
Translation Lookaside Buffer Consistency:
A Software Approach*

David L. Black, Richard F. Rashid, David B. Golub, Charles R. Hill+, and Robert V. Baron
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We discuss the translation lookaside buffer (TLB) consistency prob-
lem for multiprocessors, and introduce the Mach shootdown algo-
rithm for maintaining TLJ3 consistency in software. This algorithm
has been implemented on several multiprocessors, and is in regular
production use. Performance evaluations establish the basic costs

of the algorithm and show that it has minimal impact on applica-
tion performance. As a result, TLB consistency does not pose an
insurmountable obstacle to multiprocessors with several hundred
processors. We also discuss hardware support options for TLB
consistency ranging from a minor interrupt structure modification
to complete hardware implementations. Features are identified in
current hardware that compound the TLB consistency problem; re-
moval or correction of these features can simplify and/or reduce
the overhead of maintaining TLB consistency in software.

1 Introduction

The trend in uniprocessor and multiprocessor operating system de-
sign has been toward flexible use of shared memory as an aid to OS
performance, application performance and parallelism. SunOS’ 4.0
is a recent uniprocessor UNIX-based system which relies heavily
on memory sharing to support common OS features (e.g. UNIX
read/write) [14]. The Mach multiprocessor operating system pro-
vides support for copy-on-write and read-write memory sharing be-
tween programs, multiple threads of control within a single address
space, memory mapped files and user-provided backing storage ob-
jects and pagers [21,26,27,30]. These features provide for better
use of physical memory, reduced data copy costs, increased paral-
lelism through the availability of lightweight processes scheduled

‘This research was sponsored by the Defense Advanced Research
Projects Agency (DOD), monitored by the Space and Naval Warfare Sys-
tems Command under Contract NOOO39-87-C-0251.

The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies,
either expressed or implied, of the Defense Advanced Research Projects
Agency or the US Government.

t Current address is Philips Labs, Briarcliff Manor, NY.
‘SunOS is a trademark of Sun Microsystems.

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

0 1989 ACM O-8979 l-300-O/89/0004/0113 $1.50

by the kernel on multiple CPUs and user-tailored memory man-
agement and sharing which can be critical to the performance of
application support services such as database managers [24].

The use of shared memory implies the need to consistently man-
age several important aspects of multiprocessor state: the instruc-
tion and data caches used to funnel information to each CPU and the
address translation lookaside buffers (TLBs) which provide page-
level virtual-to-physical mappings [5,12,18]. Data cache consis-
tency alone is not sufficient. For example, if one thread of a parallel
program remaps a region of virtual memory to contain a mapped
file, all other threads which are currently executing need to see
a consistent view of this memory region. This implies changing
the virtual-to-physical mapping entries of several processors at the
same time. Even basic virtual memory management functions such
as pagein and pageout will not (in general) work correctly unless
the TLBs of all CPUs have the same image of the current state of
a physical page.

Although hardware engineers have lavished design time, imple-
mentation energy and board space on the problem of maintaining
consistent program instruction and data caches in shared memory
multiprocessors. they have largely ignored the related problem of
TLB consistency [6]. The most compelling reason for this lack
of interest has come not from a careful study of the costs of TLB
management, but instead from the economic necessities of hard-
ware design which have &equently dictated the use of off-the-shelf
microprocessors. Not only do these microprocessors lack hardware
support for TLB consistency, they often make hardware consis-
tency management impossible by not providing pinouts for TLB
control. The lack of hardware support for TLB consistency implies
the need for a software solution; although most multiprocessor op-
erating systems have had to address this problem, there has not yet
been a systematic study of the costs of software TLB consistency.

This paper examines the software management of TLB consis-
tency in the Mach operating system. Its extensive use of shared
memory of many types both inside the operating system kernel and
as a tool for user Programming makes the Mach operating system
an extreme example of an environment where TLB consistency is
of prime importance. This paper describes the design and imple-
mentation of Mach virtual memory as it relates to TLB management
and examines the costs of TLB management both as a function of
system overhead and application execution time.

2 The Mach VM System

Mach is a portable multiprocessor operating system under devel-
opment at Carnegie Mellon University. Mach’s virtual memory
system retains compatibility with 4.3BSD UNIX’ while providing

2UhrlX is a trademark of AT&T Bell Labqratories.

113

significant enhancements to UNIX’s memory management capabil-
ities. Specifically, Mach supports

0 large, sparse virtual address spaces,

l copy-on-write and read-write memory sharing between tasks,

l read-write memory sharing within tasks,

l memory-mapped files, and

a user-provided backing store objects and pagers.

This new functionality and widespread use of sharing places addi-
tional demands on virtual memory hardware that are not present in
prior systems.

The programmer’s primary view is that Mach’s virtual memory
system implements address spaces and operations thereon. Each
address space is associated with a task that may contain one or
more threads of control. All memory within a task’s address space
is completely shared among its threads; the threads may execute
in parallel on multiprocessors. Read-write sharing of portions of
address spaces is available between tasks via an inheritance mech-
anism at task creation. Copy-on-write or virtual copy sharing of
memory is aggressively used by many portions of the Mach kernel,
including the message passing system and the implementation of
the Unix fork operation. Operations supported on Mach address
spaces include

0 allocation of virtual memory,

l deallocation of previously allocated virtual memory,

0 setting protection on virtual memory,

l specification of inheritance of virtual memory, and

l reading or writing memory in some other address space.

These operations may be invoked on arbitrary page-aligned3 regions
of address spaces.

Mach cleanly separates the implementation of virtual mem-
ory into machine-independent and machine-dependent portions.
The primary implementation of address space operations is in
the machine-independent portion of the system. As a result the
machine-dependent portion consists of a single module, the phys-
ical map or pmap module, that implements a simple interface to
the memory management hardware. Machine-independent code as-
sociates a pmap with each address space, and makes calls on the
pmap module as needed to perform physical map operations. These
operations include:

l validate, invalidate, and protection change operations on vir-
tual address ranges,

l invalidate and protection change operations on physical
pages, and

l bookkeeping operations that allow the pmap module to keep
track of which pmaps are in use on which processors.

Parallel execution of a task with multiple threads results in the same
pmap being used simultaneously by multiple processors. More
details can be found in [28].

Extensive lazy evaluation is used in determining when to invoke
pmap operations. The Mach VM system maintains ah memory
management information in machine-independent data structures,
and does not need to consult the pmap module for address validity
or mapping information. As a result pmaps usually do not present
a complete view of valid memory for any address space because
they are lazily updated as required by page faults. Pmaps can even

%lris page alignment is with respect to Mach virtual pages which may
be a multiple of the actual hardware page size.

be destroyed at runtime; they will be reconstructed from scratch as
page faults occur.

Operations on Mach address spaces may require actions to main-
tain TLB consistency when virtual memory is deallocated or its
protection is reduced; these actions consist in invalidating incon-
sistent entries in remote TLBs (i.e. TLBs for processors other than
the one executing the address space operation). There are two sit-
uations in Mach that require such actions, invoking an operation
on the address space of a multi-threaded task that is executing in
parallel on more than one processor, and invoking an operation
on the address space of another task that is executing on a differ-
ent processor. For the purposes of TLB consistency the kernel is
viewed as a multi-threaded task that is potentially executing on all
processors of a multiprocessor.

TLB consistency is among the hardware-specific implementa-
tion details that are confined to the pmap module. This can
be viewed as an instance of policy-mechanism separation; the
machine-independent VM system invokes operations that require
TLB consistency actions, but it is up to the pmap module to dcter-
mine when and how to carry out these actions. The design of the
pmap structure itself is also encapsulated within the pmap module
to permit support for whatever data structures may be required by
the hardware; the machine-independent portion of Mach does not
depend on either the internals of the pmap module or the hardware
support mechanisms for virtual memory.

3 The TLB Consistency Problem

Maintaining TLB consistency on current multiprocessors is more
difficult than it appears at first glance. A naive solution would
be for the processor executing an operation that might cause an
inconsistency to simply invalidate the entries in the remote TLBs
and proceed This will not work because most multiprocessors do
not permit processors to perform invalidate operations on TLBs
other than their own. Something else is required: either hardware
changes to support remote invalidation of TLB entries, or a software
notification mechanism (e.g. interrupts) to cause other processors to
perform invalidations. These changes are still insufficient to solve
the problem due to two TLB features:

1. Hardware reload mechanisms can reload inconsistent entries
after they are flushed.

2. TLBs can write inconsistent entries back to memory in order
to set reference and/or modify bits.

Flushing entries before changing the physical map will not work
due to the first feature, and the second feature can corrupt physical
map changes if flushing is postponed until after the physical map
is changed. As a result, it is necessary to stall remote processors
during updates of physical maps.

Earlier papers on the Mach VM system [21] discussed three
potential techniques for handling TLB consistency on hardware
that does not support remote flushing of TLBs (i.e. most current
commercial multiprocessors):

1. Notify processors to carry out consistency actions.

2. Delay use of changed mappings until all buffers have been
flushed (e.g. by code executed in response to timer inter-
rupts).

3. Allow temporary inconsistency in cases where it does not
cause problems (e.g. if protection is being increased).

The Mach kernel implementation relies on the first technique be-
cause the additional buffer flushes required by the second technique

114

can be expensive on some architectures [9]. and the third technique
is not a complete solution-it is an optimization that can be ap-
plied to any TLJ3 consistency technique that correctly handles the
decreased protection and invalidated mapping cases.

4 The Shootdown Solution

Mach pmap modules maintain TLB consistency by forcibly inter-
rupting processors to perform TLB consistency actions (i.e. entry or
buffer flushes). This forcible interruption is referred to as “shoot-
ing” entries out of remote TLBs, and the entire process of causing
remote entries to be invalidated is called a “shootdown”. The shoot-
down algorithm is divided into two portions: the code executed by
the initiator (send interrupts if an inconsistency might occur as a
result of a pmap operation), and the code executed by the responder
(receive interrupts and perform the consistency actions).

The shootdown algorithm manipulates a small collection of data
structures:

l A set of active processors. This is the set of processors that
are actively performing virtual to physical translations on

my pm9

l A set of idle processors.

l For each pmap, a set of processors that is using that pmap.

l For each processor, a flag that indicates that a TLB consis-
tency action is needed, and buffers to hold queued consis-
tency actions.

The shootdown algorithm is invoked when a pmap operation detects
that the changes it is about to make to a pmap could cause a TLB
inconsistency. Invoking a shootdown guarantees that any inconsis-
tent TLB entries caused by this operation will not be used after the
operation completes. The algorithm proceeds in four phases after
it is invoked (the initiator holds an exclusive lock on the pmap at
invocation):

1 Initiator: The initiator queues consistency action requests for
all processors using the pmap and sets their “action needed”
flags. It then sends interrupts to the processors and waits for
responses.

2 Responders: Each responder receives its interrupf and removes
itself from the set of active processors to acknowledge the
interrupt. The responders then spin until the initiator com-
pletes its changes to pmap. (This spinning is necessary to
ensure that responders neither read nor write the pmap while
the update is in progress.)

3 Initiator: The initiator performs its pmap changes after all re-
sponders using the pmap are spinning. It unlocks the pmap
when it is done.

4 Responders: The responders perform their required TLB inval-
idations after the pmap is unlocked and dequeue the corre-
sponding actions. They also clear their “action needed” flags
and rejoin the set of active processors.

This description omits many details in order to expose the underly-
ing structure. The algorithm itself is considerably more complicated
for the following reasons, most of which involve interrupts:

l A responder may cease using the pmap after the shootdown
interrupt is requested.

l Concurrent shootdown operations are a source of potential
deadlocks.

l Interrupt protection is necessary during a shootdown.

0 Inconsistent interrupt protection of locks is another source
of potential deadlocks.

l Idle processors should not receive shootdown interrupts for
performance reasons.

If a responder ceases using the pmap before receiving its in-
terrupt, there is no need for the initiator to synchronize with this
responder because it has flushed all entries for this pmap from its
TLB. Hence the initiator can proceed once it notices that the respon-
der is no longer using the pmap. This is implemented by making
the initiator’s check for a response be a check for the responding
processor to either become inactive or stop using the pmap.

The deadlocks mentioned in the second item can be caused by
two initiators shooting at each other. Deadlock can then occur with
both initiators waiting for the other to continue. This can only
happen if the shootdowns are on different pmaps (i.e. the kernel
pmap and a user pmap) because the pmap locks prevent concurrent
shootdowns on the same pmap. Initiators avoid these deadlocks
by disabling shootdown interrupts and removing themselves from
the set of active processors. Interrupts are still sent to such initia-
tors, but there is no need to synchronize with their receipt because
the interrupts will be acted upon before performing any memory
references that may use inconsistent TLB entries.

Responders must disable further shootdown interrupts while ser-
vicing one to avoid duplicate add and remove operations on proces-
sor sets (most hardware does this by default). Blocking interrupts
also enhances response to concurrent shootdown operations because
a single instance of the responder’s algorithm responds to all shoot-
downs in progress. Finally, both the initiator and responder should
disable all interrupts during a shootdown to avoid delays to the
synchronization (a device interrupt at the wrong point could stall
the entire machine).

The potential deadlocks in the fourth item result from an in-
teraction of the shootdown algorithm’s barrier synchronization at
interrupt level with inconsistent interrupt protection of locks. They
are avoided by associating a fixed interrupt priority (with respect to
the shootdown interrupt) with every lock in the system. Locks are
requested at their associated interrupt priority level and can only
be held at that level or higher. This requires careful &sign and
coding in modules that can be called by device interrupt routines
and in modules that make upcalls. A complete explanation of these
deadlocks and their avoidance is beyond the scope of this paper.

The fifth item enhances performance of kernel pmap shootdowns
by not sending shootdown interrupts to idle processors, and hence
reducing the initiator’s synchronization time (initiators still queue
actions for idle processors, but do not synchronize with them).
The set of idle processors is used to implement this feature; idle
processors must check for queued consistency actions and execute
them before becoming active.

Incorporating these refinements into the basic description pre-
sented earlier yields the full shootdown algorithm shown in Fig-
ure 1. English has been liberally substituted for actual code and
some details have been omitted for clarity. The variable mycpu
identifies the current processor. The variables start and end
identify the address range that must be invalidated from the TLBs to
prevent an inconsistency. Arrays have been used to implement the
active and in-use processor sets. disable-interrupts
returns the previous interrupt state; disabling and restoring interrupt
state may be done by hardware for the responders. The numbers
in comments identify the algorithm phases enumerated above.

115

Initiator:
s = disable_interruptsO;
active[mycpul = FALSE;
lockgmap(pmap);
if (inconsistent TLB may result) (

if (pmap->in-uselmycpul) (
invalidate-tlb(pmap,start,end);

/* Phase 1 */
if (other cpus using pmap) (

list_type shoot-list = EMPTY-LIST;

for (every cpu in system) I

if (pmap->in-uselcpul &&
cpu != mycpu) (

lock-action-structure(cpu):
queue_action(cpu,pmap,start,end);
action-neededlcpul = TRUE;
unlock-action-structure(cpu);

if (idle[cpul == FALSE) I
add cpu to shoot-list

I
1

}
for (every cpu on shoot-list) (

send-shootdown-interrupt(cpu);

for (every cpu on shoot-list) (
while (activelcpul &&

pmap->in-uselcpul) (
/* spin */ ;

/* Phase 3 */
make changes to physical map

unlock-pmap(pmap);
active[mycpu] = TRUE;
restore-interrupt-state(s);

Responders: /* Phase 2 */
s = disable-interruptso;
while (action-needed[mycpu]) (

active[mycpu] = FALSE;
while (pmap is locked(kernel-pmap) &&

pmapIisIlocked(user-pmap(mycpu)))
/* spin */ ;

/* Phase 4 */
lock-action-structure(mycpu);
process-queuedactions(mycpu);
action-neededlmycpul = FALSE;
unlock-action-structure(mycpu);
active[mycpul = TRUE;

restore-interrupt-state(s);

Figure 1: Mach Shootdown Algorithm Pseudo-Code

Three important details have been omitted from the pseudo-code
in Figure 1:

1. The invalidation mechanism for TLBs is not specified. For
hardware which supports both a single entry invalidate and
an entire buffer flush, the mechanism chooses between indi-
vidual invalidates and a buffer flush based on the number of
entries that must be invalidated (i.e. beyond some threshold
it is faster to flush the entire buffer than to do the individ-
ual invalidates); this threshold depends on hardware factors
(buffer size, speed of invalidates and flushes, etc.).

2. The update queue for each processor is a small buffer. If
the initiator detects overflow, it sets a flag that causes the
responder to flush its entire TLB. The queue size is set so
that this only happens in cases where the responder would
flush its entire TLB for efficiency reasons in the absence of
update queue overflow.

3. A check is ma& to see if a shootdown interrupt is already
pending for a processor before adding it to the list of pro-
cessors that will receive shootdown interrupts.

Lazy evaluation of pmaps enhances the effectiveness of the
shootdown algorithm by avoiding shootdowns for pages that are
never used. This is implemented by having the check for potential
inconsistencies determine if the pages in question are mapped in
the physical map; if the pages are not mapped, then a shootdown is
not necessary because TLBs do not cache invalid mappings. This
occurs frequently due to the extensive lazy evaluation of pmap
operations by the Mach VM system.

5 An Evaluation of TLB Shootdown

Our evaluation of the Mach TLB shootdown algorithm includes
experiments to determine its cost, performance, and overhead im-
pact. The basic costs for TLB shootdown are determined from
experiments that involve a simple program for testing TLB con-
sistency. More comprehensive performance and overhead impact
results are obtained from experiments with applications that reflect
the current use of multiprocessors in a research and production
environment. There was no pageout activity during any of our ex-
periments. Pageout does cause shootdowns, but the overhead of
actually performing the pageout is much greater than the overhead
of the associated shootdown. Our results apply primarily to systems
with adequate physical memory for applications.

5.1 Testing TLB Consistency

We developed a simple program that tests whether TLB consistency
is being maintained. This program tries to cause a simple TLB
inconsistency and then attempts to detect its effects; if consistency
is being maintained, there will be no effects. The program employs
multiple threads to achieve parallel execution on a multiprocessor.
and functions in the following manner:

1.

2.

3.

4.

116

Allocate a page of read-write memory.

Start up child threads. Each thread runs in a tight loop,
incrementing a separate counter in this page of memory.

After threads are all started, the main thread reprotects the
page of counters to be read-only and immediately saves a
copy of the counters.

The spinning child threads all take unrecoverable page faults
(write fault on a read-0nIy page).

5. After the page faults, the values of the counters are compared
with the saved copy.

A difference in the counter values means that some thread continued
to increment its counter after the page containing it became read-
only. This can only happen if an inconsistent TLB entry continues
to allow write access to the page. and therefore indicates a TLB
inconsistency.

We found thii program useful not only as a check on correct-
ness, but also as a performance evaluation tool; on an n-processor
multiprocessor, running this program with k<n child threads causes
exactly one shootdown on its user pmap involving exactly k pro-
cessors. This can be used to measure the basic overhead of TLB
shootdown.

5.2 Evaluation Applications

To evaluate the performance impact of TLB shootdown. we asked
several research groups at CMU to provide applications that typify
their use of the Multimax. The groups were kind enough to provide
us with the following applications:

Mach (operating system): parallel build of the kernel from
sources.

Parthenon (parallel theorem prover): Parthenon running 15-way
parallel on a difficult standard example [3].

Agora (support base for heterogeneous parallel/distributed sys-
tems): Double ended wavefront-based shortest path search
program based on the Agora system [2]. Program runs 15-
ways parallel.

Camelot (transaction processing): 8-way parallel run of transac-
tion performance analyzer to stress transaction throughput
capabilities 1231.

Both the Parthenon and Agora applications were run five times in
succession to increase the number of shootdown events for which
data was collected.

The applications vary in their sophistication of memory use. The
Mach kernel build uses multiple processors only for throughput;
it does not share memory among user tasks. Parthenon allocates
memory as needed to hold the intermediate results of the proof
search. Agora uses shared write-once memory for communication
among the tasks performing the search. Camelot makes aggressive
use of memory sharing and copy-on-write mapping to implement
database access and transaction semantics. In addition, many inter-
nal components of the Camelot system (e.g. the transaction man-
ager) are multi-threaded for performance reasons. These applica-
tions exercise the shootdown algorithm under a variety of memory
usage patterns.

6 Measurement Techniques

Our measurements were taken on an instrumented Mach kernel run-
ning on a 16 processor NS32332 Encore Multimax. The Multimax
is a shared-memory bus-based multiprocessor with write through
caches. Its system control card provides a free-running 32bit mi-
crosecond counter from which timestamps can be obtained [13].
The xpr package4 forms the basis of our instrumentation; it pro-
vides a circular buffer of events including data arguments, event
identifiers, processor numbers and timestamps. At each event to
be monitored, we added code to gather up the data arguments and

4hnplemented in the Mach kernel by Steve Stone.

pass them to the xpr package; it does the rest. The event buffer
managed by xpr was sized so that it would never overflow during
our test runs.

There aTe two events of interest in monitoring the shootdown
code. For the initiator we save the following items in one event
record:

A flag indicating whether this shootdown is on the kernel
pmap or some user pmap.

Number of Mach VM pages involved in the shootdown.

Number of processors being shot at.

Elapsed time from invoking the shootdown algorithm until
the initiator can begin making its changes to the pmap.

For the responder we save the elapsed time in the interrupt service
routine. This is a slight underestimate because it ignores the in-
terrupt dispatch and return times. To avoid lock contention effects
in the xpr package we only record responder events on 5 selected
processors. In addition we wrote a number of utility programs to
control the instrumentation (e.g. on, off, reset), read the collected
data, and perform statistical analysis.

6.1 Measurement Validation

An important issue in instrumenting a hardware or software system
is whether the instrumentation affects the behavior it is measuring.
For this work, the particular question is whether introduction of ker-
nel instrumentation for TLB shootdowns affects the performance of
the applications that we are using to evaluate shootdown behavior.
To assess this, we chose the application that is most vulnerable to
performance perturbations, Parthenon, and ran it with and without
instrumentation to assess this impact. The potential performance
impact for these tests was deliberately increased by disabling the
lazy evaluation feature of the shootdown algorithm,

Parthenon is highly vulnerable to performance perturbations be-
cause it is a search program with an essentially non-deterministic
control structure; worker threads remove work from a central
workpile and add new work as it is generated. Perturbations in the
runtime of these threads change the order of the add and remove
operations on the central workpile, and thus the order in which
possibilities are searched. This impacts Parthenon’s execution time
because Parthenon only searches for a single proof rather than ex-
haustively searching for all proofs at a given depth, and hence the
order in which possibilities are considered can greatly affect the
time it takes to find a proof. Parthenon has obtained super-linear
speedups on some problems from this effect-a parallel search will
consider some possibilities much earlier in its execution than a se-
rial search; if one of these possibilities quickly leads to the proof,
the potential savings of unproductive effort over the serial case is
enormous.

The results from five runs of Parthenon indicated a perturbation
in runtime of about 1.5% (4 seconds out of 2.53). This result is
not statistically significant, and the effect is swamped by other
effects (e.g. timer interrupts) that produce perturbations of 8-104 in
Parthenon’s runtime. We conclude that our kernel instrumentation
does not significantly perturb the behavior of the applications we
are measuring, and that our results are therefore representative of
shootdown behavior on uninstrumentcd kernels.

7 Results

Our evaluation of the shootdown algorithm has three major goals

l Determine the basic costs of shootdown.

l Measure the effects of lazy evaluation.

l Measure overhead and performance impact for typical ap-
plications.

The experiments to achieve the first goal involve measuring the
performance of the shootdown algorithm while running our test
program. The remaining two goals are achieved by experiments
that involve collecting data while running the evaluation applica-
tions provided by research projects at Carnegie Mellon.

7.1 Basic Costs of Shootdown

The ability of our shootdown test program to cause a single shoot-
down involving a predetermined number of processors was used to
measure the basic costs of TLB shootdown. Varying the number
of child threads used by the tester from 1 to 15 causes the number
of processors involved in the shootdown to also vary from 1 to 15.
The tester was run ten times for each case; means and standard
deviations were calculated for the resulting data. Figure 2 plots the
resulting data means with error bars of plus or minus the standard
deviation. The data exhibits a pronounced change between 12 and
13 processors; the points depart significantly from the trend line
established by the data for smaller numbers of processors, and the
standard deviation doubles. This leads us to believe that some un-
expected/unrelated effect is coming into play when more than 12
processors are involved (the shootdown algorithm does not change
when more processors are involved). Bus contention and conges-
tion effects are likely candidates; previous experiments have shown
that these effects become signilicant on the Multimax when 12 or
more processors are actively using the bus (e.g. for block copy of
data) [21]; both the saving of state (i.e. registers) in response to the
interrupts and the access to shootdown state by the responders can
be expected to miss in cache. Excluding the data for 13-15 proces-
sors, we obtain the trend line shown in the figure by a least-squares
fit. From its equation we calculate the basic cost of a shootdown
as 430 microseconds for the first processor plus 55 microseconds
for every additional processor involved.

This cost measures the time it takes the initiator from starting the
shootdown until it can proceed with its pmap changes. Measuring
responder synchronization (i.e. spin) times would not be meaning-
ful for this experiment because these times strongly depend on the
duration of the pmap operation that invokes the shootdown; the
shootdown tester only exercises shootdowns from one operation
(pmap-protect) of short duration (only 1 page involved). In addi-
tion the shootdown algorithm makes it very difficult to distinguish
between responses to shootdowns on user pmaps and responses to
shootdowns on kernel pmaps (the algorithm can handle shootdowns
on both pmaps in one response).

7.2 Effectiveness of Lazy Evaluation

We also performed experiments to assess the contribution of lazy
evaluation to the performance of the shootdown algorithm. We
removed most of the lazy evaluation for shootdowns by disabling
the check for valid mappings in the check for potential inconsis-
tencies. The remaining lazy evaluation comes from internal pmap
module knowledge about the structure of Multimax page tables.
The Multimax uses the NS32382 MMU which employs two-level
page tables, and the pmap module organizes the second level tables

00
0 2 4 6 8 10 12 14 16

processors
Figure 2: Basic Costs of TLB Shootdown

Application Mach [Parthenon
LUY No Yes 1 No Yes
Kernel Events 8091 3827 1 107 4
Avg. Time 1185 1020 1379 1395
User Events 0 0 70 0
Avg. Time 867

Table 1: Effect of Lazy Evaluation on Shootdowns

into page-sized chunks. Therefore if the pmap module ever finds a
missing second level page table entry, it knows that an entire page
of second level entries is missing and skips the corresponding ad-
dress range. Removing this code would significantly’ increase the
cost of some important pmap operations (e.g. destroying a pmap)
and impact our evaluation applications.

To assess the effects of lazy evaluation we ran both the Mach
and Parthenon applications with lazy evaluation on and off. These
were run on a kernel in which the Unix compatibility code has
not been parallelized, so the Mach kernel build rapidly saturates
the processor that executes the Unix code, thus limiting speedup.
The results for initiators are reported in Table 1. All times are in
microseconds. These results show the pronounced effect of lazy
evaluation; it reduces the total overhead (number of events times
average time per event) of shootdowns by almost 60% for the Mach
kernel build and all but eliminates it (reduction of over 97%) for
Parthenon.

The elimination of user pmap shootdowns for Parthenon is a
good example of the benefits of lazy evaluation. These shootdowns
are caused by code in the cthreads library [lo] that sets up stacks
for new threads. This code allocates a large aligned stack region,
reserves the fist page in the region for private data, and reprotects
the second page to no access in order to detect stack overflows.
Without lazy evaluation the reprotection operation causes a shoot-
down if more than one thread is running. The lazy evaluation check
notices that the stack page in question is not mapped (because it
has not been accessed) and therefore does not require a shootdown.
The net effect is to remove an average four-fifths of a millisecond
from the startup time for new threads. This and other savings from
lazy evaluation are well worth the time spent in the valid mapping
check (approximately 2 instructions per check).

118

Application 1
Events

Mach Parthenon Agora Camelot
7494 4 88 68

1109f1272 1395f1431 1425&1911 1641f1994
Fflizgsi z:y; E;; ::E; ::Ei;

Table 2: Kernel Pmap Shootdown Results: Initiator

-1

Pages 1 l-360.7
Mean Time I 588f591

Table 3: User Pmap Shootdown Results: Initiator

~

Table 4: Responder Results

7.3 Shootdown Overhead and Performance

The major results from our evaluation applications are reported in
Tables 2, 3, and 4. All times are in microswonds. Results are
reported as meanfstandard deviation. The Mach build results here
were recorded on a kernel with most of the Unix code parallel&d
to obtain better speedups. NM indicates that the number is not
meaningful due to either insufficient data or an unusual distribu-
tion (in the statistical sense). Table 3 contains results solely from
Camelot because the other three applications did not cause any user
shootdowns. Any comparisons of the raw number of events should
take into account the different runtimes of the evaluation programs:
about 7.5 minutes for Agora, 20 minutes for the Mach build and
Parthenon, and one hour for Camelot. In addition, the respon-
der data represent approximately one-third of the actual responder
events because data was only collected on 5 out of 16 processors.

Most of the time distributions are not normal in the statistical
sense. The distributions are skewed towards high frequencies at
low values; this is demonstrated by the greater difference between
the 90” percentile and the median than between the 1Oh percentile
and the median. The median is a better indicator of typical or
expected values for such data than the mean, but the mean is still
useful for calculating the total overhead. The Camelot responder
times are an exception; their distribution is nearly symmetric as
evidenced by the near agreement between mean and median.

Medians and percentiles are not meaningful for the Agora data
due to the bimodal nature of its shootdown events. Agora causes
shootdowns involving large numbers of processors only during its
setup phase; once it has allocated the memory internally, the 15-
way parallel shortest path program can be run again and again
without causing any large shootdowns. As a result the Agora kernel
shootdown data splits into two groups; the shootdown events during
setup (11 to 15 processors involved, median time of 1367 psee),
and the remaining events (1 to 4 processors involved, median time

of 779 psec). Medians and percentiles are not meaningful for the
resulting bimodal distribution.

8 Performance Analysis

Our results show that shootdowns impose greater costs on initiators
than responders. There are two causes for this:

1. The typical pmap operation that is executed during a shoot-
down is short due to the small number of pages involved
(usually 1).

2. The average responder only waits for half of the total re-
sponders, whereas any initiator must wait for all responders.

This combination reduces the responders’ spin times to less than
the initiators’ setup and synchronization times. This was a surprise
to us, as we had expected to find responders spinning for extended
periods of time while pmap operations were performed.

The results also indicate that shootdowns on the kernel pmap
behave differently from shootdowns on user pmaps. Kernel pmap
shootdowns take longer, as can be seen by comparing the data in
Table 2 with the basic cost data for user pmap shootdowns reported
in Section 7.1. In addition, the kernel times exhibit a greater skew
than the user times. The major causes of both effects are that the
kernel disables shootdown (and other) interrupts in many places,
and that kernel pmap shootdowns are far more likely to find at
least one responder in the kernel with interrupts disabled than user
pmap shootdowns are. A responder with interrupts disabled extends
the shootdown times because the initiator cannot proceed with its
pmap changes until all responders respond to their interrupts. The
additional skew in the kernel time distributions is caused by the
varying intervals for which interrupts are disabled, there are many
short intervafs. but few long ones. A secondary contribution to
longer kernel pmap shootdown times is that kernel pmap shoot-
downs must queue action requests for all processors in the system
including idle processors, whiie user pmap shootdowns only in-
volve processors that are actually executing the user task.

The most important conclusion to be drawn from these results
is that the overhead of maintaining TLB consistency in software
is almost negligible on current machines. After scaling the over-
heads upward to represent shootdowns across the entire machine,
the largest overheads are still in the neighborhood of 1% for kernel
pmap shootdowns (Mach) and less than 0.2% for user pmap shoot-
downs (Camelot); due to the pessimistic scaling, these numbers
overstate the actual performance impact.

Performance impact on future machines can be extrapolated from
this data; the fact that shootdown overhead scales linearly with the
number of processors is a warning that shootdown overhead may
pose problems for larger machines. Extrapolation of our results
predicts that user pmap shootdowns will not present performance
problems on machines with a few hundred processors, but that ker-
nel pmap shootdowns might (the 1% overhead figure for kernel
pmap shootdowns for the Mach build could reach 10% or more on
a machine of that size). Operating systems for such machines may
have to restructure their use of memory to limit shootdowns; similar
changes may be required in any case because physical constraints
put uniform memory access designs at a disadvantage for machines
in this class. Virtually all current and proposed shared-memory ma-
chines in this class (e.g. RP3 [19] and the Butterfly [ll]) utilize a
non-uniform memory access structure. One possible restructuring
is to divide both the processors and the kernel virtual address space
into pools that mirror the non-uniform memory structure. One can
then identify memory within the kernel that may require shoot-
downs (due to pageability or internal use of copy-on-write) and

119

restrict sharing of it between pools. This results in most kernel
pmap shootdowns occurring within pools of processors instead of
across the entire machine.

The Agora and Parthenon evaluation applications are parallel
programs that make extensive use of shared memory. Agora causes
no machine wide shootdowns after its setup phase, and Parthenon
causes almost no shootdowns whatsoever. This suggests that the
overhead of maintaining TLB consistency has essentially no impact
on conventional parallel programs because consistency actions are
required on an extremely infrequent basis, These.results have been
confirmed by the RP3 group at IBM Hawthorne; they have found
that for typical parallel applications on a 4-way RP3 prototype
“the number of cross-machine TLB invalidations is so small that
the time spent doing them has no impact on performance” [22].
It should be emphasized that these results hold for conventional
parallel programs that make static use of shared memory (allocate
it once and use it).

9 Hardware Design Implications

The most aggressive hardware support for TLB consistency in-
volves a complete hardware implementation; this is analogous to
the complete hardware implementations of cache consistency found
on many current multiprocessors. There are two obvious forms that
such an implementation could take:

1. For hardware-reloaded TLBs, take advantage of the cache
consistency protocol so that a TLB entry is invalidated when
the memory location it was loaded from is written.

2. For software-reloaded TLBs, use a bus-based invalidation
protocol. One possibility would be to base the invalidations
on physical instead of virtual addresses (i.e. dedicate a range
of physical addresses on the bus to be used for invalidating
TLB entries by encoding the physical page number in the
low order bit?). This has the advantage of enhanced perfor-
mance for operations that require invalidation of all entries
for a physical page (e.g. pageout), but suffers from the corre-
sponding disadvantage of being too aggressive when not all
of the TLB entries for a physical page need to be invalidated.

Another alternative is to use virtual address caches. This com-
pletely eliminates the TLB consistency problem by eliminating the
TLBs. Unfortunately it substitutes a mapping consistency prob-
lem that is more difficult to solve; invalidating a page mapping
can require that the page be flushed from all virtual caches. The
designers of VMP (a proposed multiprocessor with virtual caches)
have chosen to implement this flush by “an exhaustive search of
the cache directory for [entries] in the specified range, with a few
optimizations” in software on every processor that has the page
mapped [8]. They also claim that this and similar functionality is
prohibitively difficult to implement in hardware [7] with current
technology. The resulting increase in invalidation overhead should
be considered by multiprocessor designers when choosing between
virtual and physical cache designs.

The low overhead of maintaining TLB consistency in software
on current machines may not justify a complete hardware imple-
mentation. Our work suggests a number of hardware features that
can reduce the overhead of maintaining consistency by providing
partial hardware support. Detailed performance and cost/benefit
evaluations of these proposed features are topics for future research.

The first feature on our list is a high-priority software inter-
rupt. Operating systems need to mask device interrupts to prevent

5VMF’[8] will use a similar mechanism for a different purpose.

deadlocks and delays caused by interrupt routines (e.g. interrupt
routine tries to grab lock held by interrupted code), but shootdown
interrupts are not device interrupts and cannot cause deadlocks.
A software interrupt with priority above that of device interrupts
would allow us to disable device interrupts without blocking shoot-
downs; this would reduce the time for kernel shootdowns to more
closely match user shootdowns, and eliminate the skew caused by
long periods of interrupt disablement. Aside from the shootdown
code (which must disable shootdown interrupts), we would dis-
able shootdown interrupts in only a few other places in the kernel
(places where critical locks are held), as opposed to the widespread
disabling of device interrupts. Even a non-maskable interrupt could
be used by implementing the masking in software (i.e. set a flag
and immediately dismiss the interrupt when it is “masked”, then
check the flag when “unmasking” the interrupt).

Hardware support for multicast interrupts would also help. The
shootdown algorithm does not specify the implementation of the
list of processors to which interrupts will be sent. This list can
easily be maintained as a bit vector which is then loaded into the
hardware to cause the interrupts. This replaces a for loop in the
initiator’s code with a small number of instructions. Even a simple
interrupt that is broadcast to all other processors would be helpful;
beyond some number of processors it is faster to use a broadcast
interrupt (and interrupt too many processors) than it is to iterate
down the list interrupting one processor at a time.

Redesigning TLBs for multiprocessors can eliminate most of
the responder overhead. In Section 3 we showed that the combina-
tion of hardware reload with asynchronous writeback of reference
and/or modify bits requires stalling the responders. The following
techniques (among others) can eliminate these stalls and the barrier
synchronizations that are required to implement them:

Substituting software reload for hardware reload allows the
responder to return immediately instead of stalling; software
can check whether the pmap is being modified when a reload
is needed and only stall in that case. The MIPS micropro-
cessor [16] uses this technique.

Eliminating reference and modify bit writeback allows the
shootdown interrupts to be postponed until after the pmap
change is completed. The reference and modify bits them-
selves can be completely eliminated at the cost of using
page faults to detect page modifications. RP3 [4] uses this
technique.

Interlocking MMU access to the reference and modify bits
also allows postponing shootdown interrupts because it elim-
inates the potential page table corruption by accesses that
set these bits. Accesses to set the bits should be inter-
locked read-modify-write accesses, and the read data must
he checked in all cases for mapping validi$. Software
for such TLBs must invalidate the old mapping in the page
table and all TLBs before entering a new valid mapping
in the page table. The MC88200 uses this technique[l7].
The 80386 attempts to use this technique, but it is not clear
whether mapping validity is correctly checked in all cases
WI.

TLBs that support remote invalidation of entries can eliminate
shootdown interrupts entirely if the reference/modify bit writeback
problem is successfully addressed. The initiator can shoot the en-
tries directly out of the responders’ TLBs without involving the
responders. This eliminates virtually all of the responder overhead

‘%e critical caSe involves setting the modify bit for a mapping that is
cached in the TLB and alreadv has the reference bit set. If the uaee table

I Y

entry read from memory does not indicate a valid mapping, then a page
fault must occur.

120

because responders are not involved in the invalidation of their
TLBs. Minor overhead may result from responders taking page
faults on invalid page table entries that are in the process of being
updated; this should be a rare event. In addition, initiator overhead
is greatly reduced because it is no longer necessary to synchro-
nize with the responders. The Motorola MC88200 Cache/Memory
Management Unit employs this technique [171.

If the barrier synchronization cannot be eliminated, then barrier
synchronization hardware would also be useful if processors can
opt out of the barrier. This would replace the final for loop in the
initiator’s algorithm with a barrier check. Processors must be able
to opt out of the barrier because a responder may cease to use a
pmap before its shootdown interrupt is delivered, and therefore does
not need to take part in the shootdown barrier synchronization. By
itself, TLB shootdown probably cannot justify the implementation
of barrier synchronization hardware, but it can take advantage of
such hardware if it has been implemented for other uses (see [20]
for an example of such hardware and its potential uses).

10 Related Work

The increasing sophistication of multiprocessor applications has re-
sulted in a corresponding increase in the complexity of the TLB
consistency problem. The initial use of multiprocessors for in-
creased throughput confined the consistency problem to the oper-
ating system because applications could not share memory. Sub-
sequent additions of shared memory functionality to these systems
have been limited to avoid causing major consistency problems (e.g.
System 5 shared memory does not support operations on remote ad-
dress spaces or parallelism within address spaces [l]). Relatively
straightforward techniques suffice to handle TLB consistency in
these cases (e.g. postpone releasing pages freed by pageout until
buffers can be flushed system-wide) [29].

Thompson et al. [29] describes the implementation of TLl3 con-
sistency on a multiprocessor based on the MIPS microprocessor.
Their TLB consistency problem is considerably simpler than the
one Mach faces because they worked within System 5.3 Unix which
does not support either parallel execution within an address space
or operations on remote address spaces. The MIPS microprocessor
does present an additional feature not found on the multiproces-
sors we have worked with; the TLB is not flushed automatically
on context switch. Instead entries are tagged with an address space
identifier to allow entries from different address spaces to coexist in
the same buffer. The Mach shootdown algorithm can be extended to
handle such buffers by ignoring the bookkeeping call that informs
the pmap module that a pmap is no longer in use on a processor;
the pmap is considered in use until its entries are explicitly flushed
from that processor’s TLB. We would also experiment with chang-
ing the responder’s invalidate code to completely flush entries for
any address space that requires an invalidation even though it is
not currently being used by a thread on that processor.

Teller et al. [25] proposes algorithms for TLB consistency on
large-scale multiprocessors. Three algorithms for maintaining TLR
consistency are presented, one of which could be retrofitted to cur-
rent systems with software reload of TLBs; the other two require
extensive hardware modifications. There are a number of draw-
backs to using these algorithms in a practical system:

a The authors fail to solve the problem in full genemlity by as-
suming that reductions in page protection aTe always caused
by the use of copy-on-write. This is not the case for Mach.
This assumption also reduces their problem to that found in
a parallel System 5 Unix for which simpler techniques (e.g.
those in 1291) suffice.

l Their algorithm that can be retrofitted to existing systems
“must forgo the copy-on-write optimization for any page
that is resident in a TLB.” This is a poor decision given the
large performance benefits of copy-on-write [28], and the
small costs of the Mach shootdown algorithm. Performance
of a Unix-like fork operation will suffer greatly.

. Their second algorithm requires tagging all memory refer-
ences with a generation counter. This increases processor-
memory traffic by an unacceptable amount (25% or more);
the authors acknowledge this drawback.

l Their third algorithm performs address translation at mem-
ory, and therefore requires that the memory cluster holding
a page be determined directly from the virtual address after
extension via a segment register. This makes copy-on-write
impossible among memory modules (a bad decision), and
severely reduces the flexibility of shared memory by requir-
ing that it be implemented as shared segments (where the
segment is determined by using the high-order bits of the
virtual address to index into a segment table). Such hard-
ware cannot fully support the shared memory functionality
provided by Mach.

In summary, these algorithms do not solve the translation buffer
consistency problem in its full generality, and impose large costs
for small benefits. We do not believe this to be a productive design
approach.

11 Conclusions

The Mach shootdown algorithm and its implementations demon-
strate that translation buffer consistency can be implemented in
software. The algorithm works reliably and is in production use on
many multiprocessors at CMU and elsewhere. We were pleasantly
surprised by the low overhead on current machines. The algorithm
as presented here will scale badly to larger machines (e.g. 6ms ba-
sic shootdown time for 100 processors), but appropriate hardware
support and system structures that match the hardware structures
on such machines should be able to reduce this to acceptable lev-
els. The two most desirable hardware support features for TLB
consistency are a high-priority software interrupt and an MMU de-
sign that allows us to avoid stalling remote processors while pmaps
are being updated. We conclude that translation buffer consistency
overhead is not an obstacle to building multiprocessors with hun-
dreds of processors.

References

r11

PI

[31

r41

r51

AT&T. UNIX System VI386 Programmer’s Reference Manual.
Prentice-Hall, Englewood Cliffs, NJ, 1988.
R. Bisiani and A. Forin. Multilanguage Parallel Program-
ming of Heterogeneous Machines. IEEE Tranr. Comput.,
37(8):930-945. August 1988.
S. Bose, E. Clarke, D. Long, and S. Michaylov. Parthenon:
A Parallel Theorem Prover for Non-Horn Clauses. Techni-
cal Report CMU-CS-88-137, Computer Science Department,
Carnegie Mellon University, Pittsburgh,PA, 1988.
W. Brantley, K. McAuliffe, and J. Weiss. RP3 Procesor-
Memory Element. In Proceedings of the International Conjer-
ewe on Parallel Processing, pages 782-789, IEEE Computer
Society, 1985.

R. Case and A. Padegs. Architecture of the IBM Systerrd370,
chapter 51, pages 830-855. McGraw-Hill Book Company,
New York, 1982.

121

[61

[71

PI

191

WA

u11

PI

1131

1141

u51

WI

H71

WY

Wl

w

WI

WI

[231

v41

S. Chatterjee. Multiprocessor Cache Consistency, an anno-
tated bibliography. To Appear.

D. Cheriton, P. Boyle, and G. Slavenburg. Comments on
‘Coherency for Multiprocessor Virtual Addressed Caches’ by
James R. Goodman in ASPLOS H, October 1987. Computer
Architecture News, 16(3):3-6, June 1988.
D. Cheriton. A. Gupta, P. Boyle, and H. Goosen. The VMP
Multiprocessor: Initial Experience, Refinements, and Perfor-
mance Evaluation. In Conference Proceedings, The 15th
Annual International Symposium on Computer Architecture.
pages 41w21, ACM-SIGARCH/IEEE Computer Society.
Honolulu, HI. May/June 1988.

D. Clark and J. Emer. Performance of the VAX 1 l/780 Trans-
lation Buffer: Simulation and Measurement. ACM Transac-
tions on Computer Systems, 3(1):31-62. February 1985.

E. Cooper and R. Draves. C Threads. Computer Science De-
partment, Carnegie Mellon University, Pittsburgh, PA, 1988.
Programmer’s manual for the Cthreads library.

W. Crowther, J. Goodhue, E. Stan, R. Thomas, W. Milliken,
and T. Blackadar. Performance Measurements on a 128-node
Butterfly Parallel Processor. In Proceedings of the Interna-
tional Con$erence on Parallel Processing, pages 531-540,
IEEE Computer Society, 1985.

VAX Hardware Handbook. Digital Equipment Corporation,
Maynard, MA, 1982.

Encore Computer Corporation. Multimax 320 Multiprocessor
System. Data Sheet.

R. Gingell, J. Moran, and W. Shannon. Virtual Memory Ar-
chitecture in SunOS. In Proceedings of the Summer 1987
USENIX Conference. pages 81-94. USENIX Association,
Phoenix, AZ. June 1987.

80386 Programmer’s Reference Manual. Intel Corporation,
Santa Clara, CA, 1986.

G. Kane. MIPS R2000 RISC Architecture. Prentice-Hall, En-
glewood Cliffs, NJ, 1987.
MC88200 Users Manual. Motorola, Inc., Austin, TX, 1988.

Series 32000 Databook. National Semiconductor Corpora-
tion, Santa Clara, CA, 1986.

G. Ptister, et. aI. The IBM Research Parallel Processor Pro-
totype: Introduction and Architecture. In Proceedings of the
International Conference on Parallel Processing, pages 764-
771, IEEE Computer Society, 1985.

C. Polychronopoulos. Compiler Gptimizations for Enhancing
Parallelism and Their Impact on Architecture Design. IEEE
Trans. Comput., 37(8):991-1004. August 1988.

R. Rashid, A. Tevanian, M. Young, D. Golub, R. Baron,
D. Black, W. Bolosky, and J. Chew. Machine-Independent
Virtual Memory Management for Paged Uniprocessor and
Multiprocessor Architectures. IEEE Trans. Comput.,
37(8):89&908. August 1988.

B. Rosenburg. Personal Communication. Member of the RP3
Group, IBM T. J. Watson Research Center.

A. Spector, R. Pausch, and G. Bruell. Camelot A Flexible
Distributed Transaction Processing System. In Proceedings
of Spring Compcon 88, pages 432437. IEEE, San Francisco,
CA, February/March 1988.

A. Spector and K. Swedlow, eds. Guide to the Camelot Dis-
tributed Transaction Facility. Computer Science Departmenf
Carnegie Mellon University, Pittsburgh, PA, 0.98(51)[aleph]
edition, 1988.

1251

P61

[271

P81

C291

r301

P. Teller, R. Kenner. and M. Snir. TLB Consistency on Highly
Parallel Shared Memory Multiprocessors. In Proceedings,
21st Annual Hawaii International Conference on System Sci-
ences, pages 184-192, IEEE Computer Society, Honolulu, HI,
1988.

A. Tevauian, R. Rashid, D. Golub, D. Black, E. Cooper, and
M. Young. Mach Threads and the UNIX Kernel: The Battle
for Control. In Proceedings of the Summer 1987 USENIX
Corference, pages 185-197, USENIX Association, Phoenix,
AZ, June 1987.

A. Tevanian, R. Rashid, M. Young, D. Golub, M. Thompson,
W. Bolosky, and R. Sanzi. A UNlx Interface for Shared
Memory and Mapped Files under Mach. In Proceedings of the
Summer 1987 USENIX Conference, pages 53-68. USENIX
Association, Phoenix, AZ, June 1987.

A. Tevanian. Jr. Architecture-Independent Virtual Memory
Management for Parallel and Distributed Environments: The
Mach Approach. PhD thesis, Carnegie Mellon University,
Pittsburgh, PA, December 1987.

M. Thompson, J. Barton, T. Jermoluk, and J. Wagner. Trans-
lation Lookaside Buffer Synchronization in a Multiprocessor
System. In Conference Proceedings. Winter 1988, USENIX
Technical Conference, pages 297-302, USENM Association,
Dallas, TX, February 1988.

M. Young, A. Tevanian, R. Rashid. D. Golub. J. Eppinger,
J. Chew, W. Bolos& D. Black, and R. Baron. The Dual-
ity of Memory and Communication in the Implementation of
a Multiprocessor Operating System. In Proceedings of the
Eleventh ACM Symposium on Operating System Principles,
pages 63-76, ACM-SIGOPS, Austin, TX, November 1987.

122

