Review
A Few Key Skills

- Design a good scoring function
 - Log likelihood ratio
 - Evaluate the significance (Bayesian or p-value)
- FDR
- Dynamic programming.
 - Sequence, tree, set, mass ...
- HMM.
- Fast searching
 - Suffix tree & array.
 - Filtration (Spaced seed)
- Working with NP-hardness
 - Approximation, Local search, Branch and bound
- Information distance.
Scoring Function

• Design a good scoring function
 – Log likelihood ratio
 – Estimate foreground and background probability (BLOSUM)
 – Relative entropy
 – Evaluate the significance (Bayesian, p-value, E-value)
 – Machine learning

• Result validation
 – Optimality doesn’t mean reality.
 – Should throw away garbage results.
 – FDR
Dynamic Programming

• Build optimal solution from the optimal solution of a smaller sub-problem.
• A partial order is needed on the concerned sub-problems.
 – Sequence (alignment, HMM)
 – Tree (ancestor reconstruction)
 – Set (spaced seed sensitivity)
 – Mass (de novo sequencing)
HMM

• The model:
 – Finite hidden states, finite symbols.
 – Transition/Emission probabilities.

• Input: A sequence of observation (emitted symbols).

• Output: The most likely path of hidden states.

• Gene prediction, speech recognition.
Fast Searching

• Suffix Tree and Array
 – Linear space, linear time construction.
 – Support many efficient string operations
 • Substring query
 • Longest common substring
 • Maximal repeats
 • Maximal unique match
 – Skew algorithm for suffix sorting.

• Filtration
 – Spaced seed.
Working with NP-hardness

- Approximation
- Local search
- Branch and bound
- Parameterized algorithm (not covered in this course)
Information Distance

• A universal distance
• But not computable.
 – “Too good to be true.”
• Provides a universal way to design practical distance based on a certain compression algorithm.