
DynaMast: Adaptive Dynamic Mastering
for Replicated Systems

Michael Abebe, Brad Glasbergen, Khuzaima Daudjee
Cheriton School of Computer Science, University of Waterloo

{mtabebe, bjglasbe, kdaudjee}@uwaterloo.ca

Abstract—Single-master replicated database systems strive to
be scalable by offloading reads to replica nodes. However, single-
master systems suffer from the performance bottleneck of all
updates executing at a single site. Multi-master replicated systems
distribute updates among sites but incur costly coordination for
multi-site transactions. We present DynaMast, a lazily repli-
cated, multi-master database system that guarantees one-site
transaction execution while effectively distributing both reads
and updates among multiple sites. DynaMast benefits from these
advantages by dynamically transferring the mastership of data,
or remastering, among sites using a lightweight metadata-based
protocol. DynaMast leverages remastering to adaptively place
master copies to balance load and minimize future remastering.
Using benchmark workloads, we demonstrate that DynaMast
delivers superior performance over existing replicated database
system architectures.

I. INTRODUCTION

The continuous growth in data processing demands has led
to a renewed focus on large-scale database architectures. A
popular solution to scaling a database server is to employ the
single master approach [1]–[6] in which one node (machine)
holds the master (writeable) copy of data while the remaining
nodes hold read-only replicas of the data. By placing the
master copies of all data items at a single master site, all
update transactions can execute and commit locally at that
site. Similarly, read-only transactions can execute and commit
locally at any replica (replicated site). Thus, the single master
architecture guarantees single-site transaction execution for
all transactions, eliminating the need for expensive multi-site
(distributed) transaction coordination. Another advantage of
the single master architecture is that it distributes read-only
transaction load among replicas, enjoying good scalability for
read-intensive workloads. However, as the update workload
scales-up, the performance of the replicated system suffers
as the single master site that executes all update transactions
becomes a bottleneck [7]–[9].

To alleviate this single master site bottleneck, multi-master
replicated systems distribute master copies of data items to
multiple sites [10] so as to distribute the update load among
these sites. Consequently, the distribution of master copies
results in transactions updating data at multiple sites [11]–
[13]. To ensure transactional consistency and atomicity for
multi-site update transactions, multi-master systems must em-
ploy a distributed commit protocol, e.g., two-phase commit.
Unfortunately, such commit protocols significantly degrade the
performance and scalability of replicated multi-master systems

due to multiple rounds of messages and blocking [12]–[15].
This examination of the two replicated architectures stim-

ulate us to pose the following challenging question: can we
design a replicated database system that preserves the benefits
of the single-master and multi-master architectural approaches
while addressing their shortcomings? Such an architecture
should support scalability by distributing the update load
over multiple sites while also avoiding expensive multi-site
transaction coordination. That is, the new architecture should
(i) allow single-site transaction execution for all transactions
(read-only and update), and (ii) support system scalability by
distributing load of both update and read-only transactions.

While the design of this new architecture brings significant
benefits, it poses several research challenges. First, we must
support dynamic single-site transaction execution, that is, we
need to select one site at which to execute a transaction without
constraining execution to this same site for all transactions.
Thus, the replicated system should be flexible so as to support
one-site execution at any site in the system, thereby offering
opportunities to distribute load among sites. Second, all master
copies of data that a transaction needs to update as well as
read need to be located at the execution site. Deciding where
to locate master copies of data while ensuring that transactions
see, and install, a consistent view of the data adds to the set
of challenging problems to solve.

In this paper, we address these challenges by designing
and building a new replicated system called DynaMast that
provides all of the above desirable properties while addressing
the deficiencies of prior approaches. DynaMast guarantees
one-site transaction executions by dynamically transferring
data mastership among sites in the distributed system while
maintaining transactional consistency. We call this technique
remastering, which also distributes update and read load
among sites in the system.

DynaMast decides the master location of each data item
using comprehensive strategies that consider data item access
patterns to balance load among sites and minimize future
remastering. When remastering occurs, it is efficient as Dyna-
Mast uses a lightweight protocol that exploits the presence of
replicas to transfer mastership using metadata-only operations.

These design decisions enable DynaMast to significantly
reduce transaction latency compared to both the single-master
and multi-master replicated architectures resulting in up to
a 15⇥ improvement in throughput. Moreover, we show Dy-
naMast’s ability to flexibly and dynamically select physical

transaction execution sites in the distributed system by learning
workload data access patterns, thereby delivering superior
performance in the face of changing workloads.

The contributions of this paper are four-fold:
1) We propose a novel replication protocol that efficiently

supports dynamic mastership transfer to guarantee single-
site transactions while maintaining well-understood and
established transactional semantics. (Section III)

2) We present remastering strategies that learn workload
data-access patterns and exploit them to remaster data
adaptively. Our strategies transfer the mastership of data
among sites to minimize future remastering, which in turn
reduces transaction processing latency. (Section IV)

3) We develop DynaMast, an in-memory, replicated, multi-
master database system that provides low latency transac-
tion execution through the use of the dynamic mastering
protocol and remastering strategies. (Section V)

4) We empirically compare DynaMast with single-master
and multi-master architectures, demonstrating Dyna-
Mast’s superiority on a range of workloads. (Section VI)

Due to space limitations, our extended technical report [16]
contains detailed proofs, additional experiments, and further
details on DynaMast.

II. BACKGROUND

In this section, we discuss limitations of the single-master
and multi-master replication approaches and illustrate the
benefits of dynamic mastering.

A. Limitations of Single-Master & Multi-Master Architectures

Replicated single-master systems route all update transac-
tions to a single site, which eliminates multi-site transactions
but overloads that site. Figure 1a illustrates this problem by
example; a client submits three update transactions that all
execute on the master copies (indicated by bold, uppercase
letters) at the single-master site (Site 1). Hence, the update
workload overloads the single-master site as it cannot offload
any update transaction execution to a replicated site (Site 2).

By contrast, the replicated multi-master architecture dis-
tributes updates among the sites to balance the load. In the
example in Figure 1b, updates to data item a and c execute
at Site 1, while updates to b execute at Site 2. However,
transactions that update both a and b, such as T1 are forced
to execute at multiple sites (Site 1 and Site 2), requiring a
distributed commit protocol to ensure atomicity. As discussed
in the last section, such protocols are expensive as they
incur overhead from blocking while waiting for a global
decision and suffer from latencies due to multiple rounds
of communication. We illustrate this using the popular two-
phase commit (2PC) protocol [17] in Figure 1b (Steps 2-4).
Observe that all transactions with distributed write sets, such
as T2 in Figure 1b, must execute as expensive distributed
transactions. Only transactions with single-site write sets, such
as T3, are free to execute as local transactions in the multi-
master replicated architecture.

B. Dynamic Mastering
Figure 1c shows how transactions T1, T2 and T3 execute

using our proposed dynamic mastering protocol, which, as
in the single-master case, guarantees single-site execution
while allowing the distribution of load as in the multi-master
architecture. Like a multi-master architecture, observe that
both sites contain master copies of data. Executing T1 at one
site requires changing the mastership of either data item a or b.
Our site selector recognizes this requirement and, without loss
of generality, decides to execute the transaction at Site 2, and
therefore dynamically remasters a from Site 1 to Site 2. To do
so, the site selector sends a release message for a to Site 1,
which releases a’s mastership after any pending operations on
a complete (Step 1). Next, the site selector informs Site 2 that
it is now the master of a by issuing the site a grant message
for a (Step 2). In Step 3, T1 executes unhindered at Site 2
by applying the operations and committing locally, requiring
no distributed coordination. Through careful algorithmic and
system design that enables remastering outside the boundaries
of transactions and using metadata-only operations, we ensure
that dynamic mastering is efficient (Section III-B).

Remastering is necessary only if a site does not master all
of the data items that a transaction will update. For example,
in Figure 1c, a subsequent transaction T2 also updates a

and b, and therefore executes without remastering, amortizing
the first transaction’s remastering costs. Unlike the single-
master architecture (Figure 1a), dynamic mastering allows T3

to execute at a different site, thereby distributing the write load
through multiple one-site executions. Thus, it is important that
the site selector adaptively decides where to remaster data to
balance load and minimize future remastering — objectives
our remastering strategy takes into account (Section IV).

1) System Model: To perform dynamic mastering effi-
ciently, we consider a model in which data is fully replicated
so that every site has a copy of every data item, allowing flex-
ibility in mastership placement. A transaction provides write-
set information, using reconnaissance queries [14], [18]–[20] if
necessary, which allows mastering the write-set at a single-site.
The dynamic mastering system guarantees snapshot isolation
(SI) as is common in distributed replicated databases [21]–
[23]; additionally, strong-session snapshot isolation (SSSI) is
guaranteed on top of SI.

III. DYNAMIC MASTERING PROTOCOL

Having presented an overview of remastering and its ben-
efits, we now detail our dynamic mastering protocol and its
implementation.

A. Maintaining Consistent Replicas
The dynamic mastering protocol exploits lazily maintained

replicas to transfer ownership of data items efficiently. Lazily-
replicated systems execute update transactions on the master
copies of data, and apply updates asynchronously to replicas
as refresh transactions.

We now describe how the dynamic mastering protocol
guarantees snapshot isolation (SI) that is popularly used by

(a) Single-Master (b) Multi-Master (c) Dynamic Mastering

Fig. 1: An example illustrating the benefits of dynamic mastering over single-master and multi-master replicated architectures.
Uppercase bolded letters represent master copies of data items, with read-only replicas distributed to the other sites. Single-
master bottlenecks the master site as all transactions execute there. Multi-master requires a distributed commit protocol for
both transactions T1 and T2 as the write set is distributed. In dynamic mastering, a is remastered before T1 executes, allowing
T1 and T2 to execute as single-site transactions at Site 2. The load is distributed by executing T3 at Site 1.

replicated database systems [21]–[23], and later outline the
provision of session guarantees on top of SI. An SI system
must assign every transaction T a begin timestamp such that
T sees the updates made by transactions with earlier commit
timestamps. SI systems must also ensure that two transactions
with overlapping lifespans cannot both successfully update
the same data item [24]. Consequently, for every update
transaction T , its corresponding refresh transaction R(T) is
applied to replicas in an order that ensures transactions ob-
serve a consistent snapshot of data. Ensuring that transactions
respect SI without unnecessary blocking is challenging in
a dynamically mastered system as unlike traditional single-
master architectures, updates may originate from any site, and
masters can change dynamically.

To apply refresh transactions in a consistent order, we track
each site’s state using version vectors. In a dynamic mastering
system with m sites, each site maintains an m-dimensional
vector of integers known as a site version vector, denoted
svv i[] for the i

th site (site Si), where 1  i  m. The j-th
index of site Si’s version vector, svv i[j], indicates the number
of refresh transactions that Si has applied for transactions
originating at site Sj . Therefore, whenever site Si applies
the updates of a refresh transaction originating at site Sj , Si

increments svv i[j]. Similarly, svv i[i] denotes the number of
locally committed update transactions at site Si.

We assign update transactions an m-dimensional transaction
version vector, tvv [] that acts as a commit timestamp and
ensure that updates are applied in an order consistent with this
commit timestamp across sites. When an update transaction T

begins executing at site Si, it records Si’s site version vector
svv i[] as T ’s begin timestamp (tvvB(T)[]). During commit,
T copies tvvB(T)[] to tvvT , increments svv i[i] and copies
that value to tvvT [i]. Thus, tvvT [] (the commit timestamp)
reflects T ’s position in Si’s sequence of committed update
transactions, while tvvB(T)[] (the begin timestamp) represents
the updates visible to T when it executed.

SI does not prevent transaction inversion [23], i.e., under
SI, a client may not see its previous updates in subsequent
transactions. SSSI eliminates this undesirable behaviour by

adding session freshness rules [23] and is a flexible and
popular solution [7], [25]–[27]. To enforce the client session-
freshness guarantee, the system tracks each client’s state using
a client version vector cvv c[] and ensures that a client’s
transaction executes on data that is at least as fresh as the
state last seen by the client. Specifically, transactions respect
the following freshness rules: when a client c with an m-
dimensional client session version vector cvv c[] accesses data
from a site Si with site version vector svv i[], c can execute
when svv i[k] � cvv c[k], 8k 2 (1, . . . ,m). After the client
accesses the site, it updates its version vector to svv i[].

The transaction version vector and site version vector in-
dicate when a site can apply a refresh transaction. Given
a transaction T that commits at site Si, a replica site Sj

applies T ’s refresh transaction R(T) only after Sj commits all
transactions whose committed updates were read or updated by
T . Formally, we say that T depends on T

0 if T reads or writes
a data item updated by T

0. That is, R(T) cannot execute and
commit at Sj until Sj commits all transactions that T depends
on. The transaction version vector (tvvT []) encapsulates the
transactions that T depends on, while the site version vector
(svv j []) indicates the updates committed at Sj . Hence, site
Sj blocks the application of R(T) until the following update
application rule holds (Equation 1):� ^

k 6=i

svv j [k] � tvvT [k]
�
^
�
svv j [i] = (tvvT [i]� 1)

�
(1)

As an example of the update application rule, consider the
three-sited system in Figure 2. In the first two steps, transaction
T1 updates a data item and commits locally at site S1, which
increments the site version vector from [0, 0, 0] to [1, 0, 0].
Next, T1’s refresh transactions, R(T1), begin applying the
updates to sites S2 and S3. R(T1) commits at S3, and sets
svv3[] to [1, 0, 0] (Step 4), but site S2 has not yet committed
R(T1) (Step 5). In Step 6, transaction T2 begins after R(T1)

and commits at site S3, and therefore sets svv3[] to [1, 0, 1],
capturing that T2 depends on T1. The update application rule
blocks S2 from applying R(T2) until R(T1) commits (Step 7).
Without blocking the application of T2, it would be possible
for T2’s updates to be visible at site S2 before T1’s updates

Fig. 2: An example showing how commits and update propa-
gation affect site version vectors.

Fig. 3: Generic dynamic mastering architecture.

have been applied, despite the fact that T2 depends on T1.
Finally, after site S2 applies and commits R(T1), it applies
R(T2), which results in svv2[] being set to [1, 0, 1] and ensures
a globally consistent order of update application.

B. Transaction Execution and Remastering

The dynamic mastering protocol is implemented with the
architecture shown in Figure 3 consisting of a site selector
and data sites composed of a site manager, database system,
and replication manager. Clients submit transactions to the site
selector, which remasters data items if necessary and routes
transactions to an appropriate data site. The site managers
at each data site interact with a database system to maintain
version vectors, apply propagated updates as refresh transac-
tions, and handle remastering requests. The database system
processes transactions and sends transactional updates to a
replication manager, which forwards them to the other sites
for application as refresh transactions.

Clients and the system components interact with each other
using remote procedure calls (RPCs). Clients issue transactions
by sending a begin_transaction request containing the
transaction’s write set to the site selector, which decides on
the execution site for the transaction using the routing and
remastering strategies discussed in Section IV. If necessary,
the site selector transfers the mastership of relevant data items
to the execution site via remastering.

To perform remastering (Algorithm 1), the site selector
issues parallel release RPCs to each of the site managers
that hold master copies of data items to be remastered (Line
7). When a site manager receives a release message, it
waits for any ongoing transactions writing the data to finish
before releasing mastership of the items and responding to the
site selector with the data site’s version vector. Immediately
after a release request completes, the site selector issues a
grant RPC to the site that will execute the transaction (Line
8). This data site waits until updates to the data item from the
releasing site have been applied to the point of the release. The
data site then takes mastership of the granted items and returns
a version vector indicating the site’s version at the time it took
ownership. After all necessary grant requests complete, the
site selector computes the element-wise max of the version
vectors that indicates the minimum version that the transaction
must execute on the destination site (Line 9). Finally, the site
selector notifies the client of the site that will execute its
transaction and this minimum version vector. release and
grant are executed as transactions, and consequently a data
item waits to be remastered while being updated.

Parallel execution of release and grant operations
greatly speed up remastering, reducing waiting time for clients.
Clients begin executing as soon as their write set is remastered,
benefiting from the remastering initiated by clients with com-
mon write sets. A client then submits transactions directly to
the database system. Client commit/abort operations are
submitted to the site manager. Note that since data is fully
replicated, clients need not synchronize with each other unless
they are waiting for a release or grant request. Further,
read-only transactions may execute at any site in the system
without synchronization across sites.

A key performance advantage is that coordination through
remastering takes place outside the boundaries of a trans-
action, and therefore does not block running transactions.
Once a transaction begins at a site, it executes without any
coordination with any other sites, allowing it to commit or
abort unilaterally. By contrast, in a multi-master architecture,
changes made by a multi-site transaction are not visible to
other transactions because the database is uncertain about
the global outcome of the distributed transaction. Thus, dis-
tributed transactions block local transactions further increasing
transaction latency [13]. To illustrate this benefit, consider a
transaction T4 that updates B concurrently with T1 in our
example from Figure 1. T4’s update to B can occur while
A is being remastered, unlike during 2PC in multi-master that
blocks T4 while the global outcome of T1 is unknown.

Thus, remastering operations (i) change only mastership

Algorithm 1 Remastering Protocol
Input: Transaction T ’s write set w
Output: The site S that will execute the update transaction

T , and version vector out vv indicating T ’s begin version

1: S = determine_best_site(w) // execution site
2: data item locs = group_by_master_loc(w)

3: out vv = {0}⇥m //zero vector
4: // In parallel:
5: for (site Sd, data item d) 2 data item locs do
6: if Sd 6= S then
7: // Sd currently masters d

8: rel vv = send_release(Sd, d)

9: grant vv = send_grant(S, d, rel_vv)

10: out vv = elementwise_max(out vv , grant vv)
11: end if
12: end for
13: return (out vv , S)

location metadata, (ii) occur outside the boundaries of transac-
tions, (iii) do not physically copy master data items, and (iv)
allow one-site transaction execution once a write set is lo-
calized. These features make our dynamic mastering protocol
lightweight and efficient, resulting in significant performance
advantages over existing approaches (Section VI).

IV. SITE SELECTOR STRATEGIES

In previous sections, we described the dynamic master-
ing architecture and the importance of adaptive remastering
decisions. Our system, DynaMast, implements this dynamic
mastering architecture and efficiently supports it using compre-
hensive transaction routing and remastering strategies. We will
now describe these strategies in detail, deferring descriptions
of their implementation to Section V.

Transaction routing and remastering decisions play a key
role in system performance. Routing and remastering strategies
that do not consider load balance, data freshness, and access
patterns for data items can place excessive load on sites,
increase latency waiting for updates, and cause a ping-pong
effect by repeatedly remastering the same data between nodes.
Thus, DynaMast uses comprehensive strategies and adaptive
models to make transaction routing and remastering decisions.

A. Write Routing and Remastering

When the site selector receives a write transaction request
from client c, it first determines whether the request requires
remastering. If all items the transaction wishes to update are
currently mastered at one of the sites then the site selector
routes the transaction there for local execution. However, if
these items’ master copies are distributed across multiple sites,
the site selector co-locates the items via remastering before
transaction execution. DynaMast makes remastering decisions
prudently: data is remastered only when necessary, employing
strategies that choose a destination site that minimizes the
amount of remastering in the future.

Our remastering strategies consider load balance, site fresh-
ness, and data access patterns. We use a linear model that cap-
tures and quantifies these factors as input features and outputs
a score that represents an estimate of the expected benefits
of remastering to a site. Concretely, DynaMast computes a
score for each site, indicating the benefits of remastering the
transaction’s write set there and then remasters these data items
to the site that obtained the highest score.

1) Balancing Load: Workloads frequently contain access
skew, which if left unaddressed can result in resource under-
utilization and performance bottlenecks [28]. Consequently,
our remastering strategy balances data item mastership alloca-
tion among the sites according to the write frequency of the
items, which in turn balances the load.

When evaluating a candidate site S as a destination for
remastering, we consider both the current write load balance
and the projected load balance if we were to remaster to S

the items that the transaction wishes to update. For a system
mastership allocation X , we express the write balance as the
distance from perfect write load balancing (where every one
of the m sites processes the same volume of write requests):

f

balance dist

(X) =

vuut
mX

i=1

1

m

� freq(Xi)

!2

where freq(Xi) 2 [0, 1] indicates the fraction of write requests
that would be routed to site i under mastership allocation X .
If each site receives the same fraction of writes (

1
m), then

f

balance dist

(X) = 0; larger values indicate larger imbalances
in write load.

We use f

balance dist

to consider the change in load balance
if we were to remaster the items a transaction T wishes to
update to a candidate site S. Let B be the current mastership
allocation and A(S) be the allocation resulting from remas-
tering T ’s write set to S. The change in write load balance is
computed as:
f�balance

(S) = f

balance dist

(B)� f

balance dist

(A(S)) (2)
A positive value for f�balance

(S) indicates that the load
would be more balanced after remastering to site S; a negative
value indicates that the load would be less balanced.

Although f�balance

(S) gives an indication of a remastering
operation’s improvement (or worsening) in terms of write
balance, it does not consider how balanced the system cur-
rently is. If the current system is balanced, then unbalancing
it slightly, in exchange for less future remastering, may yield
better performance. However, for a system that is already
quite imbalanced, re-balancing it is important. We incorporate
this information into a scaling factor f

balance rate

(S) that
reinforces the importance of balance in routing decisions:
f

balance rate

(S) = max

�
f

balance dist

(B), f

balance dist

(A(S))

�

(3)
We combine the change in write load balance, f�balance

, with
the balance rate, f

balance rate

, to yield an overall balance
factor. This factor considers both the magnitude of change
in write load balance and the importance of correcting it:

f

balance

(S) = f�balance

(S) · exp
�
f

balance rate

(S)

�
(4)

2) Estimating Remastering Time: After a candidate site S

is chosen as the remastering destination for a transaction, the
grant request blocks until S applies the refresh transactions
for all of the remastered items. Additionally, the transaction
may block at S to satisfy session-freshness requirements.
Thus, if S lags in applying updates, the time to remaster data
and therefore execute the transaction increases.

Our strategies estimate the number of updates that a candi-
date site S needs to apply before a transaction can execute by
computing the dimension-wise maximum of version vectors
for each site Si from which data will be remastered and client
c’s version vector (cvv c[]). We subtract this vector from the
current version vector of S and perform a dimension-wise sum
to count the number of necessary updates, expressed as:
f

refresh delay

(S) =

���max

⇣
cvv c[],max

i

�
svv i[]

�⌘
� svvS []

���
1

(5)
3) Co-locating Correlated Data: Data items are often cor-

related; a particular item may be frequently accessed with
other items according to relationships in the data [11], [29],
[30]. Thus, we consider the effects of remastering data on
current and subsequent transactions. Our strategies remaster
data items that are frequently written together to one site,
which optimizes for current and subsequent transactions with
one remastering operation. The goal of co-accessed data items
sharing the same master site is similar to the data partitioning
problem [11], [30], solutions to which typically model data
access as a graph and perform computationally expensive
graph partitioning to decide on master placement. Instead, our
site selector strategy uses a heuristic that promotes mastership
co-location based on data access correlations.

We consider two types of data access correlations: data
items frequently written together within a transaction (intra-
transaction access correlations) and items indicative of future
transactions’ write sets (inter-transaction access correlations).
In the former case, we wish to keep data items frequently
accessed together mastered at a single site to avoid remastering
for subsequent transactions (ping-pong effect). In the latter
case, we anticipate future transactions’ write sets and preemp-
tively remaster these items to a single site. Doing so avoids
waiting on refresh transactions to meet session requirements
when a client sends transactions to different sites. Considering
both of these cases enables DynaMast to rapidly co-locate
master copies of items that clients commonly access together.

To decide on master co-location, DynaMast exploits infor-
mation about intra-transactional data item accesses. For a given
data item d1, DynaMast tracks the probability that a client
will access d1 with another data item d2 in a transaction as
P (d2|d1). For a transaction with write set w that necessitates
remastering and a candidate remastering site S, we compute
the intra-transaction localization factor as:
f

intra txn

(S) =

X

d12w

X

d2

P (d2|d1) ⇥

single_sited(S, {d1, d2})
(6)

where single_sited returns 1 if remastering the write set
to S would place the master copies of both data items at the

same site, -1 if it would split the master copies of d1 and
d2 apart, and 0 otherwise (no change in co-location). Thus,
single_sited encourages remastering data items to sites
such that future transactions would not require remastering.
We normalize the benefit that remastering these items may
have by the likelihood of data item co-access. Consequently,
a positive f

intra txn

score for site S indicates that remaster-
ing the transaction’s write set to S will improve data item
placements overall and reduce future remastering.

DynaMast also tracks inter-transactional access correlations,
which occur when a client submits a transaction that accesses
item d2 within a short time interval of accessing a data item d1.
We configure this interval, �t, based on inter-transactional ar-
rival times and denote the probability of this inter-transactional
access as P (d2|d1;T  �t). For a transaction with write set
w and candidate remastering site S, we compute the inter-
transaction localization factor similarly to Equation 7, but
normalize with inter-transactional likelihood:
f

inter txn

(S) =

X

d12w

X

d2

P (d2|d1;T  �t) ⇥

single_sited(S, {d1, d2})
(7)

f

inter txn

(S) quantifies the effects of remastering the cur-
rent transaction’s write set to candidate site S with respect to
accesses to data items in the future.

4) Putting It All Together: Each of the previously described
factors come together to form a comprehensive model that
determines the benefits of remastering at a candidate site.
When combined, features complement each other and enable
the site selector to find good master copy placements.
f

benefit

(s) =w

balance

· f
balance

(s) + w

delay

· f
refresh delay

(s)+

w

intra txn

· f
intra txn

(s) + w

inter txn

· f
inter txn

(s)

(8)
We combine the scores for site S in Equations 4 through 7

using a weighted linear model (Equation 8), and remaster data
to the site that obtains the highest score.

B. Read Routing
Site load and timely update propagation affect read-only

transaction performance as clients wait for sites to apply
updates present in their session. Thus, DynaMast routes read-
only transactions to sites that satisfy the client’s session-based
freshness guarantee. DynaMast randomly chooses a site that
satisfies this guarantee, which both minimizes blocking and
spreads load among sites.

V. THE DYNAMAST SYSTEM

Our replicated database system, DynaMast, implements the
dynamic mastering architecture (Section III) and consists of a
site selector and data sites containing a site manager, database
system and replication manager. The site selector uses the
remastering strategies from Section IV. System components
communicate via the Apache Thrift RPC library [31].

A. Data Sites
A data site is responsible for executing client transactions.

DynaMast integrates the site manager, database system and

replication manager into a single component, which improves
system performance by avoiding concurrency control redun-
dancy between the site manager and the database system
while minimizing logging/replication overheads. The replica-
tion manager propagates updates among data sites through
writes to a durable log (Section V-A2) that also serves as a
persistent redo log (Section V-C). For fault tolerance and to
scale update propagation independently of the data sites, we
use Apache Kafka [32] to store our logs and transmit updates.

1) Data Storage and Concurrency Control: The data site
stores records belonging to each relation in a row-oriented
in-memory table using the primary key of each record as an
index. Our system supports reading from snapshots of data
using multi-version concurrency control (MVCC), similar to
Microsoft’s Hekaton engine [33], [34], to exploit SSSI [23].
The database stores multiple versions (by default four, as de-
termined empirically) of every record, which we call versioned
records, that are created when a transaction updates a record.
Transactions read the versioned record that corresponds to a
specific snapshot so that concurrent writes do not block reads
[34]. To avoid transactional aborts on write-write conflicts,
DynaMast uses locks to mutually exclude writes to records,
which is simple and lightweight (Section VI-B7).

2) Update Propagation: Recall from the update application
rule (Section III-A) that when an update transaction T commits
at site Si, the site version vector index svv i[i] is atomically
incremented to determine commit order and the transaction
is assigned a commit timestamp (transaction version vector)
tvvT []. Site Si’s replication manager serializes tvvT [] and T ’s
updates and writes them to Si’s log. Each replication manager
subscribes to updates from logs at other sites. When another
site Sj receives T ’s propagated update(s) from Si’s log, Sj’s
replication manager deserializes the update, follows the update
application rules from Section III-A, and applies T ’s updates
as a refresh transaction by creating new versioned records.
Finally, the replication manager makes the updates visible by
setting svv j [i] to tvvT [i].

B. Site Selector

The site selector is responsible for routing transactions to
sites for execution and deciding if, where and when to remaster
data items using the strategies detailed in Section IV.

To make a remastering decision, the site selector must
know the site that contains the master copy of the data item.
To reduce the overhead of this metadata, the site selector
supports grouping of data items into partitions1, tracking
master location on a per partition basis, and remastering data
items in partition groups. For each partition group, DynaMast
stores partition information that contains the current master
location and a readers-writer lock.

To route a transaction, the site selector looks up the master
location of each data item in the transaction’s write set in
a concurrent hash-table containing partition information. The

1By default, the site selector groups sequential data items into equally sized
partitions [28] though clients can supply their own grouping.

site selector acquires each accessed partition’s lock in shared
read mode. If one site masters all partitions, then the site
selector routes the transaction there and unlocks the partition
information. Otherwise, the site selector makes a remastering
decision and dynamically remasters the corresponding parti-
tions to a single site. To do so, the site selector upgrades
each partition information lock to exclusive write mode, which
prevents concurrent remastering of a partition. Then, the site
selector makes a remastering decision using vectorized oper-
ations that consider each site as a destination for remastering
in parallel. Once the site selector chooses a destination site
for the transaction, it remasters the necessary partitions using
parallel release and grant operations, updates the master
location in the partition and downgrades its lock to read mode.
When the site masters the necessary partitions, the transaction
begins executing, and the site selector releases all locks.

The site selector builds and maintains statistics such as data
item access frequency and data item co-access likelihood for
its strategies (Section IV) to effectively remaster data. Thus,
the partition information also contains a counter that indicates
the number of accesses to the partition and counts to track
intra- and inter-transactions co-access frequencies. The site
selector captures these statistics by adaptively sampling [35]
transaction write sets and recording sampled transactions, and
each transaction executed within a time window �t (Equation
7) of it — submitted by the same client — in a transaction
history queue. From these sampled write sets, the site selector
determines partition level access and co-access frequencies,
which it uses to make its remastering decisions. Finally,
DynaMast expires samples from the transaction history queue
by decrementing any associated access counts to adapt to
changing workloads.

C. Fault Tolerance and Recovery
As is common in in-memory database systems [10], [20],

DynaMast uses redo logging. On commit, DynaMast writes
updates to the persistent Kafka log as a redo log to pro-
vide fault tolerance, and to propagate updates. Any data site
recovers independently by initializing state from an existing
replica and replaying redo logs from the positions indicated
by the site version vector. DynaMast also logs grant and
release operations to the redo log. Thus, if any site manager
or site selector fails, on recovery it reconstructs the data item
mastership state from the sequence of release and grant

operations in the redo logs.

VI. PERFORMANCE EVALUATION

We evaluate the performance of DynaMast to answer the
following questions:

• Can DynaMast efficiently remaster data and perform well
on write-intensive workloads?

• Does DynaMast maintain its performance advantages
when write transactions become more complex?

• Do DynaMast’s remastering strategies ameliorate the ef-
fects of access skew?

• Does DynaMast adapt to changing workloads?

• How frequent is remastering, and what are its overheads?
• How sensitive is DynaMast to remastering strategy hy-

perparameter values?

A. Experimental Setup

1) Evaluated Systems: To conduct an apples-to-apples com-
parison, we implement all alternative designs within the Dy-
naMast framework. Hence, all systems share the same site
manager, storage system, multi-version concurrency control
scheme, and isolation level (strong-session snapshot isolation).
This allows us to directly measure and attribute DynaMast’s
performance to the effectiveness of our dynamic mastering
protocol and site selector strategies.
DynaMast: we implemented the dynamic mastering protocol
and site selector strategies as the DynaMast system described
in Section V. In each experiment, DynaMast has no fixed ini-
tial data placement as we rely on, and evaluate, its remastering
strategies to distribute master copies among the sites.
Partition-Store: is the partitioned multi-master database sys-
tem that we implemented in DynaMast. Partition-store uses
table-specific partitioning (e.g. range, hash) to assign partitions
to data sites, but does not replicate data except for static read-
only tables. By using the offline tool Schism [11], we favoured
partition-store to have superior partitioning for the OLTP
workloads that we benchmark against. Partition-store uses the
popular 2PC protocol to coordinate distributed transactions.
Multi-master: we implemented a replicated multi-master
database system by augmenting partition-store to lazily main-
tain replicas. Thus, the multi-master system allows read-only
transactions to execute at any site. As each data item has one
master copy, updates to a data item occur only on the data
item’s master copy.
Single-Master: we leveraged DynaMast’s adaptibility to de-
sign a single-master system in which all write transactions
execute at a single (master) site while lazily maintaining read-
only replicas at other sites. Single-master is superior to using
a centralized system because the single-master system routes
read-only transactions to (read-only) replicas, thereby reducing
the load on the master.
LEAP: like DynaMast, guarantees single-site transaction exe-
cution but bases its architecture on a partitioned multi-master
database without replication [14]. To guarantee single-site ex-
ecution, LEAP localizes data in a transaction’s read and write
sets to the site where the transaction executes. To perform
this data localization, LEAP does data shipping, copying data
from the old master to the new master. We implement LEAP
by modifying our partition-store implementation.

2) Benchmark Workloads: In our experiments, each data
site executes on a 12-core machine with 32 GB RAM. We
also deploy a site selector machine and two machines that
run Apache Kafka to ensure that there are enough resources
available to provide timely and efficient update propagation. A
10Gbit/s network connects machines. All results are averages
of at least five, 5-minute OLTPBench [36] runs with 95%
confidence intervals shown as bars around the means.

Given the ubiquity of multi-data item transactions [36],
[37] and workload access patterns [14], [19] present in a
broad class of OLTP workloads, we incorporated these realistic
characteristics into the YCSB workload. We use YCSB’s
scan transaction that reads from 200 to 1000 sequentially
ordered keys, and enhance the read-modify-write (RMW)
transaction to update three keys. These modifications induce
access correlations and multi-partition transactions, resulting
in multi-site (distributed) transactions for multi-master and
partition-store, remastering for DynaMast, and data-shipping
for LEAP. Each experiment uses four data sites containing an
initial database size of 5 GB that grows to 30 GB of data by
the end of the run, thereby taking up most of the available
memory.
Our TPC-C workload evaluation contains three transaction
types: New-Order, Payment and Stock-Level that represent
two update intensive transactions and a read-only transaction,
respectively, and make up the bulk of both the workload and
distributed transactions. By default, we use eight data sites,
350 concurrent clients and a 45% New-Order, 45% Payment,
10% Stock-Level mix that matches the default update and
read-only transaction mix in the TPC-C benchmark. Our TPC-
C database has 10 warehouses and 100,000 items that grows to
more than 20 GB of in-memory data per site by the end of an
experiment run. Having more than this number of warehouses
outstrips the physical memory of a data site machine.

B. Results
We compared DynaMast against partition-store, multi-

master, single-master, and LEAP to answer the evaluation
questions we posed at the beginning of Section VI.

1) Write-Intensive Workloads: Schism [11] reports that the
partitioning strategy that minimizes the number of distributed
transactions is range-partitioning. Thus, we assigned partition-
store and multi-master a range-based partitioning scheme.
DynaMast does not have a fixed partition placement and
must learn access patterns to place partitions accordingly. As
shown in Figure 4a, DynaMast outperforms the other systems,
improving transaction throughput by 2.3⇥ over partition-store
and 1.3⇥ over single-master. Partition-store performs poorly
compared to the other systems due to additional round-trips
during transaction processing. While LEAP’s transaction lo-
calization improves performance over partition-store by 20%,
DynaMast delivers double the throughput of LEAP. DynaMast
executes the scan operations at replicas without the need for
remastering while LEAP incurs data transfer costs to localize
both read-only and update transactions.

Single-master offloads scan transactions to replicas. How-
ever, as the number of clients increases in Figure 4a, the single-
master site bottlenecks as it becomes saturated with update
transactions. Like single-master, multi-master’s replication al-
lows scans to run at any site, which improves performance
compared to partition-store. Multi-master avoids the single-
site bottleneck as it distributes writes. However, its multi-site
write transactions incur synchronization costs that DynaMast
eliminates. Consequently, DynaMast’s remastering strategies

(a) Uni. 50% RMW/50% Scan (b) Uni. 90% RMW/10% Scan (c) New-Order Lat. (d) Stock-Level Lat.

(e) TPC-C Tail Lat. (f) TPC-C Throughput (g) New-Order Lat. (h) Skew 90% RMW/10% Scan
Fig. 4: Experiment results for DynaMast, partition-store, multi-master, single-master and LEAP using YCSB and TPC-C.

avoid the pitfalls of both single and multi-master; they ensure
master copies of data are distributed evenly across the sites
without executing distributed transactions, resulting in better
resource utilization and thus superior performance.

Next, we increased the proportion of RMW transactions to
90% (Figure 4b), which increases the number of transactions
that require remastering and increases contention. DynaMast
continues to outperform the other systems by delivering almost
2.5⇥ more throughput. Multi-master has lower throughput
compared to partition-store because there are fewer scans in
the workload to leverage replicas. Increasing the proportion
of update transactions in the workload saturates the single-
master site rapidly. DynaMast and partition-store experience
an improvement in transaction throughput because scan trans-
actions access more keys and take longer to execute than
the uniform workload’s RMW transactions that have reduced
resource contention. DynaMast is effective in executing read-
only transactions at replicas and remastering write transac-
tions. LEAP’s performance is lower than DynaMast’s as the
workload requires LEAP to localize the read-only transactions
that DynaMast executes at replicas without any remastering.

2) Complex Write Transactions: We studied the effect of
a workload with more complex write transactions by using
TPC-C. The New-Order transaction writes dozens of keys as
part of its execution, increasing the challenge of efficiently
and effectively placing data via remastering. TPC-C is not
fully-partitionable due to cross-warehouse New-Order and
Payment transactions but Schism confirms that the well-known
partitioning by warehouse strategy minimizes the number
of distributed transactions. Thus, we partition partition-store
and multi-master by warehouse but force DynaMast to learn
partition placements.

We first study the differences in New-Order transaction
latency among DynaMast and its comparators (Figure 4c).
On average, DynaMast reduces the time taken to complete
the New-Order transaction by a hefty 40% when compared
to single-master. This large reduction in latency comes from
DynaMast’s ability to process New-Order transactions at all
data sites, thereby spreading the load across the replicated
system unlike that of single master. As shown in Figure 4e,
the largest difference in transaction latency between DynaMast
and single master exists in 10% of transactions that suffer
the most from load effects. Specifically, DynaMast reduces
the 90

th and 99

th percentile tail latency by 30% and 50%
respectively compared to single-master.

DynaMast reduces average New-Order latency by 85%
when compared to partition-store and multi-master, both of
which perform similarly. DynaMast achieves this reduction by
running the New-Order transaction at a single site and remas-
tering to avoid the cost of multi-site transaction execution,
which partition-store and multi-master must incur for every
cross-warehouse transaction. Consequently, Figure 4e shows
that both partition-store and multi-master have significantly
higher (10⇥) 90th percentile latencies compared to DynaMast.

DynaMast reduces New-Order latency by 96% over LEAP,
which has no routing strategies and thus continually transfers
data between sites to avoid distributed synchronization, unlike
DynaMast’s adaptive strategies that limit remastering. LEAP’s
localization efforts result in high transfer overheads and con-
tention, manifesting in a 99

th percentile latency that is 40⇥
higher than DynaMast’s (Figure 4e).

DynaMast has low latency for the Stock-Level transaction
(Figure 4d) because efficient update propagation rarely causes
transactions to wait for updates, and multi-version concurrency

control means that updates do not block read-only transactions.
As single-master and multi-master also benefit from these op-
timizations, they have similar latency to DynaMast. Partition-
store’s average latency is higher because the Stock-Level
transaction can depend on stock from multiple warehouses,
necessitating a multi-site transaction. Although multi-site read-
only transactions do not require distributed coordination, they
are subject to straggler effects, increasing the probability of
incurring higher latency as they must wait for all requests to
complete. Thus, the slowest site’s response time determines
their performance. By contrast, LEAP, which lacks replicas,
has orders of magnitude higher Stock-Level latency than
DynaMast as it must localize read-only transactions.

Figure 4f shows how throughput varies with the percentage
of New-Order transactions in the workload. When New-Order
transactions dominate the workload, DynaMast delivers more
than 15⇥ the throughput of partition-store and multi-master,
which suffer from multiple round trips and high tail latencies.
Similarly, DynaMast delivers 20⇥ the throughput of LEAP
that lacks adaptive master transfer strategies and consequently
continually moves data to avoid distributed coordination. Dy-
naMast’s significantly lower New-Order transaction latency
results in throughput 1.64⇥ that of single-master.

3) Decreasing Transaction Access Locality: We study the
effect of increasing the ratio of cross-warehouse New-Order
transactions on New-Order average transaction latency (Fig-
ure 4g). DynaMast and LEAP never execute multi-site transac-
tions so as cross-warehouse transactions increase, remastering
increases in DynaMast and more data shipping occurs in
LEAP. While the best partitioning remains warehouse-based,
cross-warehouse transactions induce more distributed transac-
tions in partition-store and multi-master.

DynaMast reduces New-Order transaction latency by an av-
erage of 87% over partition-store and multi-master when one-
third of New-Order transactions cross warehouses. Partition-
store and multi-master’s New-Order latency increases almost
3⇥ over having no cross warehouse transactions to when one-
third of the transactions cross warehouses, which results in
an increase of only 1.75⇥ in DynaMast. LEAP increases the
New-Order latency by more than 2.2⇥ as more distributed
transactions necessitate more data transfers while DynaMast
brings its design advantages that include routing strategies and
remastering to bear, delivering better performance than LEAP.

Partition-store and multi-master’s latency increase because
cross warehouse transactions also slow down single warehouse
transactions [13]. As the number of cross-warehouse transac-
tions increases, DynaMast recognizes that being a more domi-
nant single-master system can bring performance benefits, and
therefore reacts by mastering more data items at one site.
However, DynaMast knowingly avoids routing all New-Order
transactions to a single site to avoid placing excessive load on
it. These techniques allow DynaMast to significantly reduce
New-Order latency by 25% over single-master.

4) Skewed Workloads: We evaluated DynaMast’s ability to
balance load in the presence of skew via remastering with
a YCSB-based Zipfian 90%/10% RMW/scan workload (Fig-

ure 4h). DynaMast significantly outperforms its comparators,
improving throughput over multi-master by 10⇥, partition-
store by 4⇥, single-master by 1.8⇥, and LEAP by 1.6⇥.
Partition-store’s performance suffers as it cannot distribute
heavily-accessed partitions to multiple sites (Figure 5a), result-
ing in increased transaction latency due to resource contention.
Multi-master suffers the same fate while additionally having
to propagate updates, which further degrades performance.
LEAP shows better throughput than partition-store as it ex-
ecutes transactions at one site but suffers from co-location
of hot (skewed) partitions. Resource contention degrades per-
formance for single-master as all update transactions must
execute at the single master site. DynaMast mitigates the
performance issues of its competitors by spreading updates
to master data partitions over all sites in the replicated system
evenly, resulting in balanced load and superior performance.

5) Learning Changing Workloads: Access patterns in
workloads often change [28] resulting in degraded perfor-
mance when data mastership/allocation is fixed. A key feature
of DynaMast is its ability to adapt to these workload changes
by localizing transactions. To demonstrate this adaptive capa-
bility, we conducted a YCSB experiment with mastership allo-
cated manually using range partitioning but with the workload
utilizing randomized partition access. Hence, DynaMast must
learn new correlations and remaster data to maintain perfor-
mance. We deployed 100 clients running 100% RMW trans-
actions accessing data with skew. This challenges DynaMast
with high contention and the remastering of nearly every data
item. As Figure 5b shows, DynaMast rises to this challenge,
continuously improving performance over the measurement
interval resulting in a throughput increase of 1.6⇥ from when
the workload change was initiated. This improvement show-
cases DynaMast’s ability to learn new relationships between
data partitions and its strategies, leveraging this information
effectively to localize transactions via remastering.

6) Remastering Analysis: Recall that DynaMast makes
remastering decisions by employing a linear model (Equa-
tion 8) that contains four hyperparameters (w

balance

, w
delay

,
w

intra txn

, w

inter txn

). To determine the effects of these
parameters on the site selector’s master placement decisions
and subsequently on performance, we performed sensitivity
experiments using a skewed YCSB workload. We varied each
parameter from its default value (normalized to 1) by scaling
one or two orders of magnitude up, and down. We also set each
parameter, in turn, to 0 to determine the effect of removing
the feature associated with that parameter from the site selec-
tor’s strategy. When every parameter is non-zero, throughput
remains at 8% of the maximal throughput, demonstrating
DynaMast’s robustness to variation in parameter values.

When w

balance

is 0, throughput drops by nearly 40% as
DynaMast increasingly masters data at one master site since
no other feature encourages load balance. Figure 5a shows the
effects on transaction routing when w

balance

is scaled to 0.01
of its default: 34% of the requests go to the most frequently
accessed site while 13% of requests go to the least frequently
accessed site, compared to even routing (25%) by default.

(a) Skew Transaction Routing (b) Adaptivity Over Time (c) Co-Access Sensitivity
Fig. 5: Transaction routing for a skewed workload, adaptivity results, and a sensitivity analysis of site selector strategies.

The w

intra txn

and w

inter txn

hyperparameters complement
each other; when one is 0, the other promotes co-location of
co-accessed data items. To further examine these effects, we
induce workload change, as in Section VI-B5, so that learning
and understanding data item access patterns is of utmost im-
portance. Figure 5c shows throughput increasing as w

intra txn

increases from 0 to the relative value of 1 used in experiments.
This 16% improvement in throughput demonstrates that the
site selector captures the intra-transactional co-access patterns,
using them to co-locate the master copies of co-accessed data
items. We observe a similar trend of throughput increasing by
10% when we vary the inter-transactional co-access parameter
(w

inter txn

).
7) Performance Breakdown: We designed DynaMast to be

a system that delivers significant performance benefits with
low overhead. Measurements of latencies for routing decisions,
wait time for pending updates and transaction commit time are
low. DynaMast’s comprehensive strategies that learn access
correlations are effective at minimizing remastering as less
than 3% of transactions require remastering. Given these small
latencies overall, network latencies proportionally account for
40% of latency, while transaction logic accounts for 40%.

8) Additional Results: Our technical report [16] contains
more experimental results. Using the SmallBank workload,
we examine the effect of short transactions on DynaMast and
show tail latency reductions of 4 to 40⇥. DynaMast exhibits
excellent scalability with near-linear scaling of throughput that
increases by more than 3⇥ as the number of data sites is scaled
from 4 to 16 nodes. Moreover, as database sizes increase,
DynaMast continues to maintain its throughput.

VII. RELATED WORK

DynaMast is the first transactional system that both adap-
tively places data by considering data access patterns and
guarantees single site transaction execution via remastering.

Shared-data architectures decouple transaction processing
from data storage [19], [38], [39]. These architectures rely on
2PL-like protocols over the network to guarantee atomicity
for transactions or perform over the network data transfers to
execute operations on the transaction processing node [14].
By contrast, DynaMast maintains the replicated multi-master
architecture while supporting one-site transaction execution,
foregoing communication with other nodes during execution.

TAPIR [40] and Janus [41] address the overheads of dis-
tributed transaction processing by coupling the transaction
consistency protocol with the data replication protocol that
is necessary for fault tolerance. However, these systems —
unlike DynaMast — do not guarantee single site transaction
execution, statically assign master copies of data to nodes and
do not support mastership changes.

Systems reduce transaction latency by replicating data lo-
cally into caches [42]–[44]. However, to ensure consistency
these systems must either update or invalidate the caches,
which require distributed coordination and increase update
transaction latency. By contrast, DynaMast lazily updates
replicas, executes transactions locally, and uses comprehensive
cost-based remastering strategies to learn application work-
loads that balance the load and minimize future remastering
in the replicated system.

Coordination avoidance [45] exploits application invariants
[46] and commutative data types [21], [47] to avoid distributed
transactions, by asynchronous merging of diverging updates.
However, not all workloads support such invariants and thus
require distributed transactions. Speculative execution [13],
[48], [49] make globally uncommitted changes visible to other
transactions early. Regardless of the operation, DynaMast
guarantees one-site transaction execution to all transactions.

Deterministic databases [18], [50] eliminate distributed
communication by grouping all transactions submitted to the
system within an epoch and then executing them as a batch,
which increases transaction latency. STAR [20] replicates data
into both a single-master and partitioned multi-master format,
then groups transactions into batches and divides them into
either the single-master or partitioned multi-master execution
batch. Unlike such systems, DynaMast executes transactions
as they arrive, and remasters on-the-fly only when necessary.

Advances in low-latency remote memory access [51]–[53]
and programmable network switches [54] allow systems to
improve throughput in distributed database systems. Such
hardware allows efficient remote data access, but still require
expensive distributed protocols to coordinate and acquire locks
(e.g., using distributed 2PL) through RDMA operations. By
contrast, DynaMast improves transaction processing by guar-
anteeing single-site transaction execution without relying on
specialized hardware technologies.

Repartitioning systems [11], [28], [30], [55]–[60] mod-
ify data placement to reduce the number of distributed

transactions. However, distributed transactions remain unless
the workload is perfectly partitionable, whereas DynaMast
eschews distributed transactions entirely using lightweight
metadata-only remastering operations.

VIII. CONCLUSION

We presented DynaMast, a multi-master replicated database
system that guarantees one-site transaction execution through
dynamic mastering. As shown experimentally, DynaMast’s
novel remastering protocol and adaptive strategies are
lightweight, ensure balanced load among sites, and minimize
remastering as part of future transactions. Consequently, Dyna-
Mast eschews multi-master’s expensive distributed coordina-
tion and avoids the single-master site bottleneck. These design
strengths allow DynaMast to improve performance by up to
15⇥ over prior replicated system designs.

REFERENCES

[1] S. Wu and B. Kemme, “Postgres-r (si): Combining replica control with
concurrency control based on snapshot isolation,” in ICDE, 2005.

[2] A. Verbitski et al., “Amazon aurora: Design considerations for high
throughput cloud-native relational databases,” 2017.

[3] “Mysql: Primary-secondary replication,” https://dev.mysql.com/doc/
refman/8.0/en/group-replication-primary-secondary-replication.html,
2019, accessed: 2019-02-01.

[4] A. Kemper and T. Neumann, “Hyper: A hybrid oltp&olap main memory
database system based on virtual memory snapshots,” 2011.

[5] N. Bronson et al., “TAO: Facebooks distributed data store for the social
graph,” 2013.

[6] “Huawei relational database service,” https://support.huaweicloud.com/
en-us/productdesc-rds/rds-productdesc.pdf, 2019, accessed: 2019-06-01.

[7] J. Goldstein et al., “Mtcache: Mid-tier database caching for sql server,”
ICDE, 2004.

[8] Q. Luo et al., “Middle-tier database caching for e-business,” in SIG-
MOD, 2002.

[9] A. Pavlo et al., “Skew-aware automatic database partitioning in shared-
nothing, parallel OLTP systems,” SIGMOD, 2012.

[10] M. Stonebraker et al., “The end of an architectural era: (it’s time for a
complete rewrite),” VLDB, 2007.

[11] C. Curino et al., “Schism: a Workload-Driven Approach to Database
Replication and Partitioning,” PVLDB, 2010.

[12] R. Harding et al., “An evaluation of distributed concurrency control,”
PVLDB, 2017.

[13] E. P. Jones et al., “Low overhead concurrency control for partitioned
main memory databases,” 2010.

[14] Q. Lin et al., “Towards a Non-2PC Transaction Management in Dis-
tributed Database Systems,” SIGMOD, 2016.

[15] P. Chairunnanda et al., “Confluxdb: Multi-master replication for parti-
tioned snapshot isolation databases,” PVLDB, 2014.

[16] M. Abebe et al., “DynaMast: Adaptive dynamic mastering for replicated
systems,” https://cs.uwaterloo.ca/⇠kdaudjee/DaudjeeICDE20.pdf, 2020.

[17] A. Silberschatz et al., Database system concepts. McGraw-Hill New
York, 2019, vol. 7.

[18] A. Thomson et al., “Calvin: fast distributed transactions for partitioned
database systems,” SIGMOD, 2012.

[19] S. Das et al., “G-Store: A Scalable Data Store for Transactional Multi
key Access in the Cloud,” SoCC, 2010.

[20] Y. Lu et al., “Star: Scaling transactions through asymmetrical replica-
tion,” PVLDB, 2019.

[21] Y. Sovran et al., “Transactional storage for geo-replicated systems,”
2011.

[22] C. Binnig et al., “Distributed snapshot isolation: global transactions pay
globally, local transactions pay locally,” VLDBJ, 2014.

[23] K. Daudjee and K. Salem, “Lazy database replication with snapshot
isolation,” VLDB, 2006.

[24] H. Berenson et al., “A critique of ansi sql isolation levels,” in SIGMOD,
1995.

[25] B. Cooper et al., “Pnuts: Yahoo!’s hosted data serving platform,”
PVLDB, 2008.

[26] K. Krikellas et al., “Strongly consistent replication for a bargain,” 2010.
[27] M. A. Bornea et al., “One-copy serializability with snapshot isolation

under the hood,” in ICDE, 2011.
[28] R. Taft et al., “E-Store: Fine-Grained Elastic Partitioning for Distributed

Transaction Processing Systems,” PVLDB, 2014.
[29] I. T. Bowman and K. Salem, “Optimization of query streams using

semantic prefetching,” TODS, 2005.
[30] M. Serafini et al., “Clay: Fine-Grained Adaptive Partitioning for General

Database Schemas,” PVLDB, 2016.
[31] M. Slee et al., “Thrift: Scalable cross-language services implementa-

tion,” 2007.
[32] J. Kreps et al., “Kafka: A distributed messaging system for log process-

ing,” 2011.
[33] P.-Å. Larson et al., “High-performance concurrency control mechanisms

for main-memory databases,” PVLDB, 2011.
[34] C. Diaconu et al., “Hekaton: Sql server’s memory-optimized oltp en-

gine,” in SIGMOD, 2013.
[35] P. Bailis et al., “Macrobase: Prioritizing attention in fast data,” in

SIGMOD, 2017.
[36] D. E. Difallah et al., “Oltp-bench: An extensible testbed for benchmark-

ing relational databases,” PVLDB, 2013.
[37] “The Transaction Processing Council. TPC-C Benchmark (Revision

5.11).” http://www.tpc.org/tpcc/, February 2010.
[38] S. Loesing et al., “On the design and scalability of distributed shared-

data databases,” 2015.
[39] P. A. Bernstein et al., “Hyder-a transactional record manager for shared

flash.” in CIDR, 2011.
[40] I. Zhang et al., “Building consistent transactions with inconsistent

replication,” TOCS, 2018.
[41] S. Mu et al., “Consolidating concurrency control and consensus for

commits under conflicts,” in OSDI, 2016.
[42] X. Yu et al., “Sundial: harmonizing concurrency control and caching in

a distributed oltp database management system,” PVLDB, 2018.
[43] H. A. Mahmoud et al., “Maat: Effective and scalable coordination of

distributed transactions in the cloud,” PVLDB, 2014.
[44] “Nuodb architecture,” http://go.nuodb.com/rs/nuodb/images/

Technical-Whitepaper.pdf, 2017, accessed: 2018-12-07.
[45] P. Bailis et al., “Coordination Avoidance in Consistent Database Sys-

tems,” PVLDB, 2015.
[46] J. A. Cowling and B. Liskov, “Granola: Low-overhead distributed

transaction coordination.” in ATC, 2012.
[47] C. Li et al., “Making geo-replicated systems fast as possible, consistent

when necessary.” 2012.
[48] R. Gupta et al., “Revisiting commit processing in distributed database

systems,” SIGMOD, 1997.
[49] P. K. Reddy and M. Kitsuregawa, “Speculative locking protocols to

improve performance for distributed database systems,” TKDE, 2004.
[50] K. Ren et al., “Slog: Serializable, low-latency, geo-replicated transac-

tions,” PVLDB, 2019.
[51] E. Zamanian et al., “The end of a myth: Distributed transactions can

scale,” PVLDB, 2017.
[52] A. Dragojević et al., “No compromises: distributed transactions with

consistency, availability, and performance,” in SOSP, 2015.
[53] T. Wang et al., “Query fresh: log shipping on steroids,” PVLDB, 2017.
[54] J. Li et al., “Just say no to paxos overhead: Replacing consensus with

network ordering,” in OSDI, 2016.
[55] A. J. Elmore et al., “Squall: Fine-Grained Live Reconfiguration for

Partitioned Main Memory Databases,” SIGMOD, 2015.
[56] A. Shanbhag et al., “A robust partitioning scheme for ad-hoc query

workloads,” in SoCC, 2017.
[57] M. S. Ardekani and D. B. Terry, “A self-configurable geo-replicated

cloud storage system,” 2014.
[58] M. Serafini et al., “Accordion: Elastic scalability for database systems

supporting distributed transactions,” PVLDB, 2014.
[59] N. Mukherjee et al., “Distributed architecture of oracle database in-

memory,” PVLDB, 2015.
[60] T. Rabl and H.-A. Jacobsen, “Query centric partitioning and allocation

for partially replicated database systems,” 2017.

