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translation-lookaside buffer is a dimensions of the network, so a solution to A soecial-ouruose. . .  virtual-address TLB inconsistency should meet the needs 
1 A cache rkquired to implement a 
paged virtual memory efficiently. Shared- 
memory multiprocessors with multiple 
TLBs, also known as translation buffers or 
directory-lookaside tables, give rise to a 
special case of the cache consistency prob- 
lem, which can occur when multiple im- 
ages of data can reside in multiple distinct 
caches, as well as in main memory. If one 
of these images is modified, then the others 
become inconsistent with the modified 
data image and no longer represent a valid 
image of the data. 

A processor accesses a TLB entry to 
determine the memory location and acces- 
sibility of referenced data. TLB entries 
store this information in data structures 
called page tables. Since multiple proces- 
sors can read and write page tables, they 
can make corresponding information in 
TLBsstale, whichin tumcancauseerrone- 
ous memory accesses and incorrect pro- 
gram behavior. 

We can solve this problem, called the 
TLB consistency problem, either by ensur- 
ing consistency between information in 
page tables and TLBs or by preventing the 
use of inconsistent TLB entries. In this 
article, I discuss nine solutions proposed in 
the literature. Three of these require vir- 
tual-address, general-purpose caches kept 

Shared-memory 
multiprocessors 
with multiple 

translation-lookaside 
buffers must deal 

with a cache 
consistency problem. 
This article describes 

nine solutions. 

consistent by special-purpose hardware. 
Although I describe the general idea be- 
hind these solutions, I concentrate on the 
others, since I am particularly interested in 
identifying solutions for scalable architec- 
tures without hardware cache consistency, 
especially multiprocessors with a multi- 
stage network interconnecting processors 
and memory. In scalable multiprocessor 
architectures, the number of processors 
and memory modules can increase with the 

of tens, hundreds, or thousands of proces- 
sors. 

One of a multiprocessor’s main goals is 
to increase the execution speed of applica- 
tion programs by distributing the computa- 
tional load among multiple processors. 
Therefore, it is important that the perfom- 
ance overhead for a solution to TLB incon- 
sistency does not reduce the possible 
speedups in these computing environ- 
ments. The overhead includes processor 
execution and idle time attributable to 
maintaining TLB consistency and the 
implicit side effects of a particular solution 
(such as serialized page-table modifica- 
tions, increased page-ins and TLB misses, 
and the inability to use time-saving optimi- 
zations). In scalable multiprocessor archi- 
tectures, the average time to satisfy a 
memory request grows with system size. 
Accordingly, the importance of caches, 
TLBs, and efficient solutions to the cache 
and TLB consistency problems also grows 
with system size. 

With these points in mind, I discuss the 
six solutions that do not require virtual- 
address caches kept consistent by hard- 
ware (see Table 1). For each solution, I 
describe the algorithm, the hardware, the 
limitations with respect to the memory- 
sharing pattems it supports, and the cost in 
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Table 1. Summary of solutions to the translation-lookaside buffer consistency problem. 

Solution Required Hardware Memory Sharing Performance Overhead 
(Strategy) Limitations 

TLB Interprocessor interrupt 
shootdown and architected TLB 
(invalidate) entry invalidation 

Modified High-priority 
TLB interprocessor interrupt, 
shootdown architected TLB entry 
(invalidate) invalidation, and 

hardware support for 
atomic operations 

Lazy Extra TLB field, 
devaluation interprocessor interrupt, 
(delay & and architected TLB 
invalidate) entry invalidation 

Read- Interprocessor interrupt 
locked and architected TLB 
TLBs entry invalidation 
(avoid & 
postpone) 

Memory- TLBs with bus monitors 
based interconnected by bus, 
TLBs virtual-address caches, 
(invalidate) and sufficient network 

bandwidth 

Validation Validation tables, extra 
(detect & TLB field, comparators, 
correct) and sufficient network 

bandwidth 

None 

None 

No parallel execution in 
same address space or 
remote address-space 
modification. 

No parallel execution in 
same address space or 
remote address-space 
modification. Copy-on- 
write sometimes 
forfeited. 

Address-space identifier 
or single, global address 
space. Given multiple 
memory clusters, pages 
in different clusters 
cannot map to same page 
and virtual-memory 
management is restricted. 

None 

Processors that might be using a page table that is 
being modified are forcibly interrupted and idled until 
the unsafe change has been made. Participation of the 
modifying processor depends on the number of other 
participating processors. Overhead also includes 
interprocessor communication and synchronization, 
serialization of unsafe changes to a page table, and 
serialization of page-table modification and use. 

Overhead is the same as for TLB shootdown with two 
exceptions: Interrupted processors are not idled, and 
their participation is small and possibly constant. 
Page-table modification and use are not serialized. 

In some cases, the modifying processor independently 
updates the TLBID or invalidates TLB entries. In 
other cases, overhead is the same as for TLB 
shootdown. 

The counter is updated on each TLB reload, 
invalidation, and replacement. When an unsafe 
change cannot be postponed, overhead is the same as 
for TLB shootdown. 

The TLB notifies the processor of a page fault, 
protection exception, and virtual-memory 
deallocation. Also, memory requests contain virtual 
addresses, and there might be contention for a cluster 
bus and TLBs. 

Memory requests contain a generation count. The 
modifying processor updates the generation count. An 
extra network trip is needed when a stale TLB tntry is 
used. Overhead also includes a solution to the 
generation-count wraparound problem. 

processor execution time and multiproces- 
sor performance. It is difficult to determine 
which solution is most suitable for a scal- 
able architecture. Since small-scale multi- 
processors and prototypes of large-scale 
multiprocessors have been built, the per- 
formance of some solutions can be evalu- 
ated in these systems. However, appropri- 
ate large-scale multiprocessors are not 

available. Also, factors that could deter- 
mine a solution’s efficiency have not yet 
been measured (such as the frequency of 
page-table modifications, the rate at which 
TLB inconsistencies occur, and the degree 
of memory sharing among processes coop- 
erating in program execution). These fac- 
tors are of particular interest in scalable 
architectures, since a solution’s efficiency 

becomes even more important if these 
measurements increase with system size. 

Since I do not have data to quantitatively 
evaluate these solutions, I compare their 
potential effects on multiprocessor per- 
formance and the limitations they impose 
on memory sharing. When implemented in 
a multiprocessor with a shared bus inter- 
connecting processors and memory, the 
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overhead is very low for the three solutions 
that require virtual-address caches kept 
consistent by hardware, since only the 
processor modifying a page table partici- 
pates in the algorithm, and this processor’s 
related execution time is small and con- 
stant. 

Although solutions for multiprocessors 
with more general interconnnects do not 
have such small overheads, two solutions 
- memory-based TLBs and validation - 
come close to achieving this goal. Such a 
small overhead might not be necessary, 
however, if TLB inconsistencies are rare 
events and memory sharing among pro- 
cesses is limited. In this case, a solution 
called TLB shootdown, which requires 
essentially no hardware support, might be 
adequate, even though interprocessor 
communication and synchronization are 
inherent in its algorithm. 

The number of ways in which TLB in- 
consistencies can arise is a function of the 
generality of memory-sharing pattems 
amongprocesses. Of the six solutions,TLB 
shootdown, modifiedTLB shootdown, and 
validation solve the TLB consistency prob- 
lem for all memory-sharing pattems. If the 
targeted multiprocessor has only one clus- 
ter of memory modules, then memory- 
based TLBs joins this group. Otherwise, 
memory-based TLBs, as well as lazy de- 
valuation and read-locked TLBs, solve the 
problem for only a limited set of memory- 
sharing pattems. 

I first define the function of a TLB and 
describe how TLB inconsistency arises 
both in uniprocessor and multiprocessor 
architectures. Then, after explaining how 
the problem of TLB consistency is solved 
in a uniprocessor and in multiprocessors 
with a shared bus, virtual-address caches, 
and hardware cache consistency, I describe 
solutions that can be implemented in multi- 
processors with more general interconnec- 
tion networks and without hardware cache 
consistency. 

Virtual memory and 
TLBs 

Without a TLB, two or three memory 
accesses might be needed to satisfy a data 
request. To understand why this is so, 
consider the organization and management 
of a paged virtual-memory system and the 
function of a TLB. 

A hierarchical memory system that 
supports paged virtual memory includes 
both main and auxiliary memories. Main 

memory is divided into frames, each con- 
taining an equal number of memory loca- 
tions. Virtual memory comprises a set of 
virtual pages, the size of each being a 
multiple of the corresponding frame size. 
An image of a virtual page can reside in 
both main and auxiliary memory, but only 
the image in main memory can be read or 
written. Therefore, these two images are 
often inconsistent. 

While executing a program, a processor 
references data by virtual address. The 
high-order bits of a data item’s virtual 
address identify the page where the data is 
stored, and the low-order bits indicate the 
displacement from the beginning of the 
page to the data’s location. Although data 
is referenced by virtual address, data often 
can be accessed only when its virtual ad- 
dress is translated to a physical address, 
where the high-order bits identify a frame 
and the low-order bits identify a displace- 
ment. Address translation is not necessary 
if a virtual-address, general-purpose cache 
is associated with each processor and the 
referenced data is cacheable and cache 
resident. 

Virtual-to-physical address translation 
information is stored in apage table, which 
has an entry for each page. The informa- 
tion includes 

the location of the page in physical 
memory (a frame number); 

* a protection field indicating how the 
page can be accessed, for example, 
read/write or read-only; 
a valid bit (sometimes called a resident 
bit) indicating if the frame number is 
valid; and 
a modify bit (sometimes called a dirty 
bit) indicating if the page was modi- 
fied since it became main-memory 
resident, that is, if an exact image of 
the page resides in auxiliary memory. 

TLBs give processors fast access to 
translation information for recently refer- 
enced pages, so the processors need not 
access a page table whenever address 
translation is necessary. Since programs 
generally exhibit locality of reference, a 
process usually accesses the same page a 
number of times during a certain time inter- 
val. Thus, a TLB often eliminates the need 
for a processor to access translation infor- 
mation from main memory. Measurements 
on the VAX-1 ln8O reveal that translation 
information can be accessed from a TLB 
rather than from a page table more than 97 
times out of 100; that is, the TLB miss rate 
is approximately 3 percent.’ Without a 

TLB, a data request might require one or 
two additional memory accesses. Two 
accesses might be needed when virtual 
memory is organized in segments, each 
containing a set of pages. In this case, the 
processor might also have to access a data 
structure called a segment table to get the 
location of the page table containing the 
referenced page’s translation information. 

Figure 1 illustrates the data paths of a 
typical physical-address cache and TLB 
design, where the page and frame sizes are 
assumed to be equal. In this case, cache 
access and address translation can overlap 
to some extent? A processor uses the high- 
order bits of the virtual address (the page 
number) to get the referencedpage’s trans- 
lation information from the TLB. A TLB 
hiroccursifavalidTLBentryexistsforthe 
page. The number of the frame containing 
the page is then concatenated with the low- 
order bits of the virtual address, yielding 
the referenced data’s physical address, 
which can be used to access either the 
cache or main memory. Otherwise, a TLB 
miss occurs, initiating a TLB reload. Using 
the virtual page number to form the ad- 
dress of the page’s page-table entry, aTLB 
reload accesses and loads in the TLB a 
copy of the translation information stored 
in the page table. In general, one entry must 
be removed from the TLB to make room 
for another. 

When the referenced page is not in main 
memory, apage fault occurs. If the page is 
not already becoming resident, such a 
process, called a page-in, begins. A page- 
in allocates a frame to the page and, if 
necessary, copies the page’s image in 
auxiliary memory to the allocated frame. If 
all physical memory has been allocated, a 
page-in evicts another page from main 
memory. Before a page is evicted, how- 
ever, auxiliary memory must contain an 
exact image of it; this could require writing 
the evicted page to auxiliary memory be- 
fore overwriting it with the newly refer- 
enced page. 

Multiple processes can access, or share, 
a page by either a one-to-one or a many-to- 
one mapping of pages to frames. General 
memory-sharing patterns are produced 
when 

processes sharing a page via a many- 
to-one mapping can execute concur- 
rently on different processors; - multiple processes can execute con- 
currently in the same address space 
(the set of virtual addresses a process 
can reference); and 
a process can modify the translation 
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information of a page in the address 
space of another process, which might 
be executing concurrently on a differ- 
ent processor. 

When pages are mapped to frames on a 
many-to-one basis and process identifiers 
are not affixed to virtual page numbers, 
multiple processes can refer to the same 
page with different virtual page numbers. 
Therefore, switching processor execution 
from one process to another, called a con- 
fext switch, requires invalidating all TLB 
entries. This invalidation is called a TLB 
flush.  If pages are mapped to frames on a 
one-to-one basis or process identifiers are 
affixed to virtual page numbers, a page is 
always referenced with a distinct page 
number. Therefore, a context switch in a 
uniprocessor does not require a TLB flush. 
This is also the case in a multiprocessor if 
TLB consistency is guaranteed when pro- 
cesses migrate among processors. 

Physical address 

The problem of TLB 
consistency 

Frame number Linenumber I i:f:e 

More than one image of apage’s transla- 
tion information can exist: one is stored in 
the page table and others can be stored in 
TLBs. Processes can have access to mul- 
tiple images, using TLB images for vir- 
tual-to-physical address translation and 
accessing the page-table image to perform 
TLB reloads or modify translation infor- 
mation. Therefore, page-table modifica- 
tions can make TLB entries inconsistent 
with the page-table entries they are sup- 
posed to mirror. Since inconsistent TLB 
entries can generate erroneous memory 
accesses, this TLB consistency problem 
must be solved by ensuring consistency or 
preventing the use of inconsistent entries. 

TLB inconsistencies resulting from 
updates of page-reference history informa- 
tion (such as bits that record if a page has 
been modified or referenced during some 
time interval) are harmless if precautions 
are taken when updating page tables. 
However, inconsistencies resulting from 
other page-table modifications, catego- 
rized as safe and unsafe changes, can he 
harmful. 

Page-reference history information 
need not be consistent among TLBs and 
page tables. However, it is crucial that the 
reference history information stored in 
page tables reflect states that will not cause 
erroneous program behavior. Information 
can be lost if a modify hit that indicates 
whether a page has been written is inaccu- 
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Figure 1. Data paths of a typical physical-address cache and TLB design. 

rate, since the only accurate representation 
of a page (stored in main memory) can be 
overwritten if it does not also reside in 
auxiliary memory. On the other hand, a hit 
that indicates whether a page has been 
referenced need not be accurate, since it is 
generally used as a heuristic to select a 
page to replace in main memory; replacing 
one page instead of another does not cause 
errors, although it can have performance 
consequences. In any case, if processors 
can concurrently modify a page-table en- 
try (forexample, ifonecanchangeapage’s 
mapping while another sets the modify 
bit), then a page’s reference history must 
be updated in such a way that it does not 
corrupt current page-table information. 

A safe change results from 

- a reduction in page protection, such as 
the modification of access rights from 
read-only to read/write, or 
a page’s becoming main-memory resi- 
dent. 

We can avoid using a TLB entry that is 
inconsistent due to a safe change by de- 

signing the hardware so that using the entry 
generates an exception, which invokes an 
operating-system trap routine that invali- 
dates or corrects the TLB entry. For ex- 
ample, suppose the translation information 
for page a, stored in a valid TLB entry 
accessed by processorx, defines the page’s 
protection as read-only. Also, suppose a’s 
page-table entry is subsequently modified 
by a process executing on processor Y to 
reflect a change in protection from read- 
only to read/write. When a process execut- 
ing onX attempts to write a, the operating 
system intervenes, since the TLB entry for 
a that X accessed defines the protection as 
read-only. Checking a’s page-table entry, 
the operating system finds that the protec- 
tion has been increased and invalidates the 
stale TLB entry. After X reloads a consis- 
tent TLB entry for a and resumes execution 
(assuming X hasn’t started executing a 
different process), the modification of a 
will be successfully and correctly exe- 
cuted. 

In contrast, unsafe changes cause TLB 
inconsistencies that cannot be detected 
during program execution. This class of 
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Figure 2. TLB inconsistency in a multiprocessor: (a) before processor X evicts 
page a; (b) after processor X replaces page a with page b. 

page-table modifications raises the need 
for TLB management that ensures consis- 
tency. An unsafe change results from 

the invalidation of a virtual-to-physi- 
cal memory mapping, 
an increase in page protection, or 
the remapping of a virtual or physical 
page, that is, a change in the mapping 
of a page to a frame. 

The virtual-to-physical memory map- 
ping of a page is invalidated when virtual 
memory is deallocated or when a page is 
evicted from main memory. Virtual mem- 
ory is deallocated when virtual pages are 
removed from the address space of a pro- 
cess. A shared page’s protection can be. 
increased to implement the copy-on-write 
optimization and interprocess communi- 
cation. Copy-on-write saves copying over- 
head by letting multiple processes share a 
page as a read-only page until one of the 
processes attempts to modify it. 

Unsafe changes can cause TLB incon- 
sistency in both uniprocessor and multi- 
processor systems, as illustrated in Figure 
2 and described below. Consider a multi- 
processor system, and suppose that valid 
entries map page a to frame A in both the 
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TLB accessed by processor X and the TLB 
accessed by processor Y. Now suppose that 
a process executing on X maps page b to 
frame A and evicts page a, updating X’s 
TLB accordingly. Unless Y is prevented 
from using a’s inconsistent TLB entry, it 
could erroneously access b when attempt- 
ing to access a. Now consider X by itself. 
Whether in a uniprocessor or multiproces- 
sor system, X faces the same problem as Y 
if it does not update its own TLB after 
modifying the mapping for page a and 
before issuing any other memory requests. 

Since the maintenance of page-refer- 
ence history information is a separate is- 
sue, and since TLB entries made inconsis- 
tent by safe changes can be detected and 
corrected by the operating system, the term 
“TLB consistency problem” in the rest of 
this article refers only to TLB inconsisten- 
cies caused by unsafe changes. 

Solutions to the TLB 
consistency problem 

The TLB consistency problem is easy to 
solve in a uniprocessor, but it is decidedly 
more difficult in a multiprocessor. In a 

multiprocessor architecture with multiple 
TLBs, in addition to a consistency problem 
between a page table and a TLB, a consis- 
tency problem exists among the system’s 
multiple TLBs and page tables. Figure 3 
shows a system with N processors and N 
memory modules, where one TLB is asso- 
ciated with each processor. The memory 
modules are collected into m clusters of 
size c, where a 5 m 5 N, and cm = N, and a 
frame is interleaved across a cluster’s 
memory modules. Processors and memory 
are interconnected by a shared bus or by a 
more general network, such as amultistage 
network. In bus-based architectures, the 
shared bus can help solve the cache and 
TLB consistency problems. In multi- 
processors with more-general intercon- 
nection networks and no bus-interconnect- 
ing processors, these problems are more 
difficult. 

Although the solutions I describe that 
require virtual-address caches kept consis- 
tent by hardware are limited to bus-based 
multiprocessors, the algorithms them- 
selves are not so limited. Thus far, hard- 
ware cache consistency has been imple- 
mented only in bus-based multiprocessors. 
However, distinct solutions to both the 
cache and TLB consistency problems have 
been proposed for multiprocessors with 
more-general interconnection networks. 
For example, directory-based schemes or 
software-assisted cache management can 
solve the cache consistency problem in 
multiprocessors with multistage intercon- 
nection networks. Directory-based 
schemes incur an overhead that does not 
scale with the dimensions of the network), 
so this approach to cache consistency 
might only be suitable for a limited class of 
applications, although it could provide an 
efficient solution to the TLB consistency 
problem. Software-assisted cache man- 
agement4.5 depends on information avail- 
able to the compiler. This approach could 
prove effective for ensuring cache consis- 
tency, but it is not suitable for solving the 
TLB consistency problem because infor- 
mation required to manage virtual memory 
is available to the operating system and not 
to the compiler. 

Solutions for uniprocessors. In a uni- 
processor, the operating system ensures 
TLB consistency by inhibiting context 
switching while the processor modifies a 
page-table entry and updates its TLB ac- 
cordingly. No memory accesses occur dur- 
ing this timeexcepttoaccess thepage table, 
so no inconsistent TLB entries are used to 
access memory. In a shared-memory 
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multiprocessor, this approach can only 

..-o""yb.8 a pag- * b k ,  5o 

no more than one TLB image of the page's 
translation information is guaranteed to be 
consistent with the page table. 

ensure the consistency of the TLB accessed .. P-YLEa~U.  

Solutions requiring virtual-address 
caches and hardware cache consistency. 
In bus-based multiprocessors, we can pre- 
vent the use of inconsistent TLB entries by 
not allowing memory accesses after apage 
table's main-memory image is modified 
and before all TLBs are consistent with the 
modified page table. We accomplish this 
by associating a bus monitor with each 
cache to recognize all memory accesses. 
The TLB consistency solutions proposed 
by Cheriton, Slavenburg, and Boyle,6 
Goodman,' and Wood et al.' use this 
method. 

These solutions assume each processor 
has a virtual-address, general-purpose 
cache that stores translation information 
with other data and is kept consistent via a 
chosen protoc01.~ Solving the cache con- 
sistency problem also solves the TLB 
consistency problem, since would-be TLB 
entries are stored in, and accessed from, 
the cache. Memory requests transmitted on 
the bus trigger the bus monitors to ensure 
cache consistency. When a page-table 
entry is modified, each monitor checks to 
see if translation information for the asso- 
ciated page is cache resident; if so, the 
monitor invalidates or updates the corre- 
sponding cache entry. 

Two relevant issues give a general idea 
of how each of these solutions works (I 
have omitted some important implementa- 
tion details). First, I show how the bus 
monitor can query the cache when the 
cache is addressed by avirtual address and 
the memory request is targeted to a physi- 
cal address. Second, since a many-to-one 
mapping of pages to frames can yield more 
than one cache entry for the same data, I 
explain how the solutions handle this prob- 
lem, called the address synonym problem? 

The solution of Wood et al.,* imple- 
mented as part of the Symbolic Processing 
Using RISC (SPUR) workstation project at 
the Univeristy of Califomia at Berkeley, 
assumes a dual-address bus, where a 
memory request includes both the virtual 
and physical addresses of the referenced 
data. The bus monitor can thus query the 
cache with the transmitted virtual address. 
The synonym problem is avoided by as- 
suming a one-to-one mapping from pages 
to frames, which defines a single, global 
address space. 
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Figure 3. A multiprocessor architecture. 

Thisideacanbetakenonestepfurtherto 
support a many-to-one mapping of pages 
to frames, increasing the ways memory can 
be shared. In Goodman's solution? the 
cache has two copies of the cache direc- 
tory, one accessed by the processor with 
virtual addresses and the other by the bus 
monitor with physical addresses. Thus, 
physical rather than virtual addresses can 
trigger the bus monitor. The system binds 
and unbinds virtual addresses to physical 
addresses in response to bus transactions, 
solving the synonym problem. 

Stanford University has incorporated 
the solution proposed by Cheriton, Slav- 
enburg, and Boyle6 in the design of the 
VMP multiprocessor, an experimental 
shared-memory, bus-based multiproces- 
sor. If the cache cannot satisfy a data re- 
quest, the frame containing the data is 
cached. An action table maintained by each 
bus monitor contains information for each 
cached page frame. Bus transactions trig- 
ger the bus monitors to ensure cache con- 
sistency. Since the bus monitors' actions 
are keyed to frame numbers, the synonym 
problem is solved. 

When implemented in a bus-based 
multiprocessor, the overhead associated 
with these solutions is very low because 
only the modifying processor participates 
in the algorithm and its participation per 
page-table modification is small and con- 
stant. The bus monitors maintain consis- 

tency independently of the processors. As 
mentioned earlier, only the implementa- 
tions are limited to bus-based multiproces- 
sors; the algorithms are not. In any case, 
solutions to the TLB consistency problem 
are also needed for multiprocessor archi- 
tectures without virtual-address caches 
kept consistent by hardware. 

Solutions without hardware cache 
consistency. Six TLB consistency solu- 
tions can be used in multiprocessors with- 
out hardware cache consistency. Two so- 
lutions require essentially no hardware: 
TLB shootdown and read-locked TLBs. 
Three solutions -TLB shootdown, modi- 
fied TLB shootdown, and validation (and, 
if the targeted multiprocessor has only one 
cluster of memory modules, memory- 
based TLBs) - do not limit memory shar- 
ing among processes. But none of these 
solutions have the small overhead exhih- 
ited by the solutions described above. If 
the targeted architecture has sufficient 
bandwidth, however, memory-based 
TLBs and validation (which are meant for 
scalable multiprocessor architectures with 
multistage interconnection networks) 
come close to achieving this goal, since 
each meets the following criteria: 

* The participation of a processor modi- 

The participation of another processor 
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is necessary only when a page affected by 
an unsafe change is accessed from memory 
(memory-based TLBs) or when an incon- 
sistent TLB entry is used (validation). 

Locks are placed on the smallest pos- 
sible entities. 

Serialization is not introduced. 
Explicit interprocessor communica- 

tion and synchronization are not required. 

TLB shootdown. Black et al.’” have pro- 
posed an essentially hardware-independ- 
ent solution called TLB shootdown. This 
algorithm is included in Camegie Mellon 
University’s Mach operating system, 
which has been ported to multiprocessor 
architectures including the BBN Butterfly, 
Encore’s Multimax, IBM’s RP3, and 
Sequent’s Balance and Symmetry systems. 
In this algorithm, a lock associated with 
each page table must be secured to modify 
either a page table or the list of processors 
that may be using the table. The following 
sequence describes generally how the al- 
gorithm works. 

* A processor that wants to modify a 
page table disables interprocessor inter- 
rupts and clears its active flag (such a flag 
is associated with each processor and indi- 
cates if the processor is actively using any 
page table). The processor then locks the 
page table, flushes TLB entries related to 
pages for which translation information is 
to be modified, enqueues a message for 
each interrupted processor describing the 
TLB actions to be performed, and sends an 
interprocessor interrupt to other proces- 
sors that might be using the page table. 

When a processor receives the inter- 
rupt, it clears its active flag. - The modifying processor busy-waits 
until the active flags of all interrupted 
processors are clear and then modifies the 
page table. Finally, after releasing the 
page-table lock and setting its active flag, 
the modifying processor resumes execu- 
tion. 

After clearing its active flag, each 
interrupted processor busy-waits until 
none of the page tables it is using are 
locked. Then, after executing the required 
TLB actions and setting its active flag, it 
resumes execution. 

This algorithm idles all processors that 
may be using a page table while it is being 
modified. In addition, the modifying pro- 
cessor cannot make any modifications 
untilall interrupted processors have 
cleared their active flags. This synchroni- 
zation can be very costly for applications 

where many processes share data. Black et 
al. state that their algorithm could pose 
problems for large-scale systems because 
it scales linearly with the number of pro- 
cessors. Extrapolating measurements from 
an instrumented Mach kemel running on a 
16-processor Encore Multimax indicates 
that machines with a few hundred proces- 
sors might not experience a performance 
problem, except with regard to kemel 
space. To surmount this problem, Black et 
al. suggest restructuring the operating 
system’s use of memory so that TLB shoot- 
downs are limited to groups of processors 
rather than all processors. Note, however, 
thatparallelprograms with thesame degree 
of sharing as exhibited by the operating 
system will encounter the same perform- 
ance problems as the operating system. 

Modi f i ed  TLB s h o o t d o w n .  As 
Rosenburg explains,” the level of syn- 
chronization exhibited by the originalTLB 
shootdown algorithm is necessitated by 
architectural features of multiprocessors 
to which Mach is targeted. Rosenburg’s 
version of this algorithm uses features of 
IBM’s RP3 and requires less synchroniza- 
tion. Experiments on the RP3 show that the 
time spent by the intempted processors 
can remain constant even as the number of 
processors grows. In particular, processors 
using apage table neednot busy-wait while 
the table is being modified, and a processor 
can modify the table without waiting for 
other processors to synchronize. In addi- 
tion, even though page-table modifications 
are serialized, processors can use a shared 
page table during a modification, since 
modifications are performed atomically. 
The semantics of this algorithm are slightly 
different from the original TLB shootdown 
algorithm, since at any given moment one 
processor can use a page’s old translation 
while another processor uses a new one. 
Rosenburg’s algorithm has been imple- 
mented in the version of Mach running on 
the RP3. In both versions: 

The participation of a modifying proc- 
essor grows with the number ofprocessors 
involved in the algorithm. 

The execution of all processors that 
might have a TLB entry that will become 
inconsistent (or that is inconsistent, in the 
case of modified TLB shootdown) as a 
result of an unsafe change are forcibly 
interrupted, whether or not they have used 
or will use the translation information in 
question. 

Parallelism is limited, since only one 
process can modify a given page table at 

one time and processors must synchronize 
and communicate with one another. - The scheduling of a process is delayed 
if a page table it may use is being modified. 

TLB shootdown ensures TLB consis- 
tency no matter how memory is shared, 
since processors cannot use translation 
information associated with a page table 
while the table is being modified. As 
mentioned above, Rosenburg’s version has 
slightly different semantics and requires 
extra hardware support, but it is as effec- 
tive and performs better. 

TLB shootdown is a good solution to the 
TLB consistency problem for multiproces- 
sors with no hardware support for this 
purpose. In addition, if unsafe changes 
rarely occur and memory is not widely 
shared among processes, then either ver- 
sion of the algorithm should perform well. 
Otherwise, the overhead of these solutions 
is likely to adversely effect multiprocessor 
performance. 

Lazy devaluation. Why not postpone 
invalidating TLB entries until absolutely 
necessary? Thompson et al.’* proposed 
this strategy, called lazy devaluation, to 
ensure TLB consistency when virtual 
memory is deallocated and when page 
protection is increased. Lazy devaluation 
has been implemented in a multiprocessor 
architecture based on the MIPS R2000 
processor running the System 5.3 Unix 
operating system. Although this solution is 
effective for the targeted multiprocessor 
system, as observed by Black et al.,IO nei- 
ther this Unix implementation nor this TLB 
consistency solution supports multiple 
processes executing in the same address 
space or allows a process to modify the 
address space of another executing pro- 
cess. 

The MIPS R2000 gives a TLB entry a 
six-bit field for an address-space identi- 
fier, so TLBs need not be flushed on con- 
text switches. To implement lazy devalu- 
ation,TLB identifiers (TLBIDs) associated 
with active processes identify when TLB 
entries on a particular processor must be 
replaced or invalidated. A TLB reload also 
loads the TLBID of the executing process 
into the TLB entry’s address-space identi- 
fier field. A TLB hit occurs when the refer- 
enced virtual address and the TLBID of the 
referencing process match the TLB entry’s 
virtual address and TLBID. 

When a process releases a region of 
virtual memory, a new TLBID is assigned 
to that process, making any TLB entries 
associated with the released space inacces- 
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sible to the process. When TLBIDs are 
recycled, all TLBs must be flushed. The 
eviction of a page is postponed until all 
related TLB entries are invalidated via a 
systemwide TLB flush. The remapping of 
a page is postponed until no TLB contains 
an entry for the page. If the remapping 
cannot be stalled, then all TLBs are flushed 
so that the change can occur. To handle 
increases in page protection, a data struc- 
ture associated with each process or each 
TLBID tracks the processors that might 
have inconsistent TLB entries. When a 
process migrates to such a processor, those 
entries are flushed from its TLB. 

This approach has problems when pro- 
cesses execute in parallel within the same 
address space or when a process modifies 
the address space of another process that 
might be executing concurrently on an- 
other processor. When virtual memory is 
deallocated, modifying a process’ TLBID 
makes associated TLB entries inaccessible 
to that process but not to other processes 
with the same address space. The proce- 
dure suggested for maintaining TLB con- 
sistency in the face of increases in protec- 
tion is only effective for a modifying 
processor’s TLB. It does not work if proc- 
esses executing concurrently on other 
processors share the same address space, 
although it can be used to implement the 
copy-on-write optimization. 

If processes do not migrate frequently 
and unsafe changes rarely occur, then lazy 
devaluation could be efficient for systems 
similar to its target system. In fact, prelimi- 
nary performance figures indicate this 
approach succeeds for the target system 
without excessive TLB flushing. How- 
ever, lazy devaluation could adversely 
affect multiprocessor performance if un- 
safe changes are not rare events. To im- 
prove performance, Thompson et al. sug- 
gest maintaining extra information to aL 
low selective invalidation of TLB entries 
rather than systemwide TLB flushes. In 
either case, interprocessor communication 
and synchronization are required. In addi- 
tion, lazy devaluation does not support 
general memory-sharing patterns. 

Read-locked TLBs. Preventing a TLB 
entry from becoming invalid prevents TLB 
inconsistency. This is the premise of read- 
locked TLBs, proposed by myself, Kenner, 
and Snir.’) This strategy prohibits an un- 
safe change while a valid copy of the trans- 
lation information to be modified resides 
in one or more TLBs. In essence, a proces- 
sor maintains a read lock on a page-table 
entry as long as the page’s translation in- 
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Figure 4. A multiprocessor with hbrdware support for memory-based TLBs. 

formation resides in its TLB. Thus,, TLB 

causes unnecessary page copying. 

mapped to the address space of an active 
process. Virtual memory can be deallo- 
cated at any time, but a mapping for a 
deallocated page must not be used after the 
virtual page has been reallocated. We can 
assure this by postponing the reuse of a 
virtual page until no TLB contains an entry 
for it, except the TLB of the processor 
reusing the page. When these unsafe 
changes cannot be postponed, we must use 
an alternate strategy, such a s  TLB 
shootdown. 

Like lazy devaluation, the read-locked 
TLB strategy is not effective if processes 
execute in the same address space or if 
address spaces are modified remotely. 
Unlike lazy devaluation, this strategy does 
not require flushing TLBs when a page is 
evicted, but it might be forced to forego the 
copy-on-write optimization. Either solu- 
tion is suitable for a multiprocessor with 
restricted memory sharing if unsafe 
changes involving many processors and 
incumng an overhead similar to that of 
TLB shootdown do not occur frequently. 
In addition, techniques in each solution 
can effectively reduce performance over- 
head in other TLB consistency solutions. 
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Figure 5. A multiprocessor with hardware support for validation. 

Memory-based TLBs. If TLBs are asso- 
ciated with memory modules rather than 
processors, a TLB reload does not require 
network traffic. My colleagues and I sug- 
gested such a config~ration'~ (see Figure 
4). Sincetranslationisdoneat thememory, 
general-purpose caches associated with 
each processor must be virtual-address 
caches. A memory request contains the 
virtual rather than physical address of the 
referenced data, so the virtual address 
defines the targeted memory module. If 
physical memory is organized into more 
than one cluster of memory modules, the 
number of frames to which a page can be 
mapped is limited; when a page resides in 
main memory, it is assumed to be stored in 
a specific cluster of memory modules. This 
implies that the page-replacement policy 
applies to each cluster independently. 

The TLB is implemented as a cache with 
a bus monitor, as proposed by Goodman.' 
Within each memory cluster, the TLBs and 
the cluster page table are interconnected 
by a bus. A bus protocol9 ensures consis- 
tency among a cluster's TLBs and page 
table. Memory access can overlap address 
translation, since this bus-based subsys- 
tem is independent of the path to main 
memory. 
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Remapping of virtual or physical mem- 
ory is transparent to a processor, but logic 
at the memory must alert the processor to 
other unsafe changes. That is, a processor 
must be informed if a referenced page is 
not resident, if its protection has been in- 
creased, or if the page has been deallo- 
cated. In response, the processor executes 
a corresponding trap routine. 

To solve the synonym problem (since 
multiple, possibly independent, processes 
can access the same TLB), the address pre- 
sented to a TLB must include an address- 
space identifier, or a single, global address 
space must be assumed. In addition, the 
existence of more than one cluster of mem- 
ory modules compromises the flexibility 
with which memory can be shared, since 
virtual pages that map to the same physical 
page must map to the same cluster. 

If unsafe changes are not rare events or 
pages are widely shared among processes, 
a small performance overhead might be 
important. This is true for memory-based 
TLBs. No processor participates in the al- 
gorithm, and network traffic is generated 
only to inform processors of unsafe 
changes. In addition, this solution affords 
a large degree of parallelism in maintain- 
ing TLB consistency. 

However, other issues can affect per- 
formance: 

Since the TLBs are interconnected by 
a bus, the number of memory modules per 
cluster is limited. - As the number of TLBs in a cluster 
grows, bus traffic increases if the intra- 
cluster rate at which unsafe changes or 
TLB misses occur also grows. This in- 
crease in traffic could raise the cost of a 
TLB reload and lengthen the time to satisfy 
a memory request. 

If the path between the processors and 
memory is limited so that the size of the 
virtual address increases the average mes- 
sage length, the time to satisfy a memory 
request could increase. 

Since more than one processor can 
access any one TLB, TLBs might have to 
be larger than those accessed by only one 
processor. 

If these side effects do not degrade per- 
formance, then memory-based TLBs 
should perform well in a multiprocessor 
architecture with the necessary hardware 
support, even if unsafe changes are fre- 
quent and memory is widely shared among 
processes. However, if there is more than 
one cluster of memory modules, the func- 
tion of shared memory is somewhat lim- 
ited and virtual-memory management is 
restricted. 

Validation. Rather than invalidating 
inconsistent TLB entries to prevent their 
use, my colleagues and I suggested another 
approach, called validafion. In this strat- 
egy, translation information is validated 
before it is used to access data stored in 
memory. This is accomplished by associ- 
ating a generation count with each frame 
and modifying the count whenever an 
unsafe change affects the page mapped to 
that frame. A memory request is aug- 
mented with the generation count stored in 
the issuing processor's TLB entry for the 
referenced page. A frame's most recent 
generation count is stored in the validation 
tables associated with a memory cluster 
(see Figure 5 ) .  In addition, possibly out- 
dated generation counts are stored in TLBs 
and in the page-frame table, which has an 
entry for each page residing in physical 
memory. Whether the translation informa- 
tion used by the processor is stale is deter- 
mined by comparing the generation count 
transmitted with the memory request with 
the generation count stored in the targeted 
memory module's validation table. If the 
information is not stale, the memory re- 
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quest is satisfied; otherwise, the processor 
is notified to invalidate the referenced 
page’s TLB entry. The validation of the 
transmitted generation count and memory 
access is assumed to be atomic. 

A cluster’s validation table is replicated 
at each memory module in the cluster. 
(Assume that a frame is interleaved across 
the memory modules in a cluster.) Before 
an unsafe change is made, the modifying 
processor multicasts a message to the 
memory modules in the cluster where the 
page resides. The receipt of this message 
initiates the updating of the generation 
count associated with the frame where the 
page is stored. It also maintains consis- 
tency among a cluster’s validation tables. 
The change commences only after the 
tables are updated. After the unsafe change 
is complete, the generation count stored in 
the page-frame table is also updated. A 
TLB reload, in addition to loading transla- 
tion information stored in a page table, 
loads ageneration count stored in thepage- 
frame table. In this way, no reference to the 
page can be satisfied until the referencing 
processor has a current image of the trans- 
lation information stored in its TLB. This 
makes validation effective no matter how 
memory is shared. 

To implement validation, however, a 
frame’s generation count must be updated 
carefully. If a generation count is incre- 
mented to change its value, a problem 
arises when the generation count wraps 
around There could be an inconsistent 
TLB entry associated with the newly up- 
dated generation count value, and this 
inconsistent TLB entry will appear to be 
consistent. We can solve this problem in 
several ways: 

Use long generation counts, and use a 
TLB shootdown-like algorithm when 
wraparound occurs to invalidate relevant 
TLB entries. 

* Bound the time interval during which a 
TLB entry is guaranteed to be safe with 
respect to generation-count wraparound, 
and invalidate the entry before the interval 
ends. 

Maintain a set of counters for each 
frame, one for each allowable generation- 
count value. Eachcounterhas N bits, where 
N is the number of processors in the sys- 
tem. A TLB reload increments a counter, 
and invalidating or replacing a TLB entry 
decrements a counter. The generation 
count stored in the TLB entry selects the 
counter of the related frame to be incre- 
mented or decremented. A frame’s genera- 
tion count is updated by assigning it a 
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value associated with a zero counter. If 
there areNcounters, there is always a zero 
counter. If small generation counts are 
used, however, and if each allowable value 
of a frame’s generation count is present in 
at least one TLB (which is unlikely, since 
stale TLB entries are likely to be mplaced 
during program execution), then a TLB 
shootdown-like algorithm must be used to 
create a zero counter. 

The overhead is low for several reasons. 

A modifying processor acts independ- 
ently of other processors, and its participa- 
tion translates into a small and constant 
overhead that involves only memory ac- 
cesses. 

A processor’s participation is enlisted 
only when it uses an inconsistent TLB 
entry, and this participation has a small 
overhead (one extra round-trip through the 
network). 

It is likely that stale entries will be 
replaced before they are used. 

Participating processors act independ- 
ently of one another. 

* Each processor could simultaneously 
participate in ensuring the consistency of a 
TLB entry associated with a distinct page. 

Thus, even if unsafe changes are not rare 
events and memory is widely shared 
among processes, validation should per- 
form well in multiprocessor architectures 
with the necessary hardware support. Vali- 
dation has two drawbacks, however. First, 
if the network bandwidth is not sufficient 
to transmit a generation count with each 
memory request without increasing the 
number of packets that comprise a mes- 
sage, the average time to satisfy a memory 
request could increase. Second, a solution 
to the generation-count wraparound prob- 
lem must be implemented. 

A solution to the TLB consistency 
problem for a particular multi- 
processor system must support 

the defined functionality of shared mem- 
ory and should not degrade the speedups 
attainable by application programs. Since 
we do not know what behavior will be 
exhibited by programs executing in differ- 
ent multiprocessor architectures, we can 
only estimate which solution is best suited 
for a scalable multiprocessor with a multi- 
stage network. In particular, the following 
issues confront us: 

None of the proposed solutions has 
been implemented in a large-scale multi- 
processor system. 

* We do not know how either the rate of 
unsafe changes or the number of TLBs 
affected by such modifications will change 
as the number of processors, N .  increases. 

It is not clear how much parallelism is 
needed in consistency-ensuring TLB man- 
agement. In a bus-based multiprocessor 
employing one of the solutions that re- 
quires virtual-address caches and hard- 
ware cache consistency, TLB management 
is serial, that is, only inconsistencies 
caused by one page-table modification are 
corrected at any one time. In an architec- 
ture with a multistage network, inconsis- 
tencies caused by a number of unsafe 
changes can be corrected in parallel, the 
number depending on the solution. 

-There are questions about how to 
measure a problem’s execution speedup 
and, thus, how to evaluate the performance 
of solutions to the TLB consistency prob- 
lem. Do we look at the behavior of a cer- 
tain-sized problem executing on one pro- 
cessor versus its behavior executing on N 
processors? Or do we look at its behavior 
versus the behavior of that same problem 
with a size that grows with N ,  executing on 
N processors? 

It seems reasonable to increase the prob- 
lem size with N .  In this case, I feel the rate 
of unsafe changes and the number of pro- 
cesses sharing memory will increase as N 
increases. Therefore, algorithms whose 
performance depends on N will not scale 
well. If this is the case, then TLB 
shootdown, modified TLB shootdown, 
lazy devaluation, and read-locked TLBs 
are not good solutions for scalable multi- 
processor architectures. In contrast, the 
memory-based TLBs strategy exhibits the 
following characteristics, which yield 
good performance in scalable architec- 
tures: 

A processor is not interrupted to par- 

Little extracommunication is required 

No processor synchronization is re- 

Parallelism is inherent in the algorithm 

ticipate in the solution. 

to maintain TLB consistency. 

quired. 

it implements. 

But, if the memory modules are organ- 
ized in more than one cluster, then the 
memory-based TLBs strategy does not 
support all memory-sharing patterns and 
restricts virtual-memory management. 
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