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Software for computational peptide
identification from MS–MS data
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Protein identification in biological samples is an important task in drug discovery research. Protein

identification is nowadays regularly performed by tandem mass spectrometry (MS–MS). Because of the

difficulty of measuring intact proteins using MS–MS, typically a protein is enzymically digested into

peptides and the MS–MS spectrum of each peptide is measured. Computational methods are then

invoked to identify the peptides, which are later combined together to identify the protein. The most

recognized peptide identification software packages can be classified into four categories: database

searching, de novo sequencing, sequence tagging and consensus of multiple engines.
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The identification and quantification of proteins existing in a

tissue are frequently key steps in the design of many proteomics

and drug design investigations. Owing to the difficulty associated

with the identification of intact proteins, they are often digested

into short peptides and the individual peptides identified sepa-

rately. Tandem mass spectrometry (MS–MS) is perhaps the most

powerful analytical tool for protein and peptide identification

[1,2]. The accuracy and speed of peptide identification are some

of the key features that set MS–MS apart from the other meth-

odologies used to analyze protein mixtures. As illustrated in

Figure 1, peptide identification is a key computational step in

identifying the proteins from MS–MS data. In fact, once the

peptides are correctly identified, the later step of grouping the

peptides and identifying the proteins becomes much simpler.

The principle of peptide identification using MS–MS is simple. A

peptide is ionized and the peptide bonds are fragmented in an MS–

MS spectrometer. Each type of resulting fragment ion will form a

peak in the spectrum at the corresponding mass to charge ratio (m/

z) of the ions. If a fragment ion has one more amino acid than

another, the m/z difference between the two corresponding peaks

will be equal to the mass of the amino acid divided by the charge

state. A good quality spectrum might consist of a ladder of peaks of

the y-ions (the fragment ions containing the carboxyl terminus)

and a ladder of peaks of the b-ions (the fragment ions containing

the amino terminus). Consequently, the peptide sequence can be
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derived by the mass differences of adjacent peaks in each of the two

ladders. However, inpractice, many factors complicate the problem.

These include contamination of the sample, imperfect fragmenta-

tion, simultaneous fragmentation of two different peptides, post-

translational modification (PTM) and low signal-to-noise ratio [3–

5]. Consequently, in practice, many y-ion and b-ion peaks might be

absent from, and many other types of peaks might unexpectedly

appear in, the spectrum. These can make MS–MS peptide identifica-

tion significantly harder than it would appear to be.

Over the past decade, numerous software programs have been

developed for MS–MS peptide identification. These can be cate-

gorized into four classes: database searching, de novo peptide

sequencing, peptide sequence tagging and consensus of multiple

search engines. Given an MS–MS spectrum, database searching

finds the best matching peptide from a protein sequence database;

de novo sequencing computes a peptide directly from the spectrum;

sequence tagging combines the two approaches by first conduct-

ing de novo sequencing to obtain a partial sequence (sequence

tags), and then searches the sequence database using the sequence

tags; consensus combines several different programs to increase

the confidence and coverage. Software programs using these

approaches are introduced below.

Database searching
When the peptide of interest is known to be in a protein database,

database searching is the most widely used approach for identifi-

cation. In database searching software, the proteins in the database
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FIGURE 1

The role of peptide identification in MS–MS protein analysis. The
downstream procedure illustrates the MS–MS experiments: purified proteins

are digested into peptides and the MS–MS spectrum of each peptide is
measured. The upstream procedure illustrates the computational steps in the

data analyses: each spectrum is used to identify a peptide and then the

peptides are grouped to identify proteins.
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are digested virtually into peptides and each resulting peptide is

compared with the input spectrum. Different software uses differ-

ent criteria to determine the likelihood that the identified peptide

is actually that seen in the spectrum. Ultimately, the most likely

peptide is output as the result. The two common criteria are: (i) the

peptide mass and (ii) the number and intensity of the peaks

matched by the theoretically-computed m/z values of the frag-

ment ions.

SEQUEST [6] is the earliest widely used software employing the

database-searching approach. It uses a cross-correlation scoring

function to evaluate matching between the spectrum and a data-

base peptide sequence. The theoretical spectrum of the peptide

sequence is computed using a simple model. The spectrum is then

displaced by adding a displacement value t to the m/z value of

each peak. The correlation between the displaced theoretical

spectrum and the experimental spectrum for each �75 < t < 75

is calculated and denoted by f(t). The final score attributed to each

peptide is equal to f(0) minus the mean of f(t). The difference

between the scores of the first- and second-ranked peptide is a good

discriminator between the correct identifications and false posi-

tives [6].

MASCOT [7] is currently the most widely used program for

peptide identification. MASCOT uses the MOWSE scoring algo-

rithm [8] to evaluate the match between a peptide and the input

spectrum. The matches between the fragment ions of a database

peptide and the peaks of the spectrum are regarded as random

events. For each peptide, the probability that its matches occur
596 www.drugdiscoverytoday.com
randomly is calculated. The calculated probability should be

exceedingly small for the correct peptide because many peaks will

be matched. For better convenience, the probability P is converted

to a score of �10 � log10 (P) before reporting. Because a protein

database is not random, the MOWSE score only indicates the

significance of the match and does not necessarily guarantee a

correct match. As pointed out by the software manual, it is necessary

tocompare the scoreof thefirst-rankpeptide with theotherpeptides

to get a better idea on the correctness of the match.

PEAKS [3,9] was initially known as a de novo sequencing pro-

gram. In its later versions, database searching was included. The

software first conducts de novo sequencing to get a sequence for

each spectrum. These sequences are then used to select many

potential proteins from the protein database by sequence similar-

ity. Finally, every spectrum is compared with every peptide of the

potential proteins, using the same scoring function as used in the

de novo sequencing. The score of the top-ranking database peptide

is then compared with the other database peptides, as well as the de

novo sequencing peptide, to compute a confidence score. As will be

explained in the next section, de novo sequencing is equivalent to

finding peptides in a ‘universal’ database that includes all linear

amino acid combinations. Therefore, a scoring function that has

enough discrimination power in de novo sequencing should work

even better in a smaller database. In addition, comparing the top-

ranking peptides in the real database and the ‘universal’ database is

an effective way to remove false positives.

SEQUEST, MASCOT and PEAKS are all commercially available

software. Free software programs have also been developed. Pop-

ular ones include Tandem [10] and OMSSA [11]. Tandem is a free

open-source C++ program for rapid database searching. It breaks

the search into two steps. A survey step makes some stringent

assumptions about the peptides and rapidly identifies a set of

protein sequences that are possible candidates. The candidates

are then refined with a more time-consuming but more accurate

scoring function that includes any evidence of incomplete enzy-

matic hydrolysis, nonspecific hydrolysis and chemical modifica-

tions of amino acid residues. Because the survey step restricts the

later refinement step to a small set of proteins, this two-step

strategy significantly speeds up the process. This two-step

approach might have been used less explicitly in other database

searching software. For example, the aforementioned PEAKS soft-

ware also uses this two-step strategy but it identifies protein

candidates by using sequence similarity. OMSSA [11] uses an

explicit mathematical model for the matching probabilities. The

E-value of the matching between a peptide and the input spectrum

is calculated using the model, and peptides are ranked using the E-

value. OMSSA is also an open source C++ program. Some program-

ming techniques, such as memory mapped file, are used to make

the program more efficient.

Other similar programs include MS-Tag, SCOPE, ProbID, OLAV,

PFind, PepHMM, DBDigger and ProbIDtree [4,12–18]. These pro-

grams differ mainly by the scoring functions they use. PFind uses

the correlative information for improving peptide identification

accuracy. The kernel trick, rooted in the statistical learning theory,

is exploited for scoring function. PepHMM combines information

on machine accuracy, mass peak intensity and correlation among

ions into a Hidden Markov Model (HMM) to calculate statistical

significance of the HMM scores. DBDigger determines which
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spectra can be compared with each candidate sequence, enabling

the software to generate candidate sequences only once for each

high-performance liquid chromatography separation, rather than

for each spectrum, by reorganizing the database search process.

ProbIDtree was designed to identify multiple peptides from a

collision-induced dissociation spectrum generated by the concur-

rent fragmentation of multiple precursor ions by iterative database

searching. Tentatively-matched peptides are organized in a tree

structure from which their adjusted probability scores are calcu-

lated to determine the correct identifications.

De novo peptide sequencing
A database-searching approach is only good for the identification

of peptides present in a protein database. When an appropriate

database is not available, de novo sequencing is the only way to

identify the peptide. Besides the ability of identifying peptides

without a database, de novo sequencing also has the advantages

that: (i) de novo sequencing results can be used for homology-based

database searches to identify peptide homologues and modifica-

tions, and (ii) de novo sequencing results can also be used to

validate the database search results. Significant similarity between

the database search result and the de novo sequencing result could

be taken as evidence that the database-derived sequence is correct

[5].

De novo sequencing can be regarded as identification of the

peptide from the ‘universal’ peptide database that includes all

linear amino acid combinations. Clearly, this is a more difficult

problem than that encountered with database searching

approaches. Although the scoring function is the most important

factor in database searching software, de novo sequencing software

also needs to incorporate an algorithm that can efficiently com-

pute the optimal peptide under the scoring function. Searching

every peptide in the ‘universal’ database is intractable with today’s

computers. The situation is further complicated because different

amino acid combinations might have identical or nearly identical

masses, and cleavages do not occur at every peptide bond, in which

case the MS–MS spectrum will exhibit an incomplete series of b-

and y-ions. With database searching approaches, the peptide

might still be identified by the other b- and y-ions, whereas in

de novo sequencing, the algorithm will have to examine the other

ion types and the low-intensity peaks to figure out the missing

information.

Despite the difficulties, many software programs have been

developed. The speed and accuracy of de novo sequencing have

also been improved significantly. Some of today’s de novo sequen-

cing programs, such as PEAKS [3,9] and PepNovo [19], can run at a

speed of less than one second per spectrum on a personal com-

puter. Lutefisk [20,21] was one of the earliest developed programs.

PEAKS [3,9] has recently attracted attention because of its unique

approach and excellent speed and accuracy. Other programs

include Sherenga [22], SeqMS [23], Compute-Q [24], PepNovo

[19] and NovoHMM [25]. Some of the earlier algorithms have

previously been reviewed [26]. Most of these programs, except for

PEAKS and NovoHMM, employ the spectrum graph approach for

generating sequence candidates. PEAKS works on the spectrum

directly instead of converting the spectrum to a graph. NovoHMM

uses HMM. These programs are also differentiated by the scoring

functions that evaluate the generated sequences.
In computer science, a graph is a very useful abstract data

representation consisting of vertices and edges. The spectrum

graph approach of de novo sequencing converts a spectrum into

a graph, whereby each vertex corresponds to a possible ion related

to a peak. Each edge connects two vertices whose corresponding

ions have a mass difference approximately equal to the mass of an

amino acid. Therefore, if the y-ion or b-ion ladders of the peptide

appear in the spectrum, then there is a path (sequence of edges)

that connects the amino and carboxyl termini. The spectrum

graph approach computes the optimal peptide by computing

the optimal path connecting the two termini. Earlier software

programs using a spectrum graph approach used shortest-path

[23] or heuristic algorithms [20,21] to compute the optimal path.

Dancik et al. first claimed that there was an efficient algorithm to

compute the ‘antisymmetric longest path’ in a spectrum graph

[22]. The first efficient algorithm for the computation was pub-

lished later by Chen et al. [24]. Many papers were published

thereafter examining approaches to optimize the conversion from

spectrum to graph to handle post-translational modifications and

missing ions in the ladders.

Software programs employing the spectrum graph approach are

summarized here. SeqMS [23] employs a single-source shortest-

path algorithm to compute the path from the amino terminus to

the carboxyl terminus. Lutefisk [20,21] traces sequences starting

from the amino terminus until a sequence’s mass matches the

peptide molecular mass. Sherenga [22] transforms the experimen-

tal spectrum into a spectrum graph using ion types learned auto-

matically by training. The peptide sequencing problem is then

represented as the longest path problem in a directed acyclic

graph. Compute-Q [24] uses a dynamic programming algorithm

to find the longest antisymmetric path in the spectrum graph,

derived as in Sherenga. PepNovo [19] uses a probabilistic network

to calculate the likelihood that a y- or b-ion match is true; the

logarithm of the likelihood ratio between the observed match and

a random match is then used as the score of the ion match. The

total ion match score is used to evaluate the candidate peptides.

Extensive training is required to determine the parameters used in

the probabilistic network. The current version of PepNovo only

provides the parameters for charge-2 ion-trap mass spectrometers.

Unlike the spectrum graph model, which converts the spectrum

to a graph, PEAKS software [3] uses a unique approach that works

directly on the spectrum. The algorithm first computes a y-ion

matching score and a b-ion matching score at each mass value

according to the peaks around it. If there are no peaks around a

mass value, a penalty value is assigned. The algorithm then

efficiently computes many amino acid sequences that maximize

the total scores at the mass values of b-ions and y-ions [9]. These

candidate sequences are further evaluated by a more accurate

scoring function, which also considers other ion types such as

immonium ions and internal-cleavage ions [3]. The problem of ion

absence is addressed because the PEAKS model assigns a score (or

penalty) for each mass value. The software also computes a ‘posi-

tional confidence’ for each amino acid in the final result by

examining the consensus of the top-scoring peptides.

A new approach, using an HMM, was proposed in NovoHMM

[25]. HMM is a standard model that has been extensively used in

other areas of bioinformatics and computer science. Each HMM

includes some hidden states, some observable states and the
www.drugdiscoverytoday.com 597
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conditional probabilities that model the relationships between

these states. Efficient algorithms exist to infer the best-possible

hidden states from the observed states. NovoHMM carefully mod-

els the peptide sequence as hidden states and the spectrum as the

observable states. The standard algorithm can then be adopted to

infer the peptide sequence from the spectrum. One potential

advantage of the approach of NovoHMM is that the scoring

function combines the ‘transition probability’, which in this case

is the probability that a certain amino acid follows another certain

amino acid. Therefore, the accuracy will be boosted when the

peptides are similar to the ones used to train the HMM. However, if

the training is only done on a limited number of proteins, as

described by Fischer et al. [25], it might give an exaggerated

performance on these proteins but poor performance on the other

proteins in the database.

Peptide sequence tagging
Sequence-tagging approaches find the sequence of a peptide by

searching a database with partial sequence information inferred

from the MS–MS spectrum. The partial sequences are referred to as

sequence tags. An example of a sequence tag is [258.1]TLMEY-

LE[114.0]PK. The numerical values in the brackets represent amino

acid combinations, with total mass equal to the values; however,

the exact sequence in the brackets cannot be determined owing to

lack of information in the spectrum. A sequence-tagging program

will first infer tags from the spectrum by itself or by a separate de

novo sequencing program, and then use these tags to select pep-

tides and proteins from a protein database. In practice, even if the

studied protein is not in a protein database, the chances are that

the homologues of the proteins are in the protein database. In

these cases, a sequence-tagging program that handles homology

mutations can use the partial sequences to identify the protein

homologues. A more sophisticated sequence-tagging program

should also take care of the possible de novo sequencing errors

existing in the tags.

Sequence tagging was first proposed for the error-tolerant pep-

tide identification [27]. GutenTag [28] is another software program

employing the sequence-tagging approach. Mann and Wilm [27]

and Tabb et al. [28] made no special efforts to handle possible de

novo sequencing errors in the partial sequences of the tags and

homology mutations in the sequence database. To account for the

homology mutations, a commonly employed method is to com-

bine a de novo sequencing program such as PEAKS and a protein

homology search program. Three general homology search pro-

grams, FASTA [29], Shotgun [30] and BLAST [31,32] have been

modified to three sequence tag-searching programs: FASTS [33],

MS-Shotgun [34], and MS-BLAST [35]. The weakness of these

modified homology search programs is the ignorance of the

possible de novo sequencing errors. Newer programs, such as Open-

Sea [36], SPIDER [37] and DeNovoID [38], consider these errors

appropriately in their algorithms. In particular, SPIDER uses a

rigorous algorithm to match a de novo sequence with a database

sequence, enabling both de novo sequencing errors and homology

mutations to occur at the same site of a peptide.

Consensus of multiple search engines
None of the peptide-sequencing programs is perfect. Results gen-

erated by any single program, inevitably, have false positives and
598 www.drugdiscoverytoday.com
false negatives. It is tedious for a user to have to examine each of

the thousands of peptide sequences to exclude false positives; and

false negatives cause low coverage and identification confidence.

Because more and more peptide-sequencing software programs are

now available, researchers have started to use multiple programs to

run the same dataset. The results of multiple engines are then

combined to get fewer false positives, better coverage and higher

confidence. In principle, different search engines give indepen-

dent interpretations to the same data. If two or more independent

interpretations produce the same result, then it is very likely that

the result is correct. This will, clearly, help to reduce the number of

false positives. Moreover, if three or more search engines are used,

the coverage will be increased because data missing by one search

engine might be picked up by another.

Although the use of multiple search engines has been a com-

mon practice in some laboratories for quite some time, the soft-

ware for performing this analysis automatically has only recently

become available. This approach was first used by Resing et al. [39]

to combine the search results of MASCOT and SEQUEST. Scaffold

[40] is one of the first programs dedicated to combining the results

of multiple search engines. It assigns confidence scores to the

results of different search engines statistically and then computes

the confidence score of the combined result. PEAKS software has

also recently added this consensus functionality. It performs

searches using multiple search engines and then combines results

to generate a unique report [41]. The results reported by Resing

et al. [39], Searle [40] and Rogers [41] have shown that multiple

search engines can result in a dramatic improvement in peptide

identification accuracy, coverage and confidence.

Conclusion and discussion
The recent development of both the hardware and software in MS–

MS spectrometry has enabled high-throughput peptide identifica-

tion using MS–MS. Numerous peptide identification programs have

been developed. The methods used in these programs can be

categorized into four classes: database searching, de novo sequen-

cing, peptide tagging and consensus. Database searching selects a

peptide from a protein sequence database to best match the input

spectrum; de novo sequencing computes such a peptide from the

spectrum without using a sequence database; peptide tagging uses

de novo sequencing results to find the peptides or their homologues

in the sequence database; the consensus approach combines the

search results of multiple programs to attain fewer false positives,

better coverage and higher confidence. It is noteworthy that some

software might belong to multiple categories. In particular, the

PEAKS software implements all of the four approaches.

Most software programs reviewed in this article can support the

identification of peptides with PTM. However, these programs

usually perform a restrictive search that takes into account only

several types of PTM. More recently, a blind PTM search algorithm,

MS-Alignment, has been developed [42]. Many of the reviewed

programs can support the input of MS–MS data from multiple

types of MS–MS instruments. Table 1 lists the availabilities and

characteristics of some software packages reviewed in this article.

Different publications have often claimed different software to

be superior to the others. Also, many software packages, especially

the commercial ones, undergo constant improvement through

version upgrades. For these reasons, this article did not attempt to
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TABLE 1

The availabilities and characteristics of the most recognized software packages for peptide identificationa,b

Software

name

Availability Website Software type Function Supported instrumentc PTM

Online Desktop Database

searching

De

novo

Peptide

tagging

Consensus Iontrap QTof FTMS FT

(ECD)

User-

defined

Standard

PEAKS Commercial,

free online

http://www.bioinfor.com/

peaksonline

Y Y Y Y Y Y Y Y Y Y Y Y

MASCOT Commercial,

free online

http://www.matrixscience.com Y – Y Y Y – Y Y Y Y – Y

SEQUEST Commercial http://fields.scripps.edu/

sequest

– Y Y – – – Y Y Y Y Y Y

Tandem Open source,

free

http://www.thegpm.org/

tandem

Y Y Y – – – Y Y Y – Y Y

OMSSA Open source,

free

http://pubchem.ncbi.nlm.nih.

gov/omssa

Y Y Y – – – Y – – – – Y

Lutefisk Open source,

free

http://www.hairyfatguy.

com/Lutefisk

– Y – Y – – Y Y – – Y Y

PepNovo Open source,

free

http://peptide.ucsd.edu/

pepnovo.py

Y Y – Y – – Y – – – Y Y

MS-BLAST Free online http://dove.

embl-heidelberg.de/

Blast2/msblast.html

Y – – – Y – – –

SPIDER Free online http://bif.csd.uwo.ca/spider Y Y – – Y – – Y

Scaffold Commercial http://www.

proteomesoftware.com

– Y – – – Y Y Y – –

a An ‘online’ software type indicates that the software can run as a web server and be accessed through a web browser remotely. The ‘PTM’ (post-translational modification) column

indicates whether the software can identify peptides with post-translational modifications.
b Y, available; –, not available; white space, not applicable.
c Software can normally process data from all three types of instruments (Iontrap, QTof and FTMS) as long as the data are converted to an appropriate file format. However, some software

does not currently have parameters specially trained for certain instrument types, and therefore cannot fully utilize the data.
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compare the performances of different software. However, all of

the software packages listed in Table 1 are well recognized. Some

comparative studies have also been carried out by Shadforth et al.

[5] and Kapp et al. [43]. Recently, there have also been efforts, such

as PeptideProphet [44], to validate peptide identification results

using automated computational methods. The validation tools

have been reviewed elsewhere [45].

In addition to the software reviewed here, mass spectrometer

vendors often provide peptide identification software with their
instruments. Usually, their software uses methods that have not

been published. Therefore, these software programs (with the

exception of SEQUEST) are not reviewed here. A common diffi-

culty of MS–MS data analysis and sharing is that mass spectrometer

vendors have their proprietary data formats. Public efforts have

been made to standardize the data formats using XML. These

include the mzXML format developed by the Sashimi project

[46] and the mzData format proposed by the Human Proteome

Organization.
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