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Hidden Markov Model
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HMM
• Hidden Markov model was first invented in speech 

recognition.  But are widely used in many other areas
including bioinformatics.

• An automata that has “hidden states”. At each time 
point, it emits a symbol, and change a state with certain 
probability.  

• We want to derive the hidden states by the emitted 
symbols. 
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Classroom example
• Think of a student in classroom.  
• At any minute, a student is in one of 3 hidden states that I try to

figure out: 
• U: understands
• T: does not understand but tries to understand
• L: is lost completely and does not try to understand

• Meanwhile, the student emits one of 3 symbols that I can observe
• Look at me
• Write/Type
• Sleep
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Classroom Example
• Now suppose I see a student’s behavior

is the following in the past several 
minutes. What is his internal states at
each minute?

? ? ? ? ? ? ? ? ? ? ? ? ? ?
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Classroom Example

U U U U T T T T L L L L L L



Classroom Example

U U U U T T T T L L L L L L

Transitions
U U

U T
Emissions

U U
……

……
Typically, HMM assumes that emission probability depends only on
current state; and current state only depends on previous state.
We want to find the most likely path of states given the symbols
(observations).
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Classroom Example

U T0.4

0.050.8

0.4 (T) Transition matrix

(E) Emission matrix

L

0.2

0.9

0.2
0.05

U T L
U 0.8 0.2 0
T 0.4 0.4 0.2
L 0.05 0.05 0.9

Look Write Sleep

U 0.6 0.35 0.05

T 0.9 0.1 0
L 0.1 0.6 0.3

U: Understands
T: Tries to understand
L: Lost completely
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Classroom Example
• S=S1S2…Sn : sequence of symbols; 
• P=P1P2…Pn : path of states.
• We want to maximize Pr(P|S) = Pr(P,S) / Pr(S).
• Therefore, we want to maximize 

? ? ? ? ? ? ? ? ? ? ? ? ? ?

* Note: To deal with the first state, we can
define Pr 𝑃! 𝑃" = 1 in above formula.
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Solving HMM
• We use dynamic programming again.  Define

D[k,p] be the maximum probability achieved by
first k states given that the last state is p.

• Then maxp D[n,p] is the maximum probability
achieved by the complete path, which is what we
want to compute.

• It is not hard to obtain a recurrence Relation:k

? ? ? ? p
k



10

Solving HMM

k

? ? ? p’ p
k

𝐷 𝑘, 𝑝 = max
!!

𝐷 𝑘 − 1, 𝑝" Pr 𝑝|𝑝" Pr 𝑆#|𝑝
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• The algorithm:
• Input: S = S1S2…Sn

• Output: P=P1P2…Pn

• 1. for every state p, let D[1,p] = Pr(S1|p).
• 2. for k from 2 to n, 
• 2.1   for every state p,
• 2.1.1   let 
• 3. backtrace to compute the optimal path.

Solving HMM

𝐷 𝑘, 𝑝 = max
!!

𝐷 𝑘 − 1, 𝑝" Pr 𝑝|𝑝" Pr 𝑆#|𝑝
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Example

U T0.4

0.050.8

0.4

(E) emission matrix

L

0.2

0.9

0.2
0.05

Look Write Sleep

Understand 0.6 0.35 0.05

Try 0.9 0.1 0
Lost 0.1 0.6 0.3

? ? ? ……

0.6
0.9
0.1

𝐷 𝑘, 𝑝
= max

!!
𝐷 𝑘 − 1, 𝑝" Pr 𝑝|𝑝" Pr 𝑆#|𝑝
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Notes
• Do not multiply

• because soon the numbers become so small that the double precision will 
give you value 0.

• Do a logarithm and use additions instead.

log𝐷 𝑘, 𝑝 = max
$!

log𝐷 𝑘 − 1, 𝑝" + log Pr 𝑝|𝑝" + log Pr 𝑆#|𝑝

𝐷 𝑘, 𝑝 = max
!!

𝐷 𝑘 − 1, 𝑝" Pr 𝑝|𝑝" Pr 𝑆#|𝑝



Parameter Estimation
• All of our computation depends on the transition probabilities 

and emission probabilities.  How do we estimate these 
parameters?

14
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Parameter Estimation

• If we have an annotated sequence with both symbols and states, 
then these can be trained by counting.

• If we do not, then we can start with a reasonable guess of the 
parameters and annotate the sequence.

• Then we use the annotation to train a new set of probabilities.  
Repeat until converge.

• There is some guarantee to the convergence.  But does not 
guarantee this will converge to the right solution.
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Pseudocounts
• If the training data include no cases of a particular 

emission from a particular state, then its probability will 
be 0 in this model.

• That’s no good.
• So we add pseudocounts to make the probabilities not 

zero when an event should be able to happen.
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Higher Order HMM
• Think again the classroom example:

• The emission of a symbol should not only depend on 
current state, but sometimes also the previous symbol.
• E.g. Sleeping at previous moment leads to a higher probability 

of sleeping now.

(E) Emission matrix
Look Write Sleep

U 0.6 0.35 0.05

T 0.9 0.1 0
L 0.1 0.6 0.3

U: Understands
T: Tries to understand
L: Lost
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1st Order HMM
• To accommodate the correlation between the adjacent symbols, 

the emission matrix needs to be expanded. 
• The emission matrix becomes Pr(Si |Pi,Si-1).

? ? ? ? ? ? ? ? ? ? ? ? ? ?
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1st Order HMM
• Before

• Now

• To find the path P to maximize, we let D[k,p] be the maximum
probability obtained by the first k states ending at p. We can
obtain the following recurrence relation similarly as before.

• We can still do dynamic programming.
𝐷 𝑘, 𝑝 = max

!!
𝐷 𝑘 − 1, 𝑝" Pr 𝑝|𝑝" Pr 𝑆#|𝑝, 𝑆#%&
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Higher Order HMM 
• To generalize, we can let the current 

emission depend on the current state, 
and previous k symbols.

• Then this is called the k-th order HMM.
• Solving such a HMM is similar as before.  

Running time not changed.
• The only difficulty is the parameter 

training because the emission matrix has
many more parameters for larger k.
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Prokaryote Gene Finding
• The prokaryotes (pronounced /proʊˈkærioʊts/; singular 
prokaryote /proʊˈkæriət/) are a group of organisms 
that lack a cell nucleus (= karyon).
• The opposite is the eukaryotes. 

• Most of prokaryotes are unicellular.
• Prokaryote genes do not have introns.  So their genes is 

a linear structure.

http://www.youtube.com/watch?v=o0BQJbLNYSg
Intron video:

http://www.youtube.com/watch?v=o0BQJbLNYSg


From Gene to Protein (in Prokaryotes)

3’ 5’A C T A G T A C T A G A G C A T T C T A T A G

Transcription

translation

5’ 3’T G A T C A T G A T C T C G T A A G A T A T C DNA

Coding strand

Template (noncoding) strand
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Genetic code .
.
A
T
T
C
A
C
A
G
T
G
G
A
.
.

I

H

S

G

codons



A Trivial Gene Finder
• Open Reading Frame (ORF) is a substring that 

• starts with a start codon 
• ends with a stop codon
• no stop codon in the middle

• If ORF is long, then likely it is a gene or a part of a gene.
• Why?

24

ATG… …TAA

…TAG
…TGA

start codon stop codon 

no stop codon in middle
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Codon bias
• A codon XYZ occurs with different 

frequencies in coding regions and non-
coding regions
• different amino acids have different freq.
• Diff. codons for the same amino acid have diff. 

freq.
• In random regions approx. p(X)*p(Y)*p(Z)
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http://www.kazusa.or.jp/codon/



A Better Gene Finder
• We can use the log likelihood ratio score to evaluate

each ORF. Each codon XYZ contributes score
• log !(#$%)

! # ! $ ! %

• An ORF is predicted as a gene if the sum of codon score
is above a threshold.

• This is better. But it does not catch the correlation
between adjacent codons.



HMM
• We have used HMM in the classroom example to catch

correlations between adjacent events.
• This can be used to model gene prediction.
• For example:
• Symbols: Nucleotide bases.
• States: start codon, stop codon, coding, non-coding

(intergenic).



Prokaryote gene finding HMM
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intergenic

start 
codon

coding

stop 
codon

A: 0.25
C: 0.25
G: 0.25
T: 0.25 TAA

TAG
TGA

ATG: 1

AAA
AAT
...
...



Gene Prediction as HMM

A T A A T G A A A T A A C C A

s c t i i ii i i

Symbols:

State path:

• Annotated the sequence with most
probable path of states. This
provides a reasonable answer to
gene prediction.

• A difference here: emission is not
fixed length. But this does not
forbid us from solving it with
dynamic programming.

start codon
coding
intergenic
stop codon



Dynamic Programming

A T A A T G A A A T A A C C A

s c t i i ii i i

Symbols:

State path:

• Define D[k,p] be the max
probability achieved by first k
symbols for a path with the
last state being p.

start codon
coding
intergenic
stop codon



Recurrence Relation

A T A A T G A A A T A A C C A

s c t i i ii i i

Symbols:

State path:

𝐷 𝑘, 𝑝 = 𝐷 𝑘 − 1, 𝑝" Pr(𝑝|𝑝") Pr 𝑆'|𝑝
For p=intergenic

𝐷 𝑘, 𝑝 = 𝐷 𝑘 − 3, 𝑝" Pr(𝑝|𝑝") Pr 𝑆'%(𝑆'%&𝑆'|𝑝
For p=start, coding, or stop

start codon
coding
intergenic
stop codon



Dynamic Programming
• Once the recurrence relation is obtained. It is

straightforward to work out a dynamic programming
algorithm.
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Easy enough to implement?
• This is very easy to implement.  
• If desired, one can also use a higher-

order HMM.
• Parameter training must be done 

carefully.



Gene Prediction
• Besides the codon bias that can be

captured by HMM, there are other signals 
in a gene structure that can be employed 
by a gene prediction program.
• E.g. the promoter of a gene is a region of

DNA sequence located near the start codon.

<-- upstream                                                   downstream -->

5'-XXXXPPPPPPXXXXXXXXXPPPPPPXXXXGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGXXXX-3‘

-35            -10       Gene to be translated 



Promoters
<-- upstream                                                   downstream -->

5'-XXXXPPPPPPXXXXXXXXXPPPPPPXXXXGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGGXXXX-3‘

-35            -10       Gene to be translated 

-10: T    A    T    A    A T
77%  76%  60%  61%  56%  82%

-35: T    T G    A    C    A
69%  79%  61%  56%  54%  54% 

• These rules are only approximately correct.
• The presence of promoters allow a very high 

transcription rate.
• Exercise: How to assign a score to the promoter.



Summary
• HMM is a general model to predict some hidden states by

examining emitted symbols.
• HMM can be used in gene prediction to harvest the codon bias

and adjacent codon correlation.
• Gene prediction can use more information about the gene

structure than codon bias.
• We only talked about prokaryote gene prediction. Eukaryote gene

prediction is harder because of introns.


