
http://cs.uwaterloo.ca/~brecht

The Design, Implementation and Performance
Evaluation of Internet Services

Tim Brecht

Tim Brecht CS 497 2

Announcement

• Summer Research Internships at U Waterloo
– Several Different areas
– Competing and possibly working with top students

from around the world

See:
http://blizzard.cs.uwaterloo.ca/intern07/info.html

Tim Brecht CS 497 3

Introduction
• Tim Brecht (pronounced brek-t)

– brecht@cs.uwaterloo.ca
– http://cs.uwaterloo.ca/~brecht

(see my 497 link for assignment due next lecture)
• Background

– B.Sc. (Sask.), M.Math (Waterloo), Ph.D. (Toronto)
– On faculty (York & Waterloo)
– Visiting Scientist (IBM)
– Sabbatical & Research Scientist (HP Labs) 1+2 yrs

• Research Interests: performance, operating systems,
networking, parallel and distributed computing

Tim Brecht CS 497 4

Introduction
• My research described here done with many people:
• Ugrads: Craig Barkhouse (UW),

Siddharth Gupta (IIT Guwahati)
• UW grad students: Michal Ostrowski, David Pariag,

Amol Shukla, Jialin Song, Elad Lehav,
Weihan Wong, Ashif Harji, Gary Yeung

• UW Faculty: Martin Karsten, Peter Buhr,
• UW Staff: Louay Gammo, Mark Groves
• HP Labs: Brian Lynn, John Janakiraman,

Yoshio Turner
• Intel Labs: Greg Regnier, Vikram Saletore

Tim Brecht CS 497 5

Outline

• Part I: Background
– Web Server Example: HTTP/1.1
– Server Architectures
– Performance Evaluation

• Part II: A Flavour of some Current Research
– Performance of Different Server Architectures
– Improving Operating System Support for I/O

Centric Servers (if time permits)
– Possible Avenues for Future Research

Tim Brecht CS 497 6

Outline

• Part I: Background
– Web Server Example: HTTP/1.1
– Server Architectures
– Performance Evaluation

Tim Brecht CS 497 7

How to build a fast Internet Service

• Types of services
– Web Servers
– Streaming Audio/Video Services
– Game Services
– Domain Name System (DNS) (i.e., name lookups)
– Mail: SMTP / IMAP / POP
– Chat Servers (Text)
– Voice over IP
– File Sharing (i.e., music stealing)

Tim Brecht CS 497 8

Example Internet Service: Web Server

• Simple to understand
• Easy to implement
• Widely used:

– 106,875,138 Web Sites [Netcraft, January 2007]
– Dominant Internet Service/Application
– UW traffic [ist.uwaterloo.ca/cn/Stats/extvol.html]

• http 62%, other 18%, ssh 6% Jan 10, 2007
• http 52%, other 38%, p2p 3% March, 2005
• http 63%, other 20%, ftp 7% March, 1998

Tim Brecht CS 497 9

Outline

• Part I: Background
– Web Server Example: HTTP/1.1
– Server Architectures
– Performance Evaluation

Tim Brecht CS 497 10

Simple Web Server Request/Response
Client sends to server:
GET docs/10B.txt HTTP/1.1

User-Agent: httperf/0.8.4

Host: 127.0.0.1

<cr><lf>

Server replies to client:
HTTP/1.1 200 OK

Server: userver-0.5.2

Content-Length: 10

012345678

Tim Brecht CS 497 11

HTTP/1.1: State Machine

Accepting

Reading

Writing

Closed

Get Resp

Tim Brecht CS 497 12

HTTP/1.1: State Machine

Accepting

Reading

Writing

Closed

Get Resp

Fairly easy to translate this into a simple server

Tim Brecht CS 497 13

Outline

• Part I: Background
– Web Server Example: HTTP/1.1
– Server Architectures
– Performance Evaluation

Tim Brecht CS 497 14

A Simple Server
server_sd = socket(); bind(server_sd);
listen(server_sd);

for (;;) {
// wait for new connection request
sd = accept(server_sd);
handle_requests(sd);

}

handle_requests(int sd)
{

while(read_request(sd, inbuf)) {
parse_request(inbuf);

// get or compute response

write_response(sd, outbuf);
}
close(sd);

}

Tim Brecht CS 497 15

A Simple Server
server_sd = socket(); bind(server_sd);
listen(server_sd);

for (;;) {
// wait for new connection request
sd = accept(server_sd);
handle_requests(sd);

}

handle_requests(int sd)
{

while(read_request(sd, inbuf)) {
parse_request(inbuf);

// get or compute response

write_response(sd, outbuf);
}
close(sd);

}

What’s good about this approach?

What’s bad about this approach?

Tim Brecht CS 497 16

HTTP/1.1: State Machine

Accepting

Reading

Writing

Closed

Get Resp
Can block
on network

Tim Brecht CS 497 17

HTTP/1.1: State Machine

Accepting

Reading

Writing

Closed

Get Resp
Can block
on network

Can block
on disk

Tim Brecht CS 497 18

HTTP/1.1: State Machine

Accepting

Reading

Writing

Closed

Get Resp
Can block
on network

Can block
on disk

Possible Solutions?

Tim Brecht CS 497 19

A Forking Server

Accepting (listening) process/thread

Worker processes/threads

Tim Brecht CS 497 20

A Forking Server
for (;;) {

// wait for connection

sd = accept(server_sd);

// fork/create child to handle request

fork/create(handle_requests, sd);

}

Tim Brecht CS 497 21

A Forking Server
for (;;) {

// wait for connection

sd = accept(server_sd);

// fork/create child to handle request

fork/create(handle_requests, sd);

}

What’s wrong with this approach?

Tim Brecht CS 497 22

A Forking Server
for (;;) {

// wait for connection

sd = accept(server_sd);

// fork/create child to handle request

fork/create(handle_requests, sd);

}

What’s wrong with this approach?

How many simultaneous connections can be supported?

Tim Brecht CS 497 23

A Forking Server
for (;;) {

// wait for connection

sd = accept(server_sd);

// fork/create child to handle request

fork/create(handle_requests, sd);

}

What’s wrong with this approach?

How many simultaneous connections can be supported?

Should this server limit resource consumption? Which ones?

Tim Brecht CS 497 24

A Pre-Forking Server

Worker processes/threads
Active Inactive / Pre-forked

Accepting (listening) process/thread

Tim Brecht CS 497 25

A Pre-Forking Server
for (i=0; i<P; i++) {

// fork/create a worker process

}

for (;;) {

// wait for connection

sd = accept(server_sd);

// find idle worker to handle request

pass_to_worker(sd);

}

Tim Brecht CS 497 26

A Pre-Forking Server
for (i=0; i<P; i++) {

// fork/create a worker process

}

for (;;) {

// wait for connection

sd = accept(server_sd);

// find idle worker to handle request

pass_to_worker(sd);

}

What’s wrong with this approach?

Tim Brecht CS 497 27

A Pre-Forking Server
for (i=0; i<P; i++) {

// fork/create a worker process

}

for (;;) {

// wait for connection

sd = accept(server_sd);

// find idle worker to handle request

pass_to_worker(sd);

}

What’s wrong with this approach?

What is a good value for P (# of workers)?

Tim Brecht CS 497 28

Single Process Event Driven (SPED)

Accept Read Get Resp

Event Dispatcher

Write

Use non-blocking I/O

Tim Brecht CS 497 29

Single Process Event Driven (SPED)
for (;;) {

n = get_events(&eventlist);

for (i=0; i<n; i++) {
sd = eventlist[i].fd;
if (is_read_event(eventlist[i])) {

if (sd == server_sd) {
// get new connection
newsd = accept(server_sd);

} else {
read_request(sd); parse_request();

}
}
if (is_write_event(eventlist[i])) {

get_and_write_response(sd);
}

}
}

Tim Brecht CS 497 30

Single Process Event Driven (SPED)
for (;;) {

readfdset = rdset; writefdset = wrset;
n = select(max_sd, &readfdset, &writefdset,

&exceptfds, &timeout);
for (i=0; i<max_sd; i++) {

if (FD_ISSET(i, &readfdset)) {
if (i == server_sd) {

// get new connection
sd = accept(server_sd);
FD_SET(sd, &rdset); FD_SET(sd, &wrset);

} else {
read_request(i); parse_request();

}
}
if (FD_ISSET(i, &writefdset)) {

get_and_write_response(i);
}

}
}

Tim Brecht CS 497 31

Single Process Event Driven (SPED)
for (;;) {

readfdset = rdset; writefdset = wrset;
n = select(max_sd, &readfdset, &writefdset,

&exceptfds, &timeout);
for (i=0; i<max_sd; i++) {

if (FD_ISSET(i, &readfdset)) {
if (i == server_sd) {

// get new connection
sd = accept(server_sd);
FD_SET(sd, &rdset); FD_SET(sd, &wrset);

} else {
read_request(i); parse_request();

}
}
if (FD_ISSET(i, &writefdset)) {

get_and_write_response(i);
}

}
} What are the pros and cons of this approach?

Tim Brecht CS 497 32

Single Process Event Driven (SPED)

Accepting

Reading

Writing

Closed

Get Resp
Now non-
blocking

Can block
on disk

Tim Brecht CS 497 33

Single Process Event Driven (SPED)

Accepting

Reading

Writing

Closed

Get Resp
Now non-
blocking

Can block
on disk

Possible Solutions?

Tim Brecht CS 497 34

Asymmetric MP Event Driven (AMPED)

Accept Read Get Resp

Event Dispatcher

Write

Helper Processes / Kernel Threads

Tim Brecht CS 497 35

Asymmetric MP Event Driven (AMPED)

Accept Read Get Resp

Event Dispatcher

Write

Helper Processes / Kernel Threads

What are the pros and cons of this approach?

Tim Brecht CS 497 36

Accept Read Get Resp

Event Dispatcher

Write

N-Copy: 1 SPED Server per CPU

Accept Read Get Resp

Event Dispatcher

Write

Accept Read Get Resp

Event Dispatcher

Write

Tim Brecht CS 497 37

Accept Read Get Resp

Event Dispatcher

Write

N-Copy: 1 SPED Server per CPU

Accept Read Get Resp

Event Dispatcher

Write

Accept Read Get Resp

Event Dispatcher

Write

What are the pros and cons of this approach?

Tim Brecht CS 497 38

Accept Read Get Resp

Event Dispatcher

Write

N-Copy: 1 SPED Server per CPU

Accept Read Get Resp

Event Dispatcher

Write

Accept Read Get Resp

Event Dispatcher

Write

What are the pros and cons of this approach?

Can block
on disk

Tim Brecht CS 497 39

SYmmetric MP Event Driven (SYMPED)

Accept Read Get Resp

Event Dispatcher

Write

Accept Read Get Resp

Event Dispatcher

Write

Running Blocked

Accept Read Get Resp

Event Dispatcher

Write

Accept Read Get Resp

Event Dispatcher

Write

Accept Read Get Resp

Event Dispatcher

Write Accept Read Get Resp

Event Dispatcher

Write

Tim Brecht CS 497 40

A Hybrid Server: Pipelined (SEDA)

An example of a stage:

Incoming Events Outgoing Events

• control # of threads
• shed load if needed

Event Handler

Controller

Tim Brecht CS 497 41

Hybrid Servers: Haboob / WatPipe

accept read &
parse

check
cache

miss

hit

read
file

send
result

Tim Brecht CS 497 42

Overview of Some Servers
• Multi-Thread/Process: one thread/process per conn

– (MT/MP) Apache, Knot [apache.org, von Behren et 03]
• Single Process Event Driven [www.zeus.com]

– (SPED) Zeus, Original Harvest/Squid [Wessels, 96]
– Asymmetric Multi-Process Event Driven
– (AMPED) Flash [Pai et al, 99]

• One copy per CPU [Zeldovich et al, 03]
– (N-Copy) ? Rock Web Server ? [accoria.com]

• SYmmetric Multi-Process Event Driven
– (SYMPED & Shared-SYMPED) userver [UW:Brecht et,]

• Hybrid: Staged Event Driven Architecture / Pipelined
– (SEDA) Haboob, WatPipe [Welsh et 01, Pariag et 07]

Tim Brecht CS 497 43

Outline

• Part I: Background
– Web Server Example: HTTP/1.1
– Server Architectures
– Performance Evaluation

Tim Brecht CS 497 44

How to Evaluate these Designs?

Tim Brecht CS 497 45

How to Evaluate these Designs?

• Performance?
• Ease of implementation?
• Ease of maintenance?
• Robustness?

Tim Brecht CS 497 46

What does Performance Mean?

“We have improved performance by 48%.”

Tim Brecht CS 497 47

What does Performance Mean?

“We have improved performance by 48%.”

• What is the performance metrics?
• What is the basis of comparision?
• Under what conditions is this statement true?
• Will this statement be true for you?

Tim Brecht CS 497 48

What does Performance Mean?

• How does one evaluate the performance of a car?

Tim Brecht CS 497 49

What does Performance Mean?
• How does one evaluate the performance of a car?

– Horsepower, Torque?
– 0-60 mph times? 60-0 times?
– 0-100 mph times?
– 0-200 mph times?
– Track lap times?
– Track lap times on an icy surface?
– Number of speakers?
– Crash test results?
– Stereo decibel output?
– Many others?

Which is the best?

Tim Brecht CS 497 50

What does Performance Mean?

• It means different things to different people
• What are some Web server performance metrics?

Tim Brecht CS 497 51

What does Performance Mean?
• It means different things to different people
• What are some Web server performance metrics?

– Throughput: requests serviced per unit time
(server operator / owner / hosting service provider)

– Response time: how long to get response/result
(user / client)

– Revenue: e.g., dollars of income per unit time
(owner, executives of the company)

– Reliability (e.g., MTTF), Recovery time (crash recovery)
– (owner, executives e.g., CFO, sys admins)
– Many others

Q: mean, maximum, minimum, distributions?

Tim Brecht CS 497 52

How to Evaluate Performance?
• Analytic Model [Jain, The Art of Comp Sys Perf, 91]

– mathematical model [CS 457]
– high-level abstraction capturing the essence
– (+) easy to change, (+) runs quickly,

(-) may not capture important details
• Simulation

– must capture key components of behaviour
– (+) easy to change, (+/-) runtime,

(-) may be difficult/expensive to capture important details
• Experimental Evaluation

– run experiments on actual hardware
– (-) hard to change, (-) can run for a long time,

(+) captures details

Tim Brecht CS 497 53

Experimental Performance Evaluation

• Benchmark

Tim Brecht CS 497 54

Experimental Performance Evaluation
• Benchmark

– A program or set of programs designed to be used
to compare performance

– Meant to be in some way representative of reality
– Micro-benchmarks

• small test of idea in isolation
(outside of real application and environment)

– Macro-benchmarks (benchmarks)
• larger test of a real application in representative

environment

Tim Brecht CS 497 55

Designing a Web Server Benchmark

• What is the goal?
• What is needed?

Tim Brecht CS 497 56

Benchmark: What is the goal?

• Compare the performance of one or more of:
– different machines
– different web servers
– different operating systems
– improvements to web server implementation

Tim Brecht CS 497 57

Benchmark: What is the goal?

• Compare the performance of one or more of:
– different machines
– different web servers
– different operating systems
– improvements to web server implementation

• HOW?
– simulate real users accessing the web site

Tim Brecht CS 497 58

Benchmark: What is needed?

• Experimental Environment:
– Server

• Host/machine(s)
• Web Server software
• ?Application server software
• ?Database backend

Web Server

App Server

DB Server

Client Request
Client Response

Tim Brecht CS 497 59

Benchmark: What is needed?

• Experimental Environment:
– Clients

• Hosts/Machines ... how many?
• Client simulator software

– Networks(s) to connect clients to servers
• Server Network Interface Cards (NICs)
• Client Network Interface Cards (NICs)
• Network Switches and cables

Tim Brecht CS 497 60

Benchmark: What is needed?

Web Server

Network Switches

Clients

Example Hardware Configuration/Environement

App Server

DB Server

Tim Brecht CS 497 61

Benchmark: What is needed?

• Experimental Environment:
– Data required on the Server

• Files and info for clients to request
• Data for the database (e.g., things to buy, cost)

– Data/Info required for simulated clients
• What to request?
• Which Server NIC to talk to?
• How long to wait for response?

Tim Brecht CS 497 62

Benchmark: What is needed?

• Experimental Environment:
– Data required on the Server

• Files and info for clients to request
• Data for the database (e.g., things to buy, cost)

– Data/Info required for simulated clients
• What to request?
• How long to wait for response?
• Which Server NIC to talk to?

Q: Where does this data and info come from?

Tim Brecht CS 497 63

Some Types of Benchmarks

• Trace driven
– collect requests and times
– play requests back by clients

(+) real stream of requests
(-) can be difficult to modify in meaningful ways

• Characterization driven
– collect requests and times
– compute useful stats, use stats to drive workload

Tim Brecht CS 497 64

Workload Characterization

• Study an environment to try to determine workload
– Workload is the load inflicted on a service

• Capture the essence of the workload with parameters
• May do this by observing/monitoring

– Server
– Client / Users
– Network traffic

Tim Brecht CS 497 65

Workload Characterization

• Want benchmarks representative of real environments
– Modify software (add instrumentation) to track

• files accessed, when, by who (log file)
• post process to get relevant info/stats

– Run this on a real server
• Ideally a bunch of different servers

– Collect & analyze data: use in representative bmark

Tim Brecht CS 497 66

Workload Characterization

• Some server side characteristics:
– file/info request sequences, rates & distributions
– number of embedded objects
– object types (e.g., html, jpg, mpg, etc.)
– file sizes and distributions (usually by file types)

[Arlitt & Williamson: Invariants 1996]
[Arlitt & Jin: World Cup Soccer 1998]
[Arlitt, Krshnamurthy & Rolia: Shopping 2001]
[Veloso, et al., Streaming media, 2006]

Tim Brecht CS 497 67

Workload Characterization

• Behaviours of clients:
– How long does a user typically:

• Wait for a response?
• Spend looking at a page?

– How does browser fetch embedded objects
• HTTP/1.1 one at a time
• HTTP/1.0 all in parallel
• HTTP/1.1 (pipelined – 1 req for N files)

[Cunha, Bestavros & Crovella, Client-based traces, 1995]

Tim Brecht CS 497 68

Workload Characterization

• Behaviour of network:
– Network link speeds?
– How long for a request to reach the server?
– How long for a response to reach the client?
– Packet drop rates?
– What gets dropped, when?

Tim Brecht CS 497 69

Some Benchmarks

• Standard Performance Evaluation Corporation
(SPEC) [spec.org]
– SPECWeb96 (Static)
– SPECweb99/_SSL (70% Static, 30% Dynamic)
– SPECweb2005

• Banking, Ecommerce, Support
• Multi-tiered

• Transaction Processing Performance Council
– TPC-W (Database oriented) [www.tpc.org]

Tim Brecht CS 497 70

Some Benchmark Clients

• SPECweb clients [SPEC: 96, 99, 2005/6]
• httperf [Mosberger & Jin: 98]
• s-client [Banga & Drushel: 97]
• Surge [Barford & Crovella: 98]

Tim Brecht CS 497 71

Some Research (Past, Present, Future)

• Server design and implementation (understanding!!)
– best architecture for performance
– how to avoid server meltdown under overload

• Client workload generator design and implemenation
– small # of hosts to simulate large # of users

• Workload characterization
– What is a representative workload?
– What does it represent? How do we know?

• Improving operating system support
– spending large % of execution time in OS / Why?

Tim Brecht CS 497 72

Part I: The End

