy, 2009.

[62] A. Yun, C. Shi, and Y. Kim. On protecting integrity and
confidentiality of cryptographic file system for outsourced
storage. In 2009 ACM Workshop on Cloud Computing
Security, pages 67–76, 2009.

[63] F. Zhang, J. Chen, H. Chen, and B. Zang. CloudVisor:
retrofitting protection of virtual machines in multi-tenant
cloud with nested virtualization. In 23rd ACM Symposium
on Operating Systems Principles, pages 203–216, 2011.

[64] X. Zhang, S. Dwarkadas, and K. Shen. Towards practi-
cal page coloring-based multicore cache management. In
EuroSys Conference, pages 89–102, 2009.

