
Translation-Lookaside
Buffer Consistency

Patricia J. Teller
IBM Thomas J. Watson Research Center

translation-lookaside buffer is a dimensions of the network, so a solution to A soecial-ouruose. . . virtual-address TLB inconsistency should meet the needs
1 A cache rkquired to implement a
paged virtual memory efficiently. Shared-
memory multiprocessors with multiple
TLBs, also known as translation buffers or
directory-lookaside tables, give rise to a
special case of the cache consistency prob-
lem, which can occur when multiple im-
ages of data can reside in multiple distinct
caches, as well as in main memory. If one
of these images is modified, then the others
become inconsistent with the modified
data image and no longer represent a valid
image of the data.

A processor accesses a TLB entry to
determine the memory location and acces-
sibility of referenced data. TLB entries
store this information in data structures
called page tables. Since multiple proces-
sors can read and write page tables, they
can make corresponding information in
TLBsstale, whichin tumcancauseerrone-
ous memory accesses and incorrect pro-
gram behavior.

We can solve this problem, called the
TLB consistency problem, either by ensur-
ing consistency between information in
page tables and TLBs or by preventing the
use of inconsistent TLB entries. In this
article, I discuss nine solutions proposed in
the literature. Three of these require vir-
tual-address, general-purpose caches kept

Shared-memory
multiprocessors
with multiple

translation-lookaside
buffers must deal

with a cache
consistency problem.
This article describes

nine solutions.

consistent by special-purpose hardware.
Although I describe the general idea be-
hind these solutions, I concentrate on the
others, since I am particularly interested in
identifying solutions for scalable architec-
tures without hardware cache consistency,
especially multiprocessors with a multi-
stage network interconnecting processors
and memory. In scalable multiprocessor
architectures, the number of processors
and memory modules can increase with the

of tens, hundreds, or thousands of proces-
sors.

One of a multiprocessor’s main goals is
to increase the execution speed of applica-
tion programs by distributing the computa-
tional load among multiple processors.
Therefore, it is important that the perfom-
ance overhead for a solution to TLB incon-
sistency does not reduce the possible
speedups in these computing environ-
ments. The overhead includes processor
execution and idle time attributable to
maintaining TLB consistency and the
implicit side effects of a particular solution
(such as serialized page-table modifica-
tions, increased page-ins and TLB misses,
and the inability to use time-saving optimi-
zations). In scalable multiprocessor archi-
tectures, the average time to satisfy a
memory request grows with system size.
Accordingly, the importance of caches,
TLBs, and efficient solutions to the cache
and TLB consistency problems also grows
with system size.

With these points in mind, I discuss the
six solutions that do not require virtual-
address caches kept consistent by hard-
ware (see Table 1). For each solution, I
describe the algorithm, the hardware, the
limitations with respect to the memory-
sharing pattems it supports, and the cost in

COMPUTER 26 W18-9162190/0600-W26$Ol.W 0 1990 IEEX

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 24, 2009 at 04:01 from IEEE Xplore. Restrictions apply.

Table 1. Summary of solutions to the translation-lookaside buffer consistency problem.

Solution Required Hardware Memory Sharing Performance Overhead
(Strategy) Limitations

TLB Interprocessor interrupt
shootdown and architected TLB
(invalidate) entry invalidation

Modified High-priority
TLB interprocessor interrupt,
shootdown architected TLB entry
(invalidate) invalidation, and

hardware support for
atomic operations

Lazy Extra TLB field,
devaluation interprocessor interrupt,
(delay & and architected TLB
invalidate) entry invalidation

Read- Interprocessor interrupt
locked and architected TLB
TLBs entry invalidation
(avoid &
postpone)

Memory- TLBs with bus monitors
based interconnected by bus,
TLBs virtual-address caches,
(invalidate) and sufficient network

bandwidth

Validation Validation tables, extra
(detect & TLB field, comparators,
correct) and sufficient network

bandwidth

None

None

No parallel execution in
same address space or
remote address-space
modification.

No parallel execution in
same address space or
remote address-space
modification. Copy-on-
write sometimes
forfeited.

Address-space identifier
or single, global address
space. Given multiple
memory clusters, pages
in different clusters
cannot map to same page
and virtual-memory
management is restricted.

None

Processors that might be using a page table that is
being modified are forcibly interrupted and idled until
the unsafe change has been made. Participation of the
modifying processor depends on the number of other
participating processors. Overhead also includes
interprocessor communication and synchronization,
serialization of unsafe changes to a page table, and
serialization of page-table modification and use.

Overhead is the same as for TLB shootdown with two
exceptions: Interrupted processors are not idled, and
their participation is small and possibly constant.
Page-table modification and use are not serialized.

In some cases, the modifying processor independently
updates the TLBID or invalidates TLB entries. In
other cases, overhead is the same as for TLB
shootdown.

The counter is updated on each TLB reload,
invalidation, and replacement. When an unsafe
change cannot be postponed, overhead is the same as
for TLB shootdown.

The TLB notifies the processor of a page fault,
protection exception, and virtual-memory
deallocation. Also, memory requests contain virtual
addresses, and there might be contention for a cluster
bus and TLBs.

Memory requests contain a generation count. The
modifying processor updates the generation count. An
extra network trip is needed when a stale TLB tntry is
used. Overhead also includes a solution to the
generation-count wraparound problem.

processor execution time and multiproces-
sor performance. It is difficult to determine
which solution is most suitable for a scal-
able architecture. Since small-scale multi-
processors and prototypes of large-scale
multiprocessors have been built, the per-
formance of some solutions can be evalu-
ated in these systems. However, appropri-
ate large-scale multiprocessors are not

available. Also, factors that could deter-
mine a solution’s efficiency have not yet
been measured (such as the frequency of
page-table modifications, the rate at which
TLB inconsistencies occur, and the degree
of memory sharing among processes coop-
erating in program execution). These fac-
tors are of particular interest in scalable
architectures, since a solution’s efficiency

becomes even more important if these
measurements increase with system size.

Since I do not have data to quantitatively
evaluate these solutions, I compare their
potential effects on multiprocessor per-
formance and the limitations they impose
on memory sharing. When implemented in
a multiprocessor with a shared bus inter-
connecting processors and memory, the

June 1990 21

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 24, 2009 at 04:01 from IEEE Xplore. Restrictions apply.

overhead is very low for the three solutions
that require virtual-address caches kept
consistent by hardware, since only the
processor modifying a page table partici-
pates in the algorithm, and this processor’s
related execution time is small and con-
stant.

Although solutions for multiprocessors
with more general interconnnects do not
have such small overheads, two solutions
- memory-based TLBs and validation -
come close to achieving this goal. Such a
small overhead might not be necessary,
however, if TLB inconsistencies are rare
events and memory sharing among pro-
cesses is limited. In this case, a solution
called TLB shootdown, which requires
essentially no hardware support, might be
adequate, even though interprocessor
communication and synchronization are
inherent in its algorithm.

The number of ways in which TLB in-
consistencies can arise is a function of the
generality of memory-sharing pattems
amongprocesses. Of the six solutions,TLB
shootdown, modifiedTLB shootdown, and
validation solve the TLB consistency prob-
lem for all memory-sharing pattems. If the
targeted multiprocessor has only one clus-
ter of memory modules, then memory-
based TLBs joins this group. Otherwise,
memory-based TLBs, as well as lazy de-
valuation and read-locked TLBs, solve the
problem for only a limited set of memory-
sharing pattems.

I first define the function of a TLB and
describe how TLB inconsistency arises
both in uniprocessor and multiprocessor
architectures. Then, after explaining how
the problem of TLB consistency is solved
in a uniprocessor and in multiprocessors
with a shared bus, virtual-address caches,
and hardware cache consistency, I describe
solutions that can be implemented in multi-
processors with more general interconnec-
tion networks and without hardware cache
consistency.

Virtual memory and
TLBs

Without a TLB, two or three memory
accesses might be needed to satisfy a data
request. To understand why this is so,
consider the organization and management
of a paged virtual-memory system and the
function of a TLB.

A hierarchical memory system that
supports paged virtual memory includes
both main and auxiliary memories. Main

memory is divided into frames, each con-
taining an equal number of memory loca-
tions. Virtual memory comprises a set of
virtual pages, the size of each being a
multiple of the corresponding frame size.
An image of a virtual page can reside in
both main and auxiliary memory, but only
the image in main memory can be read or
written. Therefore, these two images are
often inconsistent.

While executing a program, a processor
references data by virtual address. The
high-order bits of a data item’s virtual
address identify the page where the data is
stored, and the low-order bits indicate the
displacement from the beginning of the
page to the data’s location. Although data
is referenced by virtual address, data often
can be accessed only when its virtual ad-
dress is translated to a physical address,
where the high-order bits identify a frame
and the low-order bits identify a displace-
ment. Address translation is not necessary
if a virtual-address, general-purpose cache
is associated with each processor and the
referenced data is cacheable and cache
resident.

Virtual-to-physical address translation
information is stored in apage table, which
has an entry for each page. The informa-
tion includes

the location of the page in physical
memory (a frame number);

* a protection field indicating how the
page can be accessed, for example,
read/write or read-only;
a valid bit (sometimes called a resident
bit) indicating if the frame number is
valid; and
a modify bit (sometimes called a dirty
bit) indicating if the page was modi-
fied since it became main-memory
resident, that is, if an exact image of
the page resides in auxiliary memory.

TLBs give processors fast access to
translation information for recently refer-
enced pages, so the processors need not
access a page table whenever address
translation is necessary. Since programs
generally exhibit locality of reference, a
process usually accesses the same page a
number of times during a certain time inter-
val. Thus, a TLB often eliminates the need
for a processor to access translation infor-
mation from main memory. Measurements
on the VAX-1 ln8O reveal that translation
information can be accessed from a TLB
rather than from a page table more than 97
times out of 100; that is, the TLB miss rate
is approximately 3 percent.’ Without a

TLB, a data request might require one or
two additional memory accesses. Two
accesses might be needed when virtual
memory is organized in segments, each
containing a set of pages. In this case, the
processor might also have to access a data
structure called a segment table to get the
location of the page table containing the
referenced page’s translation information.

Figure 1 illustrates the data paths of a
typical physical-address cache and TLB
design, where the page and frame sizes are
assumed to be equal. In this case, cache
access and address translation can overlap
to some extent? A processor uses the high-
order bits of the virtual address (the page
number) to get the referencedpage’s trans-
lation information from the TLB. A TLB
hiroccursifavalidTLBentryexistsforthe
page. The number of the frame containing
the page is then concatenated with the low-
order bits of the virtual address, yielding
the referenced data’s physical address,
which can be used to access either the
cache or main memory. Otherwise, a TLB
miss occurs, initiating a TLB reload. Using
the virtual page number to form the ad-
dress of the page’s page-table entry, aTLB
reload accesses and loads in the TLB a
copy of the translation information stored
in the page table. In general, one entry must
be removed from the TLB to make room
for another.

When the referenced page is not in main
memory, apage fault occurs. If the page is
not already becoming resident, such a
process, called a page-in, begins. A page-
in allocates a frame to the page and, if
necessary, copies the page’s image in
auxiliary memory to the allocated frame. If
all physical memory has been allocated, a
page-in evicts another page from main
memory. Before a page is evicted, how-
ever, auxiliary memory must contain an
exact image of it; this could require writing
the evicted page to auxiliary memory be-
fore overwriting it with the newly refer-
enced page.

Multiple processes can access, or share,
a page by either a one-to-one or a many-to-
one mapping of pages to frames. General
memory-sharing patterns are produced
when

processes sharing a page via a many-
to-one mapping can execute concur-
rently on different processors; - multiple processes can execute con-
currently in the same address space
(the set of virtual addresses a process
can reference); and
a process can modify the translation

COMPUTER 28

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 24, 2009 at 04:01 from IEEE Xplore. Restrictions apply.

information of a page in the address
space of another process, which might
be executing concurrently on a differ-
ent processor.

When pages are mapped to frames on a
many-to-one basis and process identifiers
are not affixed to virtual page numbers,
multiple processes can refer to the same
page with different virtual page numbers.
Therefore, switching processor execution
from one process to another, called a con-
fext switch, requires invalidating all TLB
entries. This invalidation is called a TLB
flush. If pages are mapped to frames on a
one-to-one basis or process identifiers are
affixed to virtual page numbers, a page is
always referenced with a distinct page
number. Therefore, a context switch in a
uniprocessor does not require a TLB flush.
This is also the case in a multiprocessor if
TLB consistency is guaranteed when pro-
cesses migrate among processors.

Physical address

The problem of TLB
consistency

Frame number Linenumber I i:f:e

More than one image of apage’s transla-
tion information can exist: one is stored in
the page table and others can be stored in
TLBs. Processes can have access to mul-
tiple images, using TLB images for vir-
tual-to-physical address translation and
accessing the page-table image to perform
TLB reloads or modify translation infor-
mation. Therefore, page-table modifica-
tions can make TLB entries inconsistent
with the page-table entries they are sup-
posed to mirror. Since inconsistent TLB
entries can generate erroneous memory
accesses, this TLB consistency problem
must be solved by ensuring consistency or
preventing the use of inconsistent entries.

TLB inconsistencies resulting from
updates of page-reference history informa-
tion (such as bits that record if a page has
been modified or referenced during some
time interval) are harmless if precautions
are taken when updating page tables.
However, inconsistencies resulting from
other page-table modifications, catego-
rized as safe and unsafe changes, can he
harmful.

Page-reference history information
need not be consistent among TLBs and
page tables. However, it is crucial that the
reference history information stored in
page tables reflect states that will not cause
erroneous program behavior. Information
can be lost if a modify hit that indicates
whether a page has been written is inaccu-

June 1990

CPU I
I Virtual address 1 Page number 1 Page displacement

I

I I I I ‘
I I 1

TLB I I
L - I

,
I I Cache i

J.
Main memory

Figure 1. Data paths of a typical physical-address cache and TLB design.

rate, since the only accurate representation
of a page (stored in main memory) can be
overwritten if it does not also reside in
auxiliary memory. On the other hand, a hit
that indicates whether a page has been
referenced need not be accurate, since it is
generally used as a heuristic to select a
page to replace in main memory; replacing
one page instead of another does not cause
errors, although it can have performance
consequences. In any case, if processors
can concurrently modify a page-table en-
try (forexample, ifonecanchangeapage’s
mapping while another sets the modify
bit), then a page’s reference history must
be updated in such a way that it does not
corrupt current page-table information.

A safe change results from

- a reduction in page protection, such as
the modification of access rights from
read-only to read/write, or
a page’s becoming main-memory resi-
dent.

We can avoid using a TLB entry that is
inconsistent due to a safe change by de-

signing the hardware so that using the entry
generates an exception, which invokes an
operating-system trap routine that invali-
dates or corrects the TLB entry. For ex-
ample, suppose the translation information
for page a, stored in a valid TLB entry
accessed by processorx, defines the page’s
protection as read-only. Also, suppose a’s
page-table entry is subsequently modified
by a process executing on processor Y to
reflect a change in protection from read-
only to read/write. When a process execut-
ing onX attempts to write a, the operating
system intervenes, since the TLB entry for
a that X accessed defines the protection as
read-only. Checking a’s page-table entry,
the operating system finds that the protec-
tion has been increased and invalidates the
stale TLB entry. After X reloads a consis-
tent TLB entry for a and resumes execution
(assuming X hasn’t started executing a
different process), the modification of a
will be successfully and correctly exe-
cuted.

In contrast, unsafe changes cause TLB
inconsistencies that cannot be detected
during program execution. This class of

29

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 24, 2009 at 04:01 from IEEE Xplore. Restrictions apply.

Page Frame Valid TLB
NO. No. bt

Processor

Page Frame Valid TLB
No. No. bh

I I I I I I

Frame D/
page of

page table

Frame AI
page a

Page Frame Valid TLB 1 Processor
No tu

Frame DI
page of

page table

Frame AI

Page Frame Valid TLB

page b

Figure 2. TLB inconsistency in a multiprocessor: (a) before processor X evicts
page a; (b) after processor X replaces page a with page b.

page-table modifications raises the need
for TLB management that ensures consis-
tency. An unsafe change results from

the invalidation of a virtual-to-physi-
cal memory mapping,
an increase in page protection, or
the remapping of a virtual or physical
page, that is, a change in the mapping
of a page to a frame.

The virtual-to-physical memory map-
ping of a page is invalidated when virtual
memory is deallocated or when a page is
evicted from main memory. Virtual mem-
ory is deallocated when virtual pages are
removed from the address space of a pro-
cess. A shared page’s protection can be.
increased to implement the copy-on-write
optimization and interprocess communi-
cation. Copy-on-write saves copying over-
head by letting multiple processes share a
page as a read-only page until one of the
processes attempts to modify it.

Unsafe changes can cause TLB incon-
sistency in both uniprocessor and multi-
processor systems, as illustrated in Figure
2 and described below. Consider a multi-
processor system, and suppose that valid
entries map page a to frame A in both the

30

TLB accessed by processor X and the TLB
accessed by processor Y. Now suppose that
a process executing on X maps page b to
frame A and evicts page a, updating X’s
TLB accordingly. Unless Y is prevented
from using a’s inconsistent TLB entry, it
could erroneously access b when attempt-
ing to access a. Now consider X by itself.
Whether in a uniprocessor or multiproces-
sor system, X faces the same problem as Y
if it does not update its own TLB after
modifying the mapping for page a and
before issuing any other memory requests.

Since the maintenance of page-refer-
ence history information is a separate is-
sue, and since TLB entries made inconsis-
tent by safe changes can be detected and
corrected by the operating system, the term
“TLB consistency problem” in the rest of
this article refers only to TLB inconsisten-
cies caused by unsafe changes.

Solutions to the TLB
consistency problem

The TLB consistency problem is easy to
solve in a uniprocessor, but it is decidedly
more difficult in a multiprocessor. In a

multiprocessor architecture with multiple
TLBs, in addition to a consistency problem
between a page table and a TLB, a consis-
tency problem exists among the system’s
multiple TLBs and page tables. Figure 3
shows a system with N processors and N
memory modules, where one TLB is asso-
ciated with each processor. The memory
modules are collected into m clusters of
size c, where a 5 m 5 N, and cm = N, and a
frame is interleaved across a cluster’s
memory modules. Processors and memory
are interconnected by a shared bus or by a
more general network, such as amultistage
network. In bus-based architectures, the
shared bus can help solve the cache and
TLB consistency problems. In multi-
processors with more-general intercon-
nection networks and no bus-interconnect-
ing processors, these problems are more
difficult.

Although the solutions I describe that
require virtual-address caches kept consis-
tent by hardware are limited to bus-based
multiprocessors, the algorithms them-
selves are not so limited. Thus far, hard-
ware cache consistency has been imple-
mented only in bus-based multiprocessors.
However, distinct solutions to both the
cache and TLB consistency problems have
been proposed for multiprocessors with
more-general interconnection networks.
For example, directory-based schemes or
software-assisted cache management can
solve the cache consistency problem in
multiprocessors with multistage intercon-
nection networks. Directory-based
schemes incur an overhead that does not
scale with the dimensions of the network),
so this approach to cache consistency
might only be suitable for a limited class of
applications, although it could provide an
efficient solution to the TLB consistency
problem. Software-assisted cache man-
agement4.5 depends on information avail-
able to the compiler. This approach could
prove effective for ensuring cache consis-
tency, but it is not suitable for solving the
TLB consistency problem because infor-
mation required to manage virtual memory
is available to the operating system and not
to the compiler.

Solutions for uniprocessors. In a uni-
processor, the operating system ensures
TLB consistency by inhibiting context
switching while the processor modifies a
page-table entry and updates its TLB ac-
cordingly. No memory accesses occur dur-
ing this timeexcepttoaccess thepage table,
so no inconsistent TLB entries are used to
access memory. In a shared-memory

COMPUTER

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 24, 2009 at 04:01 from IEEE Xplore. Restrictions apply.

multiprocessor, this approach can only

..-o""yb.8 a pag- * b k , 5o

no more than one TLB image of the page's
translation information is guaranteed to be
consistent with the page table.

ensure the consistency of the TLB accessed .. P-YLEa~U.

Solutions requiring virtual-address
caches and hardware cache consistency.
In bus-based multiprocessors, we can pre-
vent the use of inconsistent TLB entries by
not allowing memory accesses after apage
table's main-memory image is modified
and before all TLBs are consistent with the
modified page table. We accomplish this
by associating a bus monitor with each
cache to recognize all memory accesses.
The TLB consistency solutions proposed
by Cheriton, Slavenburg, and Boyle,6
Goodman,' and Wood et al.' use this
method.

These solutions assume each processor
has a virtual-address, general-purpose
cache that stores translation information
with other data and is kept consistent via a
chosen protoc01.~ Solving the cache con-
sistency problem also solves the TLB
consistency problem, since would-be TLB
entries are stored in, and accessed from,
the cache. Memory requests transmitted on
the bus trigger the bus monitors to ensure
cache consistency. When a page-table
entry is modified, each monitor checks to
see if translation information for the asso-
ciated page is cache resident; if so, the
monitor invalidates or updates the corre-
sponding cache entry.

Two relevant issues give a general idea
of how each of these solutions works (I
have omitted some important implementa-
tion details). First, I show how the bus
monitor can query the cache when the
cache is addressed by avirtual address and
the memory request is targeted to a physi-
cal address. Second, since a many-to-one
mapping of pages to frames can yield more
than one cache entry for the same data, I
explain how the solutions handle this prob-
lem, called the address synonym problem?

The solution of Wood et al.,* imple-
mented as part of the Symbolic Processing
Using RISC (SPUR) workstation project at
the Univeristy of Califomia at Berkeley,
assumes a dual-address bus, where a
memory request includes both the virtual
and physical addresses of the referenced
data. The bus monitor can thus query the
cache with the transmitted virtual address.
The synonym problem is avoided by as-
suming a one-to-one mapping from pages
to frames, which defines a single, global
address space.

June 1990

Interconnection network

rt--t--t; ...
Memory modules

Figure 3. A multiprocessor architecture.

Thisideacanbetakenonestepfurtherto
support a many-to-one mapping of pages
to frames, increasing the ways memory can
be shared. In Goodman's solution? the
cache has two copies of the cache direc-
tory, one accessed by the processor with
virtual addresses and the other by the bus
monitor with physical addresses. Thus,
physical rather than virtual addresses can
trigger the bus monitor. The system binds
and unbinds virtual addresses to physical
addresses in response to bus transactions,
solving the synonym problem.

Stanford University has incorporated
the solution proposed by Cheriton, Slav-
enburg, and Boyle6 in the design of the
VMP multiprocessor, an experimental
shared-memory, bus-based multiproces-
sor. If the cache cannot satisfy a data re-
quest, the frame containing the data is
cached. An action table maintained by each
bus monitor contains information for each
cached page frame. Bus transactions trig-
ger the bus monitors to ensure cache con-
sistency. Since the bus monitors' actions
are keyed to frame numbers, the synonym
problem is solved.

When implemented in a bus-based
multiprocessor, the overhead associated
with these solutions is very low because
only the modifying processor participates
in the algorithm and its participation per
page-table modification is small and con-
stant. The bus monitors maintain consis-

tency independently of the processors. As
mentioned earlier, only the implementa-
tions are limited to bus-based multiproces-
sors; the algorithms are not. In any case,
solutions to the TLB consistency problem
are also needed for multiprocessor archi-
tectures without virtual-address caches
kept consistent by hardware.

Solutions without hardware cache
consistency. Six TLB consistency solu-
tions can be used in multiprocessors with-
out hardware cache consistency. Two so-
lutions require essentially no hardware:
TLB shootdown and read-locked TLBs.
Three solutions -TLB shootdown, modi-
fied TLB shootdown, and validation (and,
if the targeted multiprocessor has only one
cluster of memory modules, memory-
based TLBs) - do not limit memory shar-
ing among processes. But none of these
solutions have the small overhead exhih-
ited by the solutions described above. If
the targeted architecture has sufficient
bandwidth, however, memory-based
TLBs and validation (which are meant for
scalable multiprocessor architectures with
multistage interconnection networks)
come close to achieving this goal, since
each meets the following criteria:

* The participation of a processor modi-

The participation of another processor

31

fying a page table is small and constant.

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 24, 2009 at 04:01 from IEEE Xplore. Restrictions apply.

is necessary only when a page affected by
an unsafe change is accessed from memory
(memory-based TLBs) or when an incon-
sistent TLB entry is used (validation).

Locks are placed on the smallest pos-
sible entities.

Serialization is not introduced.
Explicit interprocessor communica-

tion and synchronization are not required.

TLB shootdown. Black et al.’” have pro-
posed an essentially hardware-independ-
ent solution called TLB shootdown. This
algorithm is included in Camegie Mellon
University’s Mach operating system,
which has been ported to multiprocessor
architectures including the BBN Butterfly,
Encore’s Multimax, IBM’s RP3, and
Sequent’s Balance and Symmetry systems.
In this algorithm, a lock associated with
each page table must be secured to modify
either a page table or the list of processors
that may be using the table. The following
sequence describes generally how the al-
gorithm works.

* A processor that wants to modify a
page table disables interprocessor inter-
rupts and clears its active flag (such a flag
is associated with each processor and indi-
cates if the processor is actively using any
page table). The processor then locks the
page table, flushes TLB entries related to
pages for which translation information is
to be modified, enqueues a message for
each interrupted processor describing the
TLB actions to be performed, and sends an
interprocessor interrupt to other proces-
sors that might be using the page table.

When a processor receives the inter-
rupt, it clears its active flag. - The modifying processor busy-waits
until the active flags of all interrupted
processors are clear and then modifies the
page table. Finally, after releasing the
page-table lock and setting its active flag,
the modifying processor resumes execu-
tion.

After clearing its active flag, each
interrupted processor busy-waits until
none of the page tables it is using are
locked. Then, after executing the required
TLB actions and setting its active flag, it
resumes execution.

This algorithm idles all processors that
may be using a page table while it is being
modified. In addition, the modifying pro-
cessor cannot make any modifications
untilall interrupted processors have
cleared their active flags. This synchroni-
zation can be very costly for applications

where many processes share data. Black et
al. state that their algorithm could pose
problems for large-scale systems because
it scales linearly with the number of pro-
cessors. Extrapolating measurements from
an instrumented Mach kemel running on a
16-processor Encore Multimax indicates
that machines with a few hundred proces-
sors might not experience a performance
problem, except with regard to kemel
space. To surmount this problem, Black et
al. suggest restructuring the operating
system’s use of memory so that TLB shoot-
downs are limited to groups of processors
rather than all processors. Note, however,
thatparallelprograms with thesame degree
of sharing as exhibited by the operating
system will encounter the same perform-
ance problems as the operating system.

Modi f i ed TLB s h o o t d o w n . As
Rosenburg explains,” the level of syn-
chronization exhibited by the originalTLB
shootdown algorithm is necessitated by
architectural features of multiprocessors
to which Mach is targeted. Rosenburg’s
version of this algorithm uses features of
IBM’s RP3 and requires less synchroniza-
tion. Experiments on the RP3 show that the
time spent by the intempted processors
can remain constant even as the number of
processors grows. In particular, processors
using apage table neednot busy-wait while
the table is being modified, and a processor
can modify the table without waiting for
other processors to synchronize. In addi-
tion, even though page-table modifications
are serialized, processors can use a shared
page table during a modification, since
modifications are performed atomically.
The semantics of this algorithm are slightly
different from the original TLB shootdown
algorithm, since at any given moment one
processor can use a page’s old translation
while another processor uses a new one.
Rosenburg’s algorithm has been imple-
mented in the version of Mach running on
the RP3. In both versions:

The participation of a modifying proc-
essor grows with the number ofprocessors
involved in the algorithm.

The execution of all processors that
might have a TLB entry that will become
inconsistent (or that is inconsistent, in the
case of modified TLB shootdown) as a
result of an unsafe change are forcibly
interrupted, whether or not they have used
or will use the translation information in
question.

Parallelism is limited, since only one
process can modify a given page table at

one time and processors must synchronize
and communicate with one another. - The scheduling of a process is delayed
if a page table it may use is being modified.

TLB shootdown ensures TLB consis-
tency no matter how memory is shared,
since processors cannot use translation
information associated with a page table
while the table is being modified. As
mentioned above, Rosenburg’s version has
slightly different semantics and requires
extra hardware support, but it is as effec-
tive and performs better.

TLB shootdown is a good solution to the
TLB consistency problem for multiproces-
sors with no hardware support for this
purpose. In addition, if unsafe changes
rarely occur and memory is not widely
shared among processes, then either ver-
sion of the algorithm should perform well.
Otherwise, the overhead of these solutions
is likely to adversely effect multiprocessor
performance.

Lazy devaluation. Why not postpone
invalidating TLB entries until absolutely
necessary? Thompson et al.’* proposed
this strategy, called lazy devaluation, to
ensure TLB consistency when virtual
memory is deallocated and when page
protection is increased. Lazy devaluation
has been implemented in a multiprocessor
architecture based on the MIPS R2000
processor running the System 5.3 Unix
operating system. Although this solution is
effective for the targeted multiprocessor
system, as observed by Black et al.,IO nei-
ther this Unix implementation nor this TLB
consistency solution supports multiple
processes executing in the same address
space or allows a process to modify the
address space of another executing pro-
cess.

The MIPS R2000 gives a TLB entry a
six-bit field for an address-space identi-
fier, so TLBs need not be flushed on con-
text switches. To implement lazy devalu-
ation,TLB identifiers (TLBIDs) associated
with active processes identify when TLB
entries on a particular processor must be
replaced or invalidated. A TLB reload also
loads the TLBID of the executing process
into the TLB entry’s address-space identi-
fier field. A TLB hit occurs when the refer-
enced virtual address and the TLBID of the
referencing process match the TLB entry’s
virtual address and TLBID.

When a process releases a region of
virtual memory, a new TLBID is assigned
to that process, making any TLB entries
associated with the released space inacces-

COMPUTER 32

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 24, 2009 at 04:01 from IEEE Xplore. Restrictions apply.

sible to the process. When TLBIDs are
recycled, all TLBs must be flushed. The
eviction of a page is postponed until all
related TLB entries are invalidated via a
systemwide TLB flush. The remapping of
a page is postponed until no TLB contains
an entry for the page. If the remapping
cannot be stalled, then all TLBs are flushed
so that the change can occur. To handle
increases in page protection, a data struc-
ture associated with each process or each
TLBID tracks the processors that might
have inconsistent TLB entries. When a
process migrates to such a processor, those
entries are flushed from its TLB.

This approach has problems when pro-
cesses execute in parallel within the same
address space or when a process modifies
the address space of another process that
might be executing concurrently on an-
other processor. When virtual memory is
deallocated, modifying a process’ TLBID
makes associated TLB entries inaccessible
to that process but not to other processes
with the same address space. The proce-
dure suggested for maintaining TLB con-
sistency in the face of increases in protec-
tion is only effective for a modifying
processor’s TLB. It does not work if proc-
esses executing concurrently on other
processors share the same address space,
although it can be used to implement the
copy-on-write optimization.

If processes do not migrate frequently
and unsafe changes rarely occur, then lazy
devaluation could be efficient for systems
similar to its target system. In fact, prelimi-
nary performance figures indicate this
approach succeeds for the target system
without excessive TLB flushing. How-
ever, lazy devaluation could adversely
affect multiprocessor performance if un-
safe changes are not rare events. To im-
prove performance, Thompson et al. sug-
gest maintaining extra information to aL
low selective invalidation of TLB entries
rather than systemwide TLB flushes. In
either case, interprocessor communication
and synchronization are required. In addi-
tion, lazy devaluation does not support
general memory-sharing patterns.

Read-locked TLBs. Preventing a TLB
entry from becoming invalid prevents TLB
inconsistency. This is the premise of read-
locked TLBs, proposed by myself, Kenner,
and Snir.’) This strategy prohibits an un-
safe change while a valid copy of the trans-
lation information to be modified resides
in one or more TLBs. In essence, a proces-
sor maintains a read lock on a page-table
entry as long as the page’s translation in-

June 1990

:I Interbnnection network

Figure 4. A multiprocessor with hbrdware support for memory-based TLBs.

formation resides in its TLB. Thus,, TLB

causes unnecessary page copying.

mapped to the address space of an active
process. Virtual memory can be deallo-
cated at any time, but a mapping for a
deallocated page must not be used after the
virtual page has been reallocated. We can
assure this by postponing the reuse of a
virtual page until no TLB contains an entry
for it, except the TLB of the processor
reusing the page. When these unsafe
changes cannot be postponed, we must use
an alternate strategy, such a s TLB
shootdown.

Like lazy devaluation, the read-locked
TLB strategy is not effective if processes
execute in the same address space or if
address spaces are modified remotely.
Unlike lazy devaluation, this strategy does
not require flushing TLBs when a page is
evicted, but it might be forced to forego the
copy-on-write optimization. Either solu-
tion is suitable for a multiprocessor with
restricted memory sharing if unsafe
changes involving many processors and
incumng an overhead similar to that of
TLB shootdown do not occur frequently.
In addition, techniques in each solution
can effectively reduce performance over-
head in other TLB consistency solutions.

33

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 24, 2009 at 04:01 from IEEE Xplore. Restrictions apply.

P P ~, Cache 1] Processors ...
+ +

Interconnection network

;A

lime stamp

I..

Figure 5. A multiprocessor with hardware support for validation.

Memory-based TLBs. If TLBs are asso-
ciated with memory modules rather than
processors, a TLB reload does not require
network traffic. My colleagues and I sug-
gested such a config~ration'~ (see Figure
4). Sincetranslationisdoneat thememory,
general-purpose caches associated with
each processor must be virtual-address
caches. A memory request contains the
virtual rather than physical address of the
referenced data, so the virtual address
defines the targeted memory module. If
physical memory is organized into more
than one cluster of memory modules, the
number of frames to which a page can be
mapped is limited; when a page resides in
main memory, it is assumed to be stored in
a specific cluster of memory modules. This
implies that the page-replacement policy
applies to each cluster independently.

The TLB is implemented as a cache with
a bus monitor, as proposed by Goodman.'
Within each memory cluster, the TLBs and
the cluster page table are interconnected
by a bus. A bus protocol9 ensures consis-
tency among a cluster's TLBs and page
table. Memory access can overlap address
translation, since this bus-based subsys-
tem is independent of the path to main
memory.

34

Remapping of virtual or physical mem-
ory is transparent to a processor, but logic
at the memory must alert the processor to
other unsafe changes. That is, a processor
must be informed if a referenced page is
not resident, if its protection has been in-
creased, or if the page has been deallo-
cated. In response, the processor executes
a corresponding trap routine.

To solve the synonym problem (since
multiple, possibly independent, processes
can access the same TLB), the address pre-
sented to a TLB must include an address-
space identifier, or a single, global address
space must be assumed. In addition, the
existence of more than one cluster of mem-
ory modules compromises the flexibility
with which memory can be shared, since
virtual pages that map to the same physical
page must map to the same cluster.

If unsafe changes are not rare events or
pages are widely shared among processes,
a small performance overhead might be
important. This is true for memory-based
TLBs. No processor participates in the al-
gorithm, and network traffic is generated
only to inform processors of unsafe
changes. In addition, this solution affords
a large degree of parallelism in maintain-
ing TLB consistency.

However, other issues can affect per-
formance:

Since the TLBs are interconnected by
a bus, the number of memory modules per
cluster is limited. - As the number of TLBs in a cluster
grows, bus traffic increases if the intra-
cluster rate at which unsafe changes or
TLB misses occur also grows. This in-
crease in traffic could raise the cost of a
TLB reload and lengthen the time to satisfy
a memory request.

If the path between the processors and
memory is limited so that the size of the
virtual address increases the average mes-
sage length, the time to satisfy a memory
request could increase.

Since more than one processor can
access any one TLB, TLBs might have to
be larger than those accessed by only one
processor.

If these side effects do not degrade per-
formance, then memory-based TLBs
should perform well in a multiprocessor
architecture with the necessary hardware
support, even if unsafe changes are fre-
quent and memory is widely shared among
processes. However, if there is more than
one cluster of memory modules, the func-
tion of shared memory is somewhat lim-
ited and virtual-memory management is
restricted.

Validation. Rather than invalidating
inconsistent TLB entries to prevent their
use, my colleagues and I suggested another
approach, called validafion. In this strat-
egy, translation information is validated
before it is used to access data stored in
memory. This is accomplished by associ-
ating a generation count with each frame
and modifying the count whenever an
unsafe change affects the page mapped to
that frame. A memory request is aug-
mented with the generation count stored in
the issuing processor's TLB entry for the
referenced page. A frame's most recent
generation count is stored in the validation
tables associated with a memory cluster
(see Figure 5) . In addition, possibly out-
dated generation counts are stored in TLBs
and in the page-frame table, which has an
entry for each page residing in physical
memory. Whether the translation informa-
tion used by the processor is stale is deter-
mined by comparing the generation count
transmitted with the memory request with
the generation count stored in the targeted
memory module's validation table. If the
information is not stale, the memory re-

COMPUTER

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 24, 2009 at 04:01 from IEEE Xplore. Restrictions apply.

quest is satisfied; otherwise, the processor
is notified to invalidate the referenced
page’s TLB entry. The validation of the
transmitted generation count and memory
access is assumed to be atomic.

A cluster’s validation table is replicated
at each memory module in the cluster.
(Assume that a frame is interleaved across
the memory modules in a cluster.) Before
an unsafe change is made, the modifying
processor multicasts a message to the
memory modules in the cluster where the
page resides. The receipt of this message
initiates the updating of the generation
count associated with the frame where the
page is stored. It also maintains consis-
tency among a cluster’s validation tables.
The change commences only after the
tables are updated. After the unsafe change
is complete, the generation count stored in
the page-frame table is also updated. A
TLB reload, in addition to loading transla-
tion information stored in a page table,
loads ageneration count stored in thepage-
frame table. In this way, no reference to the
page can be satisfied until the referencing
processor has a current image of the trans-
lation information stored in its TLB. This
makes validation effective no matter how
memory is shared.

To implement validation, however, a
frame’s generation count must be updated
carefully. If a generation count is incre-
mented to change its value, a problem
arises when the generation count wraps
around There could be an inconsistent
TLB entry associated with the newly up-
dated generation count value, and this
inconsistent TLB entry will appear to be
consistent. We can solve this problem in
several ways:

Use long generation counts, and use a
TLB shootdown-like algorithm when
wraparound occurs to invalidate relevant
TLB entries.

* Bound the time interval during which a
TLB entry is guaranteed to be safe with
respect to generation-count wraparound,
and invalidate the entry before the interval
ends.

Maintain a set of counters for each
frame, one for each allowable generation-
count value. Eachcounterhas N bits, where
N is the number of processors in the sys-
tem. A TLB reload increments a counter,
and invalidating or replacing a TLB entry
decrements a counter. The generation
count stored in the TLB entry selects the
counter of the related frame to be incre-
mented or decremented. A frame’s genera-
tion count is updated by assigning it a

June 1990

value associated with a zero counter. If
there areNcounters, there is always a zero
counter. If small generation counts are
used, however, and if each allowable value
of a frame’s generation count is present in
at least one TLB (which is unlikely, since
stale TLB entries are likely to be mplaced
during program execution), then a TLB
shootdown-like algorithm must be used to
create a zero counter.

The overhead is low for several reasons.

A modifying processor acts independ-
ently of other processors, and its participa-
tion translates into a small and constant
overhead that involves only memory ac-
cesses.

A processor’s participation is enlisted
only when it uses an inconsistent TLB
entry, and this participation has a small
overhead (one extra round-trip through the
network).

It is likely that stale entries will be
replaced before they are used.

Participating processors act independ-
ently of one another.

* Each processor could simultaneously
participate in ensuring the consistency of a
TLB entry associated with a distinct page.

Thus, even if unsafe changes are not rare
events and memory is widely shared
among processes, validation should per-
form well in multiprocessor architectures
with the necessary hardware support. Vali-
dation has two drawbacks, however. First,
if the network bandwidth is not sufficient
to transmit a generation count with each
memory request without increasing the
number of packets that comprise a mes-
sage, the average time to satisfy a memory
request could increase. Second, a solution
to the generation-count wraparound prob-
lem must be implemented.

A solution to the TLB consistency
problem for a particular multi-
processor system must support

the defined functionality of shared mem-
ory and should not degrade the speedups
attainable by application programs. Since
we do not know what behavior will be
exhibited by programs executing in differ-
ent multiprocessor architectures, we can
only estimate which solution is best suited
for a scalable multiprocessor with a multi-
stage network. In particular, the following
issues confront us:

None of the proposed solutions has
been implemented in a large-scale multi-
processor system.

* We do not know how either the rate of
unsafe changes or the number of TLBs
affected by such modifications will change
as the number of processors, N . increases.

It is not clear how much parallelism is
needed in consistency-ensuring TLB man-
agement. In a bus-based multiprocessor
employing one of the solutions that re-
quires virtual-address caches and hard-
ware cache consistency, TLB management
is serial, that is, only inconsistencies
caused by one page-table modification are
corrected at any one time. In an architec-
ture with a multistage network, inconsis-
tencies caused by a number of unsafe
changes can be corrected in parallel, the
number depending on the solution.

-There are questions about how to
measure a problem’s execution speedup
and, thus, how to evaluate the performance
of solutions to the TLB consistency prob-
lem. Do we look at the behavior of a cer-
tain-sized problem executing on one pro-
cessor versus its behavior executing on N
processors? Or do we look at its behavior
versus the behavior of that same problem
with a size that grows with N , executing on
N processors?

It seems reasonable to increase the prob-
lem size with N . In this case, I feel the rate
of unsafe changes and the number of pro-
cesses sharing memory will increase as N
increases. Therefore, algorithms whose
performance depends on N will not scale
well. If this is the case, then TLB
shootdown, modified TLB shootdown,
lazy devaluation, and read-locked TLBs
are not good solutions for scalable multi-
processor architectures. In contrast, the
memory-based TLBs strategy exhibits the
following characteristics, which yield
good performance in scalable architec-
tures:

A processor is not interrupted to par-

Little extracommunication is required

No processor synchronization is re-

Parallelism is inherent in the algorithm

ticipate in the solution.

to maintain TLB consistency.

quired.

it implements.

But, if the memory modules are organ-
ized in more than one cluster, then the
memory-based TLBs strategy does not
support all memory-sharing patterns and
restricts virtual-memory management.

35

Authorized licensed use limited to: EPFL LAUSANNE. Downloaded on April 24, 2009 at 04:01 from IEEE Xplore. Restrictions apply.

