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Abstract 

We discuss the translation lookaside buffer (TLB) consistency prob- 
lem for multiprocessors, and introduce the Mach shootdown algo- 
rithm for maintaining TLJ3 consistency in software. This algorithm 
has been implemented on several multiprocessors, and is in regular 
production use. Performance evaluations establish the basic costs 

of the algorithm and show that it has minimal impact on applica- 
tion performance. As a result, TLB consistency does not pose an 
insurmountable obstacle to multiprocessors with several hundred 
processors. We also discuss hardware support options for TLB 
consistency ranging from a minor interrupt structure modification 
to complete hardware implementations. Features are identified in 
current hardware that compound the TLB consistency problem; re- 
moval or correction of these features can simplify and/or reduce 
the overhead of maintaining TLB consistency in software. 

1 Introduction 

The trend in uniprocessor and multiprocessor operating system de- 
sign has been toward flexible use of shared memory as an aid to OS 
performance, application performance and parallelism. SunOS’ 4.0 
is a recent uniprocessor UNIX-based system which relies heavily 
on memory sharing to support common OS features (e.g. UNIX 
read/write) [14]. The Mach multiprocessor operating system pro- 
vides support for copy-on-write and read-write memory sharing be- 
tween programs, multiple threads of control within a single address 
space, memory mapped files and user-provided backing storage ob- 
jects and pagers [21,26,27,30]. These features provide for better 
use of physical memory, reduced data copy costs, increased paral- 
lelism through the availability of lightweight processes scheduled 
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by the kernel on multiple CPUs and user-tailored memory man- 
agement and sharing which can be critical to the performance of 
application support services such as database managers [24]. 

The use of shared memory implies the need to consistently man- 
age several important aspects of multiprocessor state: the instruc- 
tion and data caches used to funnel information to each CPU and the 
address translation lookaside buffers (TLBs) which provide page- 
level virtual-to-physical mappings [5,12,18]. Data cache consis- 
tency alone is not sufficient. For example, if one thread of a parallel 
program remaps a region of virtual memory to contain a mapped 
file, all other threads which are currently executing need to see 
a consistent view of this memory region. This implies changing 
the virtual-to-physical mapping entries of several processors at the 
same time. Even basic virtual memory management functions such 
as pagein and pageout will not (in general) work correctly unless 
the TLBs of all CPUs have the same image of the current state of 
a physical page. 

Although hardware engineers have lavished design time, imple- 
mentation energy and board space on the problem of maintaining 
consistent program instruction and data caches in shared memory 
multiprocessors. they have largely ignored the related problem of 
TLB consistency [6]. The most compelling reason for this lack 
of interest has come not from a careful study of the costs of TLB 
management, but instead from the economic necessities of hard- 
ware design which have &equently dictated the use of off-the-shelf 
microprocessors. Not only do these microprocessors lack hardware 
support for TLB consistency, they often make hardware consis- 
tency management impossible by not providing pinouts for TLB 
control. The lack of hardware support for TLB consistency implies 
the need for a software solution; although most multiprocessor op- 
erating systems have had to address this problem, there has not yet 
been a systematic study of the costs of software TLB consistency. 

This paper examines the software management of TLB consis- 
tency in the Mach operating system. Its extensive use of shared 
memory of many types both inside the operating system kernel and 
as a tool for user Programming makes the Mach operating system 
an extreme example of an environment where TLB consistency is 
of prime importance. This paper describes the design and imple- 
mentation of Mach virtual memory as it relates to TLB management 
and examines the costs of TLB management both as a function of 
system overhead and application execution time. 

2 The Mach VM System 

Mach is a portable multiprocessor operating system under devel- 
opment at Carnegie Mellon University. Mach’s virtual memory 
system retains compatibility with 4.3BSD UNIX’ while providing 

2UhrlX is a trademark of AT&T Bell Labqratories. 
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significant enhancements to UNIX’s memory management capabil- 
ities. Specifically, Mach supports 

0 large, sparse virtual address spaces, 

l copy-on-write and read-write memory sharing between tasks, 

l read-write memory sharing within tasks, 

l memory-mapped files, and 

a user-provided backing store objects and pagers. 

This new functionality and widespread use of sharing places addi- 
tional demands on virtual memory hardware that are not present in 
prior systems. 

The programmer’s primary view is that Mach’s virtual memory 
system implements address spaces and operations thereon. Each 
address space is associated with a task that may contain one or 
more threads of control. All memory within a task’s address space 
is completely shared among its threads; the threads may execute 
in parallel on multiprocessors. Read-write sharing of portions of 
address spaces is available between tasks via an inheritance mech- 
anism at task creation. Copy-on-write or virtual copy sharing of 
memory is aggressively used by many portions of the Mach kernel, 
including the message passing system and the implementation of 
the Unix fork operation. Operations supported on Mach address 
spaces include 

0 allocation of virtual memory, 

l deallocation of previously allocated virtual memory, 

0 setting protection on virtual memory, 

l specification of inheritance of virtual memory, and 

l reading or writing memory in some other address space. 

These operations may be invoked on arbitrary page-aligned3 regions 
of address spaces. 

Mach cleanly separates the implementation of virtual mem- 
ory into machine-independent and machine-dependent portions. 
The primary implementation of address space operations is in 
the machine-independent portion of the system. As a result the 
machine-dependent portion consists of a single module, the phys- 
ical map or pmap module, that implements a simple interface to 
the memory management hardware. Machine-independent code as- 
sociates a pmap with each address space, and makes calls on the 
pmap module as needed to perform physical map operations. These 
operations include: 

l validate, invalidate, and protection change operations on vir- 
tual address ranges, 

l invalidate and protection change operations on physical 
pages, and 

l bookkeeping operations that allow the pmap module to keep 
track of which pmaps are in use on which processors. 

Parallel execution of a task with multiple threads results in the same 
pmap being used simultaneously by multiple processors. More 
details can be found in [28]. 

Extensive lazy evaluation is used in determining when to invoke 
pmap operations. The Mach VM system maintains ah memory 
management information in machine-independent data structures, 
and does not need to consult the pmap module for address validity 
or mapping information. As a result pmaps usually do not present 
a complete view of valid memory for any address space because 
they are lazily updated as required by page faults. Pmaps can even 

%lris page alignment is with respect to Mach virtual pages which may 
be a multiple of the actual hardware page size. 

be destroyed at runtime; they will be reconstructed from scratch as 
page faults occur. 

Operations on Mach address spaces may require actions to main- 
tain TLB consistency when virtual memory is deallocated or its 
protection is reduced; these actions consist in invalidating incon- 
sistent entries in remote TLBs (i.e. TLBs for processors other than 
the one executing the address space operation). There are two sit- 
uations in Mach that require such actions, invoking an operation 
on the address space of a multi-threaded task that is executing in 
parallel on more than one processor, and invoking an operation 
on the address space of another task that is executing on a differ- 
ent processor. For the purposes of TLB consistency the kernel is 
viewed as a multi-threaded task that is potentially executing on all 
processors of a multiprocessor. 

TLB consistency is among the hardware-specific implementa- 
tion details that are confined to the pmap module. This can 
be viewed as an instance of policy-mechanism separation; the 
machine-independent VM system invokes operations that require 
TLB consistency actions, but it is up to the pmap module to dcter- 
mine when and how to carry out these actions. The design of the 
pmap structure itself is also encapsulated within the pmap module 
to permit support for whatever data structures may be required by 
the hardware; the machine-independent portion of Mach does not 
depend on either the internals of the pmap module or the hardware 
support mechanisms for virtual memory. 

3 The TLB Consistency Problem 

Maintaining TLB consistency on current multiprocessors is more 
difficult than it appears at first glance. A naive solution would 
be for the processor executing an operation that might cause an 
inconsistency to simply invalidate the entries in the remote TLBs 
and proceed This will not work because most multiprocessors do 
not permit processors to perform invalidate operations on TLBs 
other than their own. Something else is required: either hardware 
changes to support remote invalidation of TLB entries, or a software 
notification mechanism (e.g. interrupts) to cause other processors to 
perform invalidations. These changes are still insufficient to solve 
the problem due to two TLB features: 

1. Hardware reload mechanisms can reload inconsistent entries 
after they are flushed. 

2. TLBs can write inconsistent entries back to memory in order 
to set reference and/or modify bits. 

Flushing entries before changing the physical map will not work 
due to the first feature, and the second feature can corrupt physical 
map changes if flushing is postponed until after the physical map 
is changed. As a result, it is necessary to stall remote processors 
during updates of physical maps. 

Earlier papers on the Mach VM system [21] discussed three 
potential techniques for handling TLB consistency on hardware 
that does not support remote flushing of TLBs (i.e. most current 
commercial multiprocessors): 

1. Notify processors to carry out consistency actions. 

2. Delay use of changed mappings until all buffers have been 
flushed (e.g. by code executed in response to timer inter- 
rupts). 

3. Allow temporary inconsistency in cases where it does not 
cause problems (e.g. if protection is being increased). 

The Mach kernel implementation relies on the first technique be- 
cause the additional buffer flushes required by the second technique 
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can be expensive on some architectures [9]. and the third technique 
is not a complete solution-it is an optimization that can be ap- 
plied to any TLJ3 consistency technique that correctly handles the 
decreased protection and invalidated mapping cases. 

4 The Shootdown Solution 

Mach pmap modules maintain TLB consistency by forcibly inter- 
rupting processors to perform TLB consistency actions (i.e. entry or 
buffer flushes). This forcible interruption is referred to as “shoot- 
ing” entries out of remote TLBs, and the entire process of causing 
remote entries to be invalidated is called a “shootdown”. The shoot- 
down algorithm is divided into two portions: the code executed by 
the initiator (send interrupts if an inconsistency might occur as a 
result of a pmap operation), and the code executed by the responder 
(receive interrupts and perform the consistency actions). 

The shootdown algorithm manipulates a small collection of data 
structures: 

l A set of active processors. This is the set of processors that 
are actively performing virtual to physical translations on 

my pm9 

l A set of idle processors. 

l For each pmap, a set of processors that is using that pmap. 

l For each processor, a flag that indicates that a TLB consis- 
tency action is needed, and buffers to hold queued consis- 
tency actions. 

The shootdown algorithm is invoked when a pmap operation detects 
that the changes it is about to make to a pmap could cause a TLB 
inconsistency. Invoking a shootdown guarantees that any inconsis- 
tent TLB entries caused by this operation will not be used after the 
operation completes. The algorithm proceeds in four phases after 
it is invoked (the initiator holds an exclusive lock on the pmap at 
invocation): 

1 Initiator: The initiator queues consistency action requests for 
all processors using the pmap and sets their “action needed” 
flags. It then sends interrupts to the processors and waits for 
responses. 

2 Responders: Each responder receives its interrupf and removes 
itself from the set of active processors to acknowledge the 
interrupt. The responders then spin until the initiator com- 
pletes its changes to pmap. (This spinning is necessary to 
ensure that responders neither read nor write the pmap while 
the update is in progress.) 

3 Initiator: The initiator performs its pmap changes after all re- 
sponders using the pmap are spinning. It unlocks the pmap 
when it is done. 

4 Responders: The responders perform their required TLB inval- 
idations after the pmap is unlocked and dequeue the corre- 
sponding actions. They also clear their “action needed” flags 
and rejoin the set of active processors. 

This description omits many details in order to expose the underly- 
ing structure. The algorithm itself is considerably more complicated 
for the following reasons, most of which involve interrupts: 

l A responder may cease using the pmap after the shootdown 
interrupt is requested. 

l Concurrent shootdown operations are a source of potential 
deadlocks. 

l Interrupt protection is necessary during a shootdown. 

0 Inconsistent interrupt protection of locks is another source 
of potential deadlocks. 

l Idle processors should not receive shootdown interrupts for 
performance reasons. 

If a responder ceases using the pmap before receiving its in- 
terrupt, there is no need for the initiator to synchronize with this 
responder because it has flushed all entries for this pmap from its 
TLB. Hence the initiator can proceed once it notices that the respon- 
der is no longer using the pmap. This is implemented by making 
the initiator’s check for a response be a check for the responding 
processor to either become inactive or stop using the pmap. 

The deadlocks mentioned in the second item can be caused by 
two initiators shooting at each other. Deadlock can then occur with 
both initiators waiting for the other to continue. This can only 
happen if the shootdowns are on different pmaps (i.e. the kernel 
pmap and a user pmap) because the pmap locks prevent concurrent 
shootdowns on the same pmap. Initiators avoid these deadlocks 
by disabling shootdown interrupts and removing themselves from 
the set of active processors. Interrupts are still sent to such initia- 
tors, but there is no need to synchronize with their receipt because 
the interrupts will be acted upon before performing any memory 
references that may use inconsistent TLB entries. 

Responders must disable further shootdown interrupts while ser- 
vicing one to avoid duplicate add and remove operations on proces- 
sor sets (most hardware does this by default). Blocking interrupts 
also enhances response to concurrent shootdown operations because 
a single instance of the responder’s algorithm responds to all shoot- 
downs in progress. Finally, both the initiator and responder should 
disable all interrupts during a shootdown to avoid delays to the 
synchronization (a device interrupt at the wrong point could stall 
the entire machine). 

The potential deadlocks in the fourth item result from an in- 
teraction of the shootdown algorithm’s barrier synchronization at 
interrupt level with inconsistent interrupt protection of locks. They 
are avoided by associating a fixed interrupt priority (with respect to 
the shootdown interrupt) with every lock in the system. Locks are 
requested at their associated interrupt priority level and can only 
be held at that level or higher. This requires careful &sign and 
coding in modules that can be called by device interrupt routines 
and in modules that make upcalls. A complete explanation of these 
deadlocks and their avoidance is beyond the scope of this paper. 

The fifth item enhances performance of kernel pmap shootdowns 
by not sending shootdown interrupts to idle processors, and hence 
reducing the initiator’s synchronization time (initiators still queue 
actions for idle processors, but do not synchronize with them). 
The set of idle processors is used to implement this feature; idle 
processors must check for queued consistency actions and execute 
them before becoming active. 

Incorporating these refinements into the basic description pre- 
sented earlier yields the full shootdown algorithm shown in Fig- 
ure 1. English has been liberally substituted for actual code and 
some details have been omitted for clarity. The variable mycpu 
identifies the current processor. The variables start and end 
identify the address range that must be invalidated from the TLBs to 
prevent an inconsistency. Arrays have been used to implement the 
active and in-use processor sets. disable-interrupts 
returns the previous interrupt state; disabling and restoring interrupt 
state may be done by hardware for the responders. The numbers 
in comments identify the algorithm phases enumerated above. 
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Initiator: 
s = disable_interruptsO; 
active[mycpul = FALSE; 
lockgmap(pmap); 
if (inconsistent TLB may result) ( 

if (pmap->in-uselmycpul) ( 
invalidate-tlb(pmap,start,end); 

/* Phase 1 */ 
if (other cpus using pmap) ( 

list_type shoot-list = EMPTY-LIST; 

for (every cpu in system) I 

if (pmap->in-uselcpul && 
cpu != mycpu) ( 

lock-action-structure(cpu): 
queue_action(cpu,pmap,start,end); 
action-neededlcpul = TRUE; 
unlock-action-structure(cpu); 

if (idle[cpul == FALSE) I 
add cpu to shoot-list 

I 
1 

} 
for (every cpu on shoot-list) ( 

send-shootdown-interrupt(cpu); 

for (every cpu on shoot-list) ( 
while (activelcpul && 

pmap->in-uselcpul) ( 
/* spin */ ; 

/* Phase 3 */ 
make changes to physical map 

unlock-pmap(pmap); 
active[mycpu] = TRUE; 
restore-interrupt-state(s); 

Responders: /* Phase 2 */ 
s = disable-interruptso; 
while (action-needed[mycpu]) ( 

active[mycpu] = FALSE; 
while (pmap is locked(kernel-pmap) && 

pmapIisIlocked(user-pmap(mycpu))) 
/* spin */ ; 

/* Phase 4 */ 
lock-action-structure(mycpu); 
process-queuedactions(mycpu); 
action-neededlmycpul = FALSE; 
unlock-action-structure(mycpu); 
active[mycpul = TRUE; 

restore-interrupt-state(s); 

Figure 1: Mach Shootdown Algorithm Pseudo-Code 

Three important details have been omitted from the pseudo-code 
in Figure 1: 

1. The invalidation mechanism for TLBs is not specified. For 
hardware which supports both a single entry invalidate and 
an entire buffer flush, the mechanism chooses between indi- 
vidual invalidates and a buffer flush based on the number of 
entries that must be invalidated (i.e. beyond some threshold 
it is faster to flush the entire buffer than to do the individ- 
ual invalidates); this threshold depends on hardware factors 
(buffer size, speed of invalidates and flushes, etc.). 

2. The update queue for each processor is a small buffer. If 
the initiator detects overflow, it sets a flag that causes the 
responder to flush its entire TLB. The queue size is set so 
that this only happens in cases where the responder would 
flush its entire TLB for efficiency reasons in the absence of 
update queue overflow. 

3. A check is ma& to see if a shootdown interrupt is already 
pending for a processor before adding it to the list of pro- 
cessors that will receive shootdown interrupts. 

Lazy evaluation of pmaps enhances the effectiveness of the 
shootdown algorithm by avoiding shootdowns for pages that are 
never used. This is implemented by having the check for potential 
inconsistencies determine if the pages in question are mapped in 
the physical map; if the pages are not mapped, then a shootdown is 
not necessary because TLBs do not cache invalid mappings. This 
occurs frequently due to the extensive lazy evaluation of pmap 
operations by the Mach VM system. 

5 An Evaluation of TLB Shootdown 

Our evaluation of the Mach TLB shootdown algorithm includes 
experiments to determine its cost, performance, and overhead im- 
pact. The basic costs for TLB shootdown are determined from 
experiments that involve a simple program for testing TLB con- 
sistency. More comprehensive performance and overhead impact 
results are obtained from experiments with applications that reflect 
the current use of multiprocessors in a research and production 
environment. There was no pageout activity during any of our ex- 
periments. Pageout does cause shootdowns, but the overhead of 
actually performing the pageout is much greater than the overhead 
of the associated shootdown. Our results apply primarily to systems 
with adequate physical memory for applications. 

5.1 Testing TLB Consistency 

We developed a simple program that tests whether TLB consistency 
is being maintained. This program tries to cause a simple TLB 
inconsistency and then attempts to detect its effects; if consistency 
is being maintained, there will be no effects. The program employs 
multiple threads to achieve parallel execution on a multiprocessor. 
and functions in the following manner: 

1. 

2. 

3. 

4. 
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Allocate a page of read-write memory. 

Start up child threads. Each thread runs in a tight loop, 
incrementing a separate counter in this page of memory. 

After threads are all started, the main thread reprotects the 
page of counters to be read-only and immediately saves a 
copy of the counters. 

The spinning child threads all take unrecoverable page faults 
(write fault on a read-0nIy page). 



5. After the page faults, the values of the counters are compared 
with the saved copy. 

A difference in the counter values means that some thread continued 
to increment its counter after the page containing it became read- 
only. This can only happen if an inconsistent TLB entry continues 
to allow write access to the page. and therefore indicates a TLB 
inconsistency. 

We found thii program useful not only as a check on correct- 
ness, but also as a performance evaluation tool; on an n-processor 
multiprocessor, running this program with k<n child threads causes 
exactly one shootdown on its user pmap involving exactly k pro- 
cessors. This can be used to measure the basic overhead of TLB 
shootdown. 

5.2 Evaluation Applications 

To evaluate the performance impact of TLB shootdown. we asked 
several research groups at CMU to provide applications that typify 
their use of the Multimax. The groups were kind enough to provide 
us with the following applications: 

Mach (operating system): parallel build of the kernel from 
sources. 

Parthenon (parallel theorem prover): Parthenon running 15-way 
parallel on a difficult standard example [3]. 

Agora (support base for heterogeneous parallel/distributed sys- 
tems): Double ended wavefront-based shortest path search 
program based on the Agora system [2]. Program runs 15- 
ways parallel. 

Camelot (transaction processing): 8-way parallel run of transac- 
tion performance analyzer to stress transaction throughput 
capabilities 1231. 

Both the Parthenon and Agora applications were run five times in 
succession to increase the number of shootdown events for which 
data was collected. 

The applications vary in their sophistication of memory use. The 
Mach kernel build uses multiple processors only for throughput; 
it does not share memory among user tasks. Parthenon allocates 
memory as needed to hold the intermediate results of the proof 
search. Agora uses shared write-once memory for communication 
among the tasks performing the search. Camelot makes aggressive 
use of memory sharing and copy-on-write mapping to implement 
database access and transaction semantics. In addition, many inter- 
nal components of the Camelot system (e.g. the transaction man- 
ager) are multi-threaded for performance reasons. These applica- 
tions exercise the shootdown algorithm under a variety of memory 
usage patterns. 

6 Measurement Techniques 

Our measurements were taken on an instrumented Mach kernel run- 
ning on a 16 processor NS32332 Encore Multimax. The Multimax 
is a shared-memory bus-based multiprocessor with write through 
caches. Its system control card provides a free-running 32bit mi- 
crosecond counter from which timestamps can be obtained [13]. 
The xpr package4 forms the basis of our instrumentation; it pro- 
vides a circular buffer of events including data arguments, event 
identifiers, processor numbers and timestamps. At each event to 
be monitored, we added code to gather up the data arguments and 

4hnplemented in the Mach kernel by Steve Stone. 

pass them to the xpr package; it does the rest. The event buffer 
managed by xpr was sized so that it would never overflow during 
our test runs. 

There aTe two events of interest in monitoring the shootdown 
code. For the initiator we save the following items in one event 
record: 

A flag indicating whether this shootdown is on the kernel 
pmap or some user pmap. 

Number of Mach VM pages involved in the shootdown. 

Number of processors being shot at. 

Elapsed time from invoking the shootdown algorithm until 
the initiator can begin making its changes to the pmap. 

For the responder we save the elapsed time in the interrupt service 
routine. This is a slight underestimate because it ignores the in- 
terrupt dispatch and return times. To avoid lock contention effects 
in the xpr package we only record responder events on 5 selected 
processors. In addition we wrote a number of utility programs to 
control the instrumentation (e.g. on, off, reset), read the collected 
data, and perform statistical analysis. 

6.1 Measurement Validation 

An important issue in instrumenting a hardware or software system 
is whether the instrumentation affects the behavior it is measuring. 
For this work, the particular question is whether introduction of ker- 
nel instrumentation for TLB shootdowns affects the performance of 
the applications that we are using to evaluate shootdown behavior. 
To assess this, we chose the application that is most vulnerable to 
performance perturbations, Parthenon, and ran it with and without 
instrumentation to assess this impact. The potential performance 
impact for these tests was deliberately increased by disabling the 
lazy evaluation feature of the shootdown algorithm, 

Parthenon is highly vulnerable to performance perturbations be- 
cause it is a search program with an essentially non-deterministic 
control structure; worker threads remove work from a central 
workpile and add new work as it is generated. Perturbations in the 
runtime of these threads change the order of the add and remove 
operations on the central workpile, and thus the order in which 
possibilities are searched. This impacts Parthenon’s execution time 
because Parthenon only searches for a single proof rather than ex- 
haustively searching for all proofs at a given depth, and hence the 
order in which possibilities are considered can greatly affect the 
time it takes to find a proof. Parthenon has obtained super-linear 
speedups on some problems from this effect-a parallel search will 
consider some possibilities much earlier in its execution than a se- 
rial search; if one of these possibilities quickly leads to the proof, 
the potential savings of unproductive effort over the serial case is 
enormous. 

The results from five runs of Parthenon indicated a perturbation 
in runtime of about 1.5% (4 seconds out of 2.53). This result is 
not statistically significant, and the effect is swamped by other 
effects (e.g. timer interrupts) that produce perturbations of 8-104 in 
Parthenon’s runtime. We conclude that our kernel instrumentation 
does not significantly perturb the behavior of the applications we 
are measuring, and that our results are therefore representative of 
shootdown behavior on uninstrumentcd kernels. 



7 Results 

Our evaluation of the shootdown algorithm has three major goals 

l Determine the basic costs of shootdown. 

l Measure the effects of lazy evaluation. 

l Measure overhead and performance impact for typical ap- 
plications. 

The experiments to achieve the first goal involve measuring the 
performance of the shootdown algorithm while running our test 
program. The remaining two goals are achieved by experiments 
that involve collecting data while running the evaluation applica- 
tions provided by research projects at Carnegie Mellon. 

7.1 Basic Costs of Shootdown 

The ability of our shootdown test program to cause a single shoot- 
down involving a predetermined number of processors was used to 
measure the basic costs of TLB shootdown. Varying the number 
of child threads used by the tester from 1 to 15 causes the number 
of processors involved in the shootdown to also vary from 1 to 15. 
The tester was run ten times for each case; means and standard 
deviations were calculated for the resulting data. Figure 2 plots the 
resulting data means with error bars of plus or minus the standard 
deviation. The data exhibits a pronounced change between 12 and 
13 processors; the points depart significantly from the trend line 
established by the data for smaller numbers of processors, and the 
standard deviation doubles. This leads us to believe that some un- 
expected/unrelated effect is coming into play when more than 12 
processors are involved (the shootdown algorithm does not change 
when more processors are involved). Bus contention and conges- 
tion effects are likely candidates; previous experiments have shown 
that these effects become signilicant on the Multimax when 12 or 
more processors are actively using the bus (e.g. for block copy of 
data) [21]; both the saving of state (i.e. registers) in response to the 
interrupts and the access to shootdown state by the responders can 
be expected to miss in cache. Excluding the data for 13-15 proces- 
sors, we obtain the trend line shown in the figure by a least-squares 
fit. From its equation we calculate the basic cost of a shootdown 
as 430 microseconds for the first processor plus 55 microseconds 
for every additional processor involved. 

This cost measures the time it takes the initiator from starting the 
shootdown until it can proceed with its pmap changes. Measuring 
responder synchronization (i.e. spin) times would not be meaning- 
ful for this experiment because these times strongly depend on the 
duration of the pmap operation that invokes the shootdown; the 
shootdown tester only exercises shootdowns from one operation 
(pmap-protect) of short duration (only 1 page involved). In addi- 
tion the shootdown algorithm makes it very difficult to distinguish 
between responses to shootdowns on user pmaps and responses to 
shootdowns on kernel pmaps (the algorithm can handle shootdowns 
on both pmaps in one response). 

7.2 Effectiveness of Lazy Evaluation 

We also performed experiments to assess the contribution of lazy 
evaluation to the performance of the shootdown algorithm. We 
removed most of the lazy evaluation for shootdowns by disabling 
the check for valid mappings in the check for potential inconsis- 
tencies. The remaining lazy evaluation comes from internal pmap 
module knowledge about the structure of Multimax page tables. 
The Multimax uses the NS32382 MMU which employs two-level 
page tables, and the pmap module organizes the second level tables 
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Figure 2: Basic Costs of TLB Shootdown 

Application Mach [ Parthenon 
LUY No Yes 1 No Yes 
Kernel Events 8091 3827 1 107 4 
Avg. Time 1185 1020 1379 1395 
User Events 0 0 70 0 
Avg. Time 867 

Table 1: Effect of Lazy Evaluation on Shootdowns 

into page-sized chunks. Therefore if the pmap module ever finds a 
missing second level page table entry, it knows that an entire page 
of second level entries is missing and skips the corresponding ad- 
dress range. Removing this code would significantly’ increase the 
cost of some important pmap operations (e.g. destroying a pmap) 
and impact our evaluation applications. 

To assess the effects of lazy evaluation we ran both the Mach 
and Parthenon applications with lazy evaluation on and off. These 
were run on a kernel in which the Unix compatibility code has 
not been parallelized, so the Mach kernel build rapidly saturates 
the processor that executes the Unix code, thus limiting speedup. 
The results for initiators are reported in Table 1. All times are in 
microseconds. These results show the pronounced effect of lazy 
evaluation; it reduces the total overhead (number of events times 
average time per event) of shootdowns by almost 60% for the Mach 
kernel build and all but eliminates it (reduction of over 97%) for 
Parthenon. 

The elimination of user pmap shootdowns for Parthenon is a 
good example of the benefits of lazy evaluation. These shootdowns 
are caused by code in the cthreads library [lo] that sets up stacks 
for new threads. This code allocates a large aligned stack region, 
reserves the fist page in the region for private data, and reprotects 
the second page to no access in order to detect stack overflows. 
Without lazy evaluation the reprotection operation causes a shoot- 
down if more than one thread is running. The lazy evaluation check 
notices that the stack page in question is not mapped (because it 
has not been accessed) and therefore does not require a shootdown. 
The net effect is to remove an average four-fifths of a millisecond 
from the startup time for new threads. This and other savings from 
lazy evaluation are well worth the time spent in the valid mapping 
check (approximately 2 instructions per check). 
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Table 2: Kernel Pmap Shootdown Results: Initiator 
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Pages 1 l-360.7 
Mean Time I 588f591 

Table 3: User Pmap Shootdown Results: Initiator 

~ 

Table 4: Responder Results 

7.3 Shootdown Overhead and Performance 

The major results from our evaluation applications are reported in 
Tables 2, 3, and 4. All times are in microswonds. Results are 
reported as meanfstandard deviation. The Mach build results here 
were recorded on a kernel with most of the Unix code parallel&d 
to obtain better speedups. NM indicates that the number is not 
meaningful due to either insufficient data or an unusual distribu- 
tion (in the statistical sense). Table 3 contains results solely from 
Camelot because the other three applications did not cause any user 
shootdowns. Any comparisons of the raw number of events should 
take into account the different runtimes of the evaluation programs: 
about 7.5 minutes for Agora, 20 minutes for the Mach build and 
Parthenon, and one hour for Camelot. In addition, the respon- 
der data represent approximately one-third of the actual responder 
events because data was only collected on 5 out of 16 processors. 

Most of the time distributions are not normal in the statistical 
sense. The distributions are skewed towards high frequencies at 
low values; this is demonstrated by the greater difference between 
the 90” percentile and the median than between the 1Oh percentile 
and the median. The median is a better indicator of typical or 
expected values for such data than the mean, but the mean is still 
useful for calculating the total overhead. The Camelot responder 
times are an exception; their distribution is nearly symmetric as 
evidenced by the near agreement between mean and median. 

Medians and percentiles are not meaningful for the Agora data 
due to the bimodal nature of its shootdown events. Agora causes 
shootdowns involving large numbers of processors only during its 
setup phase; once it has allocated the memory internally, the 15- 
way parallel shortest path program can be run again and again 
without causing any large shootdowns. As a result the Agora kernel 
shootdown data splits into two groups; the shootdown events during 
setup (11 to 15 processors involved, median time of 1367 psee), 
and the remaining events (1 to 4 processors involved, median time 

of 779 psec). Medians and percentiles are not meaningful for the 
resulting bimodal distribution. 

8 Performance Analysis 

Our results show that shootdowns impose greater costs on initiators 
than responders. There are two causes for this: 

1. The typical pmap operation that is executed during a shoot- 
down is short due to the small number of pages involved 
(usually 1). 

2. The average responder only waits for half of the total re- 
sponders, whereas any initiator must wait for all responders. 

This combination reduces the responders’ spin times to less than 
the initiators’ setup and synchronization times. This was a surprise 
to us, as we had expected to find responders spinning for extended 
periods of time while pmap operations were performed. 

The results also indicate that shootdowns on the kernel pmap 
behave differently from shootdowns on user pmaps. Kernel pmap 
shootdowns take longer, as can be seen by comparing the data in 
Table 2 with the basic cost data for user pmap shootdowns reported 
in Section 7.1. In addition, the kernel times exhibit a greater skew 
than the user times. The major causes of both effects are that the 
kernel disables shootdown (and other) interrupts in many places, 
and that kernel pmap shootdowns are far more likely to find at 
least one responder in the kernel with interrupts disabled than user 
pmap shootdowns are. A responder with interrupts disabled extends 
the shootdown times because the initiator cannot proceed with its 
pmap changes until all responders respond to their interrupts. The 
additional skew in the kernel time distributions is caused by the 
varying intervals for which interrupts are disabled, there are many 
short intervafs. but few long ones. A secondary contribution to 
longer kernel pmap shootdown times is that kernel pmap shoot- 
downs must queue action requests for all processors in the system 
including idle processors, whiie user pmap shootdowns only in- 
volve processors that are actually executing the user task. 

The most important conclusion to be drawn from these results 
is that the overhead of maintaining TLB consistency in software 
is almost negligible on current machines. After scaling the over- 
heads upward to represent shootdowns across the entire machine, 
the largest overheads are still in the neighborhood of 1% for kernel 
pmap shootdowns (Mach) and less than 0.2% for user pmap shoot- 
downs (Camelot); due to the pessimistic scaling, these numbers 
overstate the actual performance impact. 

Performance impact on future machines can be extrapolated from 
this data; the fact that shootdown overhead scales linearly with the 
number of processors is a warning that shootdown overhead may 
pose problems for larger machines. Extrapolation of our results 
predicts that user pmap shootdowns will not present performance 
problems on machines with a few hundred processors, but that ker- 
nel pmap shootdowns might (the 1% overhead figure for kernel 
pmap shootdowns for the Mach build could reach 10% or more on 
a machine of that size). Operating systems for such machines may 
have to restructure their use of memory to limit shootdowns; similar 
changes may be required in any case because physical constraints 
put uniform memory access designs at a disadvantage for machines 
in this class. Virtually all current and proposed shared-memory ma- 
chines in this class (e.g. RP3 [19] and the Butterfly [ll]) utilize a 
non-uniform memory access structure. One possible restructuring 
is to divide both the processors and the kernel virtual address space 
into pools that mirror the non-uniform memory structure. One can 
then identify memory within the kernel that may require shoot- 
downs (due to pageability or internal use of copy-on-write) and 
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restrict sharing of it between pools. This results in most kernel 
pmap shootdowns occurring within pools of processors instead of 
across the entire machine. 

The Agora and Parthenon evaluation applications are parallel 
programs that make extensive use of shared memory. Agora causes 
no machine wide shootdowns after its setup phase, and Parthenon 
causes almost no shootdowns whatsoever. This suggests that the 
overhead of maintaining TLB consistency has essentially no impact 
on conventional parallel programs because consistency actions are 
required on an extremely infrequent basis, These.results have been 
confirmed by the RP3 group at IBM Hawthorne; they have found 
that for typical parallel applications on a 4-way RP3 prototype 
“the number of cross-machine TLB invalidations is so small that 
the time spent doing them has no impact on performance” [22]. 
It should be emphasized that these results hold for conventional 
parallel programs that make static use of shared memory (allocate 
it once and use it). 

9 Hardware Design Implications 

The most aggressive hardware support for TLB consistency in- 
volves a complete hardware implementation; this is analogous to 
the complete hardware implementations of cache consistency found 
on many current multiprocessors. There are two obvious forms that 
such an implementation could take: 

1. For hardware-reloaded TLBs, take advantage of the cache 
consistency protocol so that a TLB entry is invalidated when 
the memory location it was loaded from is written. 

2. For software-reloaded TLBs, use a bus-based invalidation 
protocol. One possibility would be to base the invalidations 
on physical instead of virtual addresses (i.e. dedicate a range 
of physical addresses on the bus to be used for invalidating 
TLB entries by encoding the physical page number in the 
low order bit?). This has the advantage of enhanced perfor- 
mance for operations that require invalidation of all entries 
for a physical page (e.g. pageout), but suffers from the corre- 
sponding disadvantage of being too aggressive when not all 
of the TLB entries for a physical page need to be invalidated. 

Another alternative is to use virtual address caches. This com- 
pletely eliminates the TLB consistency problem by eliminating the 
TLBs. Unfortunately it substitutes a mapping consistency prob- 
lem that is more difficult to solve; invalidating a page mapping 
can require that the page be flushed from all virtual caches. The 
designers of VMP (a proposed multiprocessor with virtual caches) 
have chosen to implement this flush by “an exhaustive search of 
the cache directory for [entries] in the specified range, with a few 
optimizations” in software on every processor that has the page 
mapped [8]. They also claim that this and similar functionality is 
prohibitively difficult to implement in hardware [7] with current 
technology. The resulting increase in invalidation overhead should 
be considered by multiprocessor designers when choosing between 
virtual and physical cache designs. 

The low overhead of maintaining TLB consistency in software 
on current machines may not justify a complete hardware imple- 
mentation. Our work suggests a number of hardware features that 
can reduce the overhead of maintaining consistency by providing 
partial hardware support. Detailed performance and cost/benefit 
evaluations of these proposed features are topics for future research. 

The first feature on our list is a high-priority software inter- 
rupt. Operating systems need to mask device interrupts to prevent 

5VMF’[8] will use a similar mechanism for a different purpose. 

deadlocks and delays caused by interrupt routines (e.g. interrupt 
routine tries to grab lock held by interrupted code), but shootdown 
interrupts are not device interrupts and cannot cause deadlocks. 
A software interrupt with priority above that of device interrupts 
would allow us to disable device interrupts without blocking shoot- 
downs; this would reduce the time for kernel shootdowns to more 
closely match user shootdowns, and eliminate the skew caused by 
long periods of interrupt disablement. Aside from the shootdown 
code (which must disable shootdown interrupts), we would dis- 
able shootdown interrupts in only a few other places in the kernel 
(places where critical locks are held), as opposed to the widespread 
disabling of device interrupts. Even a non-maskable interrupt could 
be used by implementing the masking in software (i.e. set a flag 
and immediately dismiss the interrupt when it is “masked”, then 
check the flag when “unmasking” the interrupt). 

Hardware support for multicast interrupts would also help. The 
shootdown algorithm does not specify the implementation of the 
list of processors to which interrupts will be sent. This list can 
easily be maintained as a bit vector which is then loaded into the 
hardware to cause the interrupts. This replaces a for loop in the 
initiator’s code with a small number of instructions. Even a simple 
interrupt that is broadcast to all other processors would be helpful; 
beyond some number of processors it is faster to use a broadcast 
interrupt (and interrupt too many processors) than it is to iterate 
down the list interrupting one processor at a time. 

Redesigning TLBs for multiprocessors can eliminate most of 
the responder overhead. In Section 3 we showed that the combina- 
tion of hardware reload with asynchronous writeback of reference 
and/or modify bits requires stalling the responders. The following 
techniques (among others) can eliminate these stalls and the barrier 
synchronizations that are required to implement them: 

Substituting software reload for hardware reload allows the 
responder to return immediately instead of stalling; software 
can check whether the pmap is being modified when a reload 
is needed and only stall in that case. The MIPS micropro- 
cessor [16] uses this technique. 

Eliminating reference and modify bit writeback allows the 
shootdown interrupts to be postponed until after the pmap 
change is completed. The reference and modify bits them- 
selves can be completely eliminated at the cost of using 
page faults to detect page modifications. RP3 [4] uses this 
technique. 

Interlocking MMU access to the reference and modify bits 
also allows postponing shootdown interrupts because it elim- 
inates the potential page table corruption by accesses that 
set these bits. Accesses to set the bits should be inter- 
locked read-modify-write accesses, and the read data must 
he checked in all cases for mapping validi$. Software 
for such TLBs must invalidate the old mapping in the page 
table and all TLBs before entering a new valid mapping 
in the page table. The MC88200 uses this technique[l7]. 
The 80386 attempts to use this technique, but it is not clear 
whether mapping validity is correctly checked in all cases 
WI. 

TLBs that support remote invalidation of entries can eliminate 
shootdown interrupts entirely if the reference/modify bit writeback 
problem is successfully addressed. The initiator can shoot the en- 
tries directly out of the responders’ TLBs without involving the 
responders. This eliminates virtually all of the responder overhead 

‘%e critical caSe involves setting the modify bit for a mapping that is 
cached in the TLB and alreadv has the reference bit set. If the uaee table 

I Y  

entry read from memory does not indicate a valid mapping, then a page 
fault must occur. 
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because responders are not involved in the invalidation of their 
TLBs. Minor overhead may result from responders taking page 
faults on invalid page table entries that are in the process of being 
updated; this should be a rare event. In addition, initiator overhead 
is greatly reduced because it is no longer necessary to synchro- 
nize with the responders. The Motorola MC88200 Cache/Memory 
Management Unit employs this technique [ 171. 

If the barrier synchronization cannot be eliminated, then barrier 
synchronization hardware would also be useful if processors can 
opt out of the barrier. This would replace the final for loop in the 
initiator’s algorithm with a barrier check. Processors must be able 
to opt out of the barrier because a responder may cease to use a 
pmap before its shootdown interrupt is delivered, and therefore does 
not need to take part in the shootdown barrier synchronization. By 
itself, TLB shootdown probably cannot justify the implementation 
of barrier synchronization hardware, but it can take advantage of 
such hardware if it has been implemented for other uses (see [20] 
for an example of such hardware and its potential uses). 

10 Related Work 

The increasing sophistication of multiprocessor applications has re- 
sulted in a corresponding increase in the complexity of the TLB 
consistency problem. The initial use of multiprocessors for in- 
creased throughput confined the consistency problem to the oper- 
ating system because applications could not share memory. Sub- 
sequent additions of shared memory functionality to these systems 
have been limited to avoid causing major consistency problems (e.g. 
System 5 shared memory does not support operations on remote ad- 
dress spaces or parallelism within address spaces [l]). Relatively 
straightforward techniques suffice to handle TLB consistency in 
these cases (e.g. postpone releasing pages freed by pageout until 
buffers can be flushed system-wide) [29]. 

Thompson et al. [29] describes the implementation of TLl3 con- 
sistency on a multiprocessor based on the MIPS microprocessor. 
Their TLB consistency problem is considerably simpler than the 
one Mach faces because they worked within System 5.3 Unix which 
does not support either parallel execution within an address space 
or operations on remote address spaces. The MIPS microprocessor 
does present an additional feature not found on the multiproces- 
sors we have worked with; the TLB is not flushed automatically 
on context switch. Instead entries are tagged with an address space 
identifier to allow entries from different address spaces to coexist in 
the same buffer. The Mach shootdown algorithm can be extended to 
handle such buffers by ignoring the bookkeeping call that informs 
the pmap module that a pmap is no longer in use on a processor; 
the pmap is considered in use until its entries are explicitly flushed 
from that processor’s TLB. We would also experiment with chang- 
ing the responder’s invalidate code to completely flush entries for 
any address space that requires an invalidation even though it is 
not currently being used by a thread on that processor. 

Teller et al. [25] proposes algorithms for TLB consistency on 
large-scale multiprocessors. Three algorithms for maintaining TLR 
consistency are presented, one of which could be retrofitted to cur- 
rent systems with software reload of TLBs; the other two require 
extensive hardware modifications. There are a number of draw- 
backs to using these algorithms in a practical system: 

a The authors fail to solve the problem in full genemlity by as- 
suming that reductions in page protection aTe always caused 
by the use of copy-on-write. This is not the case for Mach. 
This assumption also reduces their problem to that found in 
a parallel System 5 Unix for which simpler techniques (e.g. 
those in 1291) suffice. 

l Their algorithm that can be retrofitted to existing systems 
“must forgo the copy-on-write optimization for any page 
that is resident in a TLB.” This is a poor decision given the 
large performance benefits of copy-on-write [28], and the 
small costs of the Mach shootdown algorithm. Performance 
of a Unix-like fork operation will suffer greatly. 

. Their second algorithm requires tagging all memory refer- 
ences with a generation counter. This increases processor- 
memory traffic by an unacceptable amount (25% or more); 
the authors acknowledge this drawback. 

l Their third algorithm performs address translation at mem- 
ory, and therefore requires that the memory cluster holding 
a page be determined directly from the virtual address after 
extension via a segment register. This makes copy-on-write 
impossible among memory modules (a bad decision), and 
severely reduces the flexibility of shared memory by requir- 
ing that it be implemented as shared segments (where the 
segment is determined by using the high-order bits of the 
virtual address to index into a segment table). Such hard- 
ware cannot fully support the shared memory functionality 
provided by Mach. 

In summary, these algorithms do not solve the translation buffer 
consistency problem in its full generality, and impose large costs 
for small benefits. We do not believe this to be a productive design 
approach. 

11 Conclusions 

The Mach shootdown algorithm and its implementations demon- 
strate that translation buffer consistency can be implemented in 
software. The algorithm works reliably and is in production use on 
many multiprocessors at CMU and elsewhere. We were pleasantly 
surprised by the low overhead on current machines. The algorithm 
as presented here will scale badly to larger machines (e.g. 6ms ba- 
sic shootdown time for 100 processors), but appropriate hardware 
support and system structures that match the hardware structures 
on such machines should be able to reduce this to acceptable lev- 
els. The two most desirable hardware support features for TLB 
consistency are a high-priority software interrupt and an MMU de- 
sign that allows us to avoid stalling remote processors while pmaps 
are being updated. We conclude that translation buffer consistency 
overhead is not an obstacle to building multiprocessors with hun- 
dreds of processors. 
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