Towards Untrusted Device Drivers

Ben Leslieand Gernot Helser
UNSW-CSE-TR-0303
March, 2003

disy@cse.unsw.edu.au
http://www.cse.unsw.edu.au/~disy/

Operating Systems and Distributed Systems Group
School of Computer Science and Engineering

The University of New South Wales

UNSW Sydney 2052, Australia

mailto:disy@cse.unsw.edu.au
http://www.cse.unsw.edu.au/~disy/

Abstract

Device drivers are well known to be one of the prime sources of unrelia-
bility in today’s computer systems. We argue that this need not be, as drivers
can berun as user-level tasks, allowing them to be encapsul ated by hardware
protection. In contrast to prior work on user-level drivers, we show that on
present hardware it is possible to prevent DMA from undermining this en-
capsulation. We show that this can be done without unreasonably impacting
driver performance.

1 Introduction

Device drivers are of critical importance in any computer system. Not only are
drivers essential for performing 1/O; since they normally execute in privileged
mode, they are also critical to the stability and reliability of the system, as any
driver bug can damage the integrity of the system.

A recent study of bugs in Linux kernel code showed that the defect density of
device drivers is three to seven times that of other parts of the kernel [].
The resulting negative impact on system reliability is not restricted to open source
systems: It has been reported that device drivers were responsible for 27% of
crashes in Windows 2000, compared to only 2% for the rest of the kernel []

This instability of device drivers has led many researchers to try and find meth-
ods in which the impact of a faulty device driver can be minimised. A common
way of doing this is to move device drivers out of the kernel into user land where
they are confined by normal memory protection hardware. Although this approach
is suitable for some simple devices, it fails to adequately isolate devices that can
perform direct memory access (DMA). This report shows how the features found
in modern platforms can be used to better isolate devices capable of performing
DMA.

An initial design and implementation of device drivers along these lines is de-
scribed in []. Here we summarise the aspects of this work relevant to reduc-
ing trust in device drivers and present some performance results.

2 1/O0MMUs

Currently the most popular 1/0 bus found in computers, ranging from entry level
desktops through to high-end servers, is the PCI bus. The base PCI specification
defines a 32-bit address space which devices can access using DMA. Unfortunately
this has proved a limitation on modern 64-bit platforms which are capable of using
more than 4Gb of physical memory.*

To avoid this problem, modern architectures provide an I/O memory manage-
ment unit (MMU), which provides a mapping between 64-bit physical addresses
and 32-bit PCI DMA addresses.

The I/O MMU works in a similar way to a normal MMU. The translations
are stored in a page table in the host’s main memory. When a device performs
DMA the translation is looked up in the host’s page table. If there is no valid
translation available, a fault is raised and the DMA is cancelled. If successful, an
I/0 translation look-aside buffer (IOTLB) caches valid translations, so a page table
lookup is not required for every DMA.

We can restrict the areas of memory that a device can perform DMA to by
limiting the number of entries in the 1/O page table to those explicitly requested by

1The PCI specification does provide a 64-bit extension, however relatively few devices support
it.

Physical Memory DMA Addresses

l{e}
MMU

Figure 1: DMA addresses translated through an 1/0 MMU.

the driver.

3 Mungi user level drivers

We are using the Mungi system [] running on both the Alpha DS-20 and
HP rx2600 (Itanium 2) as a test-bed for our driver work. Mungi is based on the
idea of a single address space [], and supports a component model with
hardware-enforced encapsulation for providing secure user-level extensions to the
kernel []. Mungi components hide their instance data from external access
(other than via declared method interfaces). Otherwise, the system places no re-
strictions on components and their implementation, in particular, any language can
be used to implement a component.

We are implementing device drivers as Mungi components. The driver model
[] is asynchronous, with request completion signalled to the client code by
the driver invoking the client’s completion method. Similarly, the kernel delivers
interrupts to the driver by invoking the driver’s interrupt method. The driver uses a
system call to request from the kernel pinned pages to be used as DMA buffers.

Due to their complexity, device drivers are often reused from existing systems
rather than rewritten for a new system. Although this reuse of code is attractive,
past experience has shown that this is by no means a straightforward process. We
found it was easier to implement a set of drivers from scratch, based on a driver
model that was cleanly integrated with the Mungi model.

Encapsulation of a driver inside a protected component is enough to contain
many (non-Byzantine) faults. If, for example, the driver de-references an invalid
pointer, this will result in a protection error, which the kernel handles by re-initialis-
ing the driver. It can also alert the administrators to the misbehaving driver (and
the driver can later be substituted with an improved version by simply registering

a replacement component).

However, encapsulation is not sufficient for protecting the system from some
faults, and in particular malicious behaviour, as the driver can normally use the
device’s DMA mode to overwrite arbitrary regions of physical memory.

In order to limit the damage that can be caused by DMA, we make use of the
IO MMU supported by the zx1 (used in the HP rx2600) and Tsunami (used in the
DS20) chipsets, which interface the processor to the PCI bus and system memory
in our workstations. We use this 1/0 MMU to restrict DMA access to specified
I/0 buffers, in a fashion that is completely transparent to the device driver: When
the driver needs to DMA a buffer, it requests the chipset driver to pin the buffer
in physical memory. The chipset driver uses a system call to request the kernel
to pin the pages, and then establishes PCI mappings for them; when the page is
un-pinned, that mapping is removed. A driver for a PCI device can therefore only
DMA to one of the pinned pages; any attempt to DMA to some other memory
region results in a fault which invokes the kernel. Hence, the rest of the system is
completely protected from misbehaving PCI device drivers, and only the chipset
driver needs to be completely trusted.

This protection is also extremely useful during the development of new drivers.
During the development of a gigabit driver for the Mungi platform, multiple bugs
were found where the driver was incorrectly performing DMA. This class of bugs
would be more difficult and time consuming to find without the effective use of the
10 MMU.

Note that buggy or malicious drivers can still corrupt data in 1/0 buffers dur-
ing the transfer between client and device. Techniques as they are proposed for
SUNDR [] could be used as a protection here. Furthermore, as there exists
only one PCI address space which is shared by all PCI devices, one driver could
corrupt or sniff another’s buffers. However, this danger is minimised by sparsity:
a driver would have to guess the location of other buffers in the (admittedly small)
32-bit PCI address space. Other drivers can help to minimise this risk by unmap-
ping their buffers as soon as the respective 1/O operations are completed. Hence,
present hardware is not quite sufficient to make device drivers totally untrusted, but
what can be done is already a huge improvement over the present situation.

4 Experience

For some initial performance evaluation of our user-level drivers, we used a very
conservative setup which results in a high number of protection domain crossings.

The test setup uses three user-level Mungi tasks: a client, an IDE driver, and
the chipset driver, each in their own protection domain. For each disk request, the
user task invokes the IDE driver, which invokes the PCI driver to request pinning of
the buffer (and mapping into the PCI address space). The IDE driver then initiates
the 1/0 and finally returns to the client. If the IDE driver has outstanding requests
queued at the time a new user request comes in, it simply queues the new request

and returns immediately.

When the device has completed transfer, an interrupt is delivered directly to
the IDE driver. For requests exceeding the size of an individual device transfer, the
IDE driver invokes the PCI driver to unpin the buffer of the completed request and
pin the buffer for the next request, which it then initiates. On an interrupt indicating
the transfer of the final block, the IDE driver invokes the PCI driver to unpin the
buffer and then invokes the client’s completion method.

Disk read throughput - 12
55

50

45 -

40 -

35

30 -

Throughput (MB/s)

25
20
15

10 L7

1 4 16 64 256 1024
Transfer size (kB)

Figure 2: Disk read throughput

Figure 2 shows the throughput achieved for different request sizes. For large
transfer size the throughput is quite similar for both systems, however as the trans-
fer size decreases the context-switching overhead of the user-level drivers starts
to have an effect, reducing throughput by up to 22 % (at extremely small transfer
sizes).

Figure 3 shows CPU utilisation resulting from 1/O processing (measured by
instrumenting the idle loop). As is to be expected, Linux consumes less CPU for
small transfers, a result of the context switching overhead of the user-level drivers.
Mungi does however, perform, slightly better for larger transfer sizes which is
probably the result of the cleaner drivers which might result in a smaller overall
cache footprint. This indicates that a lean design might help to offset some of the
inherent context-switching costs.

5 Reated work

A number of previous systems have moved the network protocol stacks from kernel
to user level while leaving the device driver in the kernel [, ,]
Other approaches provided user code direct access to network interfaces in order

Disk read CPU Utilisation - 12
70

60 [

CPU %

I I I |
1 4 16 64 256 1024
Transfer size (kB)

Figure 3: CPU utilisation

to minimise latency for fine-grained communication in high-performance clusters
[: 1

Earlier work with real user-level drivers in Mach [] and Fluke []
experienced significant performance problems, apparently resulting from the IPC
costs in those kernels.

The Palladium approach of running Linux kernel extensions at an intermediate
privilege level [] could, in principle, be used for device drivers without
significant performance impact. While this approach could protect the kernel (to a
degree) from buggy drivers, it would not protect applications, which still run at a
lower privilege level. Pratt proposed an I/O device architecture that would allow

the Nemesis system to run device drivers at user level [], but in the absence
of devices conforming with this architecture, drivers are still in the kernel.
Work at the University of Washington [] attempts to encapsulate de-

vice drivers by introducing protection domains, called nooks, within the kernel’s
address space. This has the advantage of potentially fewer changes required to
existing drivers; however, the authors found that tight integration of Linux drivers
with the kernel made this approach difficult. In spite of nooks being somewhat
half-way between normal in-kernel and user-level drivers, the cost of nooks is sig-
nificant — the paper reports more than doubling the interrupt latency. The inherent
overhead of nooks is essentially the same as that of user-level drivers, and it is
therefore not clear what their advantage is over what we consider the cleaner ap-
proach of running drivers as proper user-level processes.

Significantly these approaches either fail to recognise the problem presented
by DMA, or pass it off as an unimportant issue.

6 Conclusions

This report has shown that it is possible to encapsulate device drivers as unprivi-
leged user-level processes. By utilising the 10 MMU hardware available in modern
platforms, we have shown that this encapsulation can be extended to control even
DMA access, making it impossible for device drivers to access data other than
DMA buffers registered with the kernel. Initial benchmarks indicate that all this
might be possible with tolerable overhead, although a more detailed analysis will
be required. We believe that this represents a significant step towards systems that
do not need to trust their drivers.

References

[CLFL94]

[CVP99]

[CYC*01]

[Dam98]

[EHO1]

[EMO95]

[GSR93]

Jeffrey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D.
Lazowska. Sharing and protection in a single-address-space operating
system. ACM Transactions on Computer Systems, 12:271-307, 1994.

Tzi-cher Chiueh, Ganesh Venkitachalam, and Prashant Pradhan. In-
tegrating segmentation and paging protection for safe, efficient and
transparent software extensions. In Proceedings of the 17th ACM
Symposium on OS Principles (SOSP), pages 140-153, Kiawah Island,
SC, USA, December 1999.

Andy Chou, Jun-Feng Yang, Benjamin Chelf, Seth Hallem, and Daw-
son Engler. An empirical study of operating systems errors. In
Proceedings of the 18th ACM Symposium on OS Principles (SOSP),
pages 73-88, Lake Louise, Alta, Canada, October 2001.

Stefanos N. Damianakis. Efficient Connection-Oriented Communica-
tion on High-Performance Networks. Phd thesis, Princeton Univer-
sity, 1998.

Antony Edwards and Gernot Heiser. Components + Security = OS
Extensibility. In Proceedings of the 6th Australasian Computer Sys-
tems Architecture Conference (ACSAC), pages 27-34, Gold Coast,
Australia, January 2001. IEEE CS Press.

Aled Edwards and Steve Muir. Experiences implementing a high per-
formance TCP in user-space. In Proceedings of the ACM Conference
on Communications (SIGCOMM), 1995.

David B. Golub, Guy G. Sotomayor, Jr, and Freeman L. Rawson IlI.
An architecture for device drivers executing as user-level tasks. In
Proceedings of the USENIX Mach Il Symposium, pages 153-171,
1993.

[HEV+98]

[Les02]

[MB93]

[MS01]

[Pra97]

[SMLE02]

[TNML93]

[VEBBV95]

[VM99]

Gernot Heiser, Kevin Elphinstone, Jerry Vochteloo, Stephen Russell,
and Jochen Liedtke. The Mungi single-address-space operating sys-
tem. Software: Practice and Experience, 28(9):901-928, July 1998.

Ben Leslie. Mungi device drivers. BE thesis, School
of Computer Science and Engineering, University of NSW,
Sydney 2052, Australia, November 2002. Available from
http://lwww.cse.unsw.edu.au/~disy/papers/.

Chris Maeda and Brian N. Bershad. Protocol-service decomposition
for high-performance networking. In Proceedings of the 14th ACM
Symposium on OS Principles (SOSP), pages 244-255, Asheville, NC,
USA, December 1993.

David Maziéres and Dennis Shasha. Don’t trust your file server. In
Proceedings of the 8th Workshop on Hot Topics in Operating Systems
(HotOS), pages 113-118, Elmau, Germany, May 2001.

lan A. Pratt. The User-Safe Device I/O Architecture. PhD thesis,
King’s College, University of Cambridge, August 1997.

Michael M. Swift, Steven Marting, Henry M. Levy, and Susan G.
Eggers. Nooks: An architecture for reliable device drivers. In Pro-
ceedings of the 10th SIGOPS European Workshop, pages 101-107,
St Emilion, France, September 2002.

Chandramohan A. Thekkath, Thu D. Nguyen, Evelyn Moy, and Ed-
ward D. Lazowska. Implementing network protocols at user level.
IEEE/ACM Transactions on Networking, 1:554-565, 1993.

Thorsten von Eicken, Anindya Basu, Vineet Buch, and Werner Vo-
gels. U-Net: A user-level network interface for parallel and dis-
tributed computing. In Proceedings of the 15th ACM Symposium on
OS Principles (SOSP), pages 40-53, Copper Mountain, CO, USA,
December 1995.

Kevin Thomas Van Maren. The Fluke device driver framework. Msc
thesis, University of Utah, December 1999.

http://www.cse.unsw.edu.au/~disy/papers/

	Introduction
	I/O MMUs
	Mungi user level drivers
	Experience
	Related work
	Conclusions

