Review

(- Digtamce - ba%o( {Dh}/ (07%/

> How to 6% A ﬁgoaQ oﬂ/\’ﬁfowba_

= @O(‘ Matath e ¢
- odn- M ttemire

P \V\f«w makdon  olnstomca

2, p\m7\»3m7 V.G c\Méc‘ﬁ‘Mm



Suftix Tree and Array



String Matching

So far we learned how to find “approximate” matches — the alignments. And they
are difficult. Finding exact matches are much easier.

To search for a short string P of length m in a large text T of length n.

Applications:
* Keyword searching

>

YZoof

* DNA reads mapping

Type I: Match only once.
* E.g. KMP algorithm and Apostolico-Giancarlo algorithm.
* O(m) to preprocess, and O(n) to match.

Type II: Match multiple patterns multiple times.

* Better index T first to speed up the matching time.



Things To Study

* Suffix tree and array are two data structures for this purpose.

e Suffix Tree

* Data structure

* A few examples of using suffix tree to solve practical problems.

* Suffix Array

* Data structure

* The skew algorithm for constructing suttix array.



A Little History

* 1973, Weiner introduced the concept of sutfix tree (position tree),
which Donald Knuth subsequently characterized as "Algorithm of the
Year 1973".

* 1990, Gene Myers and Udi Manber proposed suffix array.
* Gene Myers: former VP Informatics Research at Celera Genomics

* Udi Manber: VP engineering, Google.

* 1992, Gonnet, Baeza-Yates & Snider independently discovered suffix
array (called PAT array).

* Gaston Gonnet: cofounders Maplesoft and OpenText.
* Baeza-Yates: VP for Yahoo! Europe and Latin America.



As a picture

e Here is the suffix tree for GAAGATS GARGAT £

An edge 1s labelled with a substring of the original string. ¢

A node’s label 1s the concatenation of all edge labels for the path leading to that node.
The path from the root, 7, to any leaf xis a suffix of the string S.

Suppose there is a special “end-of-string” character, each suffix will end at the leaf.
FEach internal node has at least 2 children.

Edge labels to the child nodes of an internal node start with different letters.



Application 1. Search for a substring.

* Any substring of S is a prefix of a suffix.

* Example of using this: Is the string x a substring of S?

* Start at the root, and follow paths labelled by the characters of x. If you can get
to the end of x;, then yes, it is.



Linear Space Structure

GAAGATS

* Fach edge doesn’t need to be labelled with a string, but just
with starting and ending in the sequence.

* This is the same suffix tree as before, but in linear space.



e Here is the suffix tree for GAAGAT$S

=1 GAAGATS 3-7

GAAGATS



How to construct a suffix tree?

* There is a linear time algorithm to construct a sutfix tree. (We will not
study it.)
* We'll examine a quadratic-time algorithm (quite intuitive).

e The idea is to

* Start with an empty tree.

* Iteratively add more suffices into the tree (from shortest to longest).



One round

Suppose the following 1s the suffix tree for GAAGAS, add another suffix
AGAAGAS.

First, follow the edges for A and for GA from the root.

Then split after the A since the only path in the tree 1s for §, and we have an A,
instead.

Add a new edge for AGAS.



New tree

* This yields this new tree for AGAAGAS$

10



Quadratic Time Construction

Given: A string S of length 7 over a finite alphabet. The last character of S is a
unique § character.

We’ll build the suffix tree from right to left.
* S[m..m], Sim-1..m], S|m-2..m], ......
Begin with this tree:

Then, for ; = » downto 1:
Follow the letters of S[7...7| along the edges of the tree T.

When we reach a point where no path exists, break the current edge and add a new
edge for what 1s left.

Time complexity: O(#?). (Remember: The best algorithm has linear time.)

11



Application II: Longest Common Substring

What’s the longest substring common to both S; and S,?

Straightforward algorithm will try to compare all substrings of equal length. This
takes cubic time.

Can we do better?

12



Longest Common Substring with Sutfix Tree

Build a suffix tree for S=S;#S,$) where # and § are unique characters.

All suffixes of S; end with an edge including #S,$. So we can label whether a leaf

belongs to S; or
Substrings are prefixes of suffixes, i.e. internal and leaf nodes of the tree.

Each common substring is the prefix of at least two suffixes, each from an input

string (S; ot S,).

Longest?

13



Example

ATGHTGCS

Step 1. Label leaves as red or blue,
depending on whether it 1s a suffix

starting in first or second string;

14



Example

ATGHTGCS

Step 2. In a bottom up order, label
internal nodes. If all child nodes have the

same colot, label it with the same colot; If
not, label it with purple.

15



Example

ATGHTGCS

Step 3. Find the purple node with the
longest path to the root.

16



Algorithm Summary

1. Build suffix tree of S;#S,$
2. Color all leaf nodes

* red if #’s label is a substring of S,
* blue if it’s a substring of S,

3. Color all internal nodes from bottom up
* red (or blue) if all child nodes are red (or blue)

* purple if otherwise

4. Find the purple node with longest path label.
Complexity: Linear time, linear space.

Sketch proot of correctness:

* Lett be the longest common substring. Follow the path label t starting from the root. The path
can’t stop in the middle of the edge — otherwise t is not the longest. Then the path has to stop
at an internal node. And it has to be purple.

17



Application ITI: Maximal Unique Match

18



Maximal Unique Matches

* Given two strings, a MUM (Maximal Unique Match) 1s a string that
occurs exactly once in each string, and is maximal (can’t be extended
either way and still be a match).

. Eg AT@ATC vs. AGATC

e AT is not.

* (Gisnot. ot yv\g\/x,c'ww—/LS &A 'S bvf‘ﬂ'of? .

e GAi1sa MUM.
e (ATC/is 2 mum.

19



How to find mums?

Build a suffix tree for S;#S,$

Color the nodes as in the longest common substring algorithm.

Each MUM must be a purple internal node that has exactly two leaf children:

one red and one blue.
* It is shared by the two strings.

* It can’t extend to the right by an additional letter and still be shared.
* It must be unique.

Example:
ATGHTGCS ATGHT

R ———————
P

20



How to find mums?

* But a purple internal node may not be a MUM: only because the two
occurrences may still extend to the left.

* Node G is not: For G’s two occurrences, the left character are both T.

* Node TG is: For TG’s two occurrences, the left characters are A and #,
respectively.

* But it is easy to compute the left character of each leaf

* Iti1s a suffix, and we know its path’s starting position in the original string.

Example:
ATGHTGCS

21



Summary

Build a suffix tree for S;#S,$ .
For each leaf v, define left(v) be the letter at left of suffix v.

Find the internal nodes that
* Have exactly two child leaves
* The two child leaves are two suffixes from S1 and from S2, respectively.
* The two child leaves must have two different left characters.

Linear time.
After find all MUMs, use them as anchor to speed up global alignment.

22



MUMMER: Large-scale Global Alignment

Large-scale global alignment /2 /2
o [ ]

Idea:

Pick some “anchors” through which the true alignment is very likely to fall.

Align the regions between the anchors either recursively or just using classical

global alignment tools. N n o~ nZ
(=) (=) = —

MUMs are good anchors: maximal, unique, match. n
First program that does so: MUMMER by Delcher et al. b

23



Quick Note on Suffix Array

Suffix tree is not a compact data structure.

* Alot of pointers

Gene Myers and Udi Manber (VP enginnering, Google) proposed
suffix array.

A suffix array stores the positions in a string. Each position 1s an
integer so this 1s a length n integer array.

FEach position corresponds to a suffix starting at this position.

The suffix array is sorted according to the string order of the
corresponding suffixes.

24



Suftix Array

* AGAAGAT
| = AGAAGAT L AaGAT
2= GAAGAT | = AGAAGAT
3= AAGAT Fi= AGAT
4= AGAT A a
> = GAT 2= GAAGAT
6=AT 5= GAT
=1 7T

7

3,1,4,6,2,5,7

25



String Matching

* Binary search to find substring of length m.
* O(m log n) if implemented straightforwardly

* O(m + log n) if with an auxiliary data structure called longest common prefix
(LCP)larray. We do not study this but you should be aware of this fact.

26



