Hidden Markov Model

1

HMM

- Hidden Markov model was first invented in speech recognition. But are widely used in many other areas including bioinformatics.
- An automata that has "hidden states". At each time point, it emits a symbol, and change a state with certain probability.
- We want to derive the hidden states by the emitted symbols.

- Think of a student in classroom.
- At any minute, a student is in one of 3 hidden states that I try to figure out:
 - U: understands
 - T: does not understand but tries to understand
 - L: is lost completely and does not try to understand
- Meanwhile, the student emits one of 3 *symbols* that I can observe
 - Look at me
 - Write/Type
 - Sleep

 Now suppose I see a student's behavior is the following in the past several minutes. What is his internal states at each minute?

.

Typically, HMM assumes that emission probability depends only on current state; and current state only depends on previous state. We want to find the most likely path of states given the symbols (observations).

U: Understands T: Tries to understand L: Lost completely

(T) Transition matrix

	U	Т	L
U	0.8	0.2	0
Т	0.4	0.4	0.2
L	0.05	0.05	0.9

(E) Emission matrix

	Look	Write	Sleep
U	0.6	0.35	0.05
Т	0.9	0.1	0
L	0.1	0.6	0.3

- S=S₁S₂...S_n: sequence of symbols;
- $P=P_1P_2...P_n$: path of states.
- We want to maximize Pr(P|S) = Pr(P,S) / Pr(S).
- Therefore, we want to maximize

$$Pr(P,S) = \prod_{i} Pr(P_i | P_{i-1}) Pr(S_i | P_i)$$

$$\stackrel{\circ}{\bigcirc} \quad \stackrel{\circ}{\bigcirc} \quad \stackrel{\circ}{\oslash} \quad \stackrel{\circ}{\oslash} \quad \stackrel{\circ}{\bigcirc} \quad \stackrel{\circ}{\odot} \quad \stackrel{\circ}{\odot} \quad \stackrel{\circ}{\oslash} \quad \stackrel{\circ}{\bigotimes} \quad \stackrel{\circ}{\boxtimes} \quad \stackrel{\circ}{\boxtimes} \quad \stackrel{\circ}{\bigotimes} \quad \stackrel{\circ}{\bigotimes} \quad \stackrel{\circ}{\boxtimes} \quad \stackrel{\circ}{\longrightarrow} \quad \stackrel{\circ}$$

* Note: To deal with the first state, we can define $Pr(P_1|P_0) = 1$ in above formula.

8

Solving HMM

• We use dynamic programming again. Define D[k,p] be the maximum probability achieved by first k states given that the last state is p.

- Then max_p D[n,p] is the maximum probability achieved by the complete path, which is what we want to compute.
- It is not hard to obtain a recurrence, Relation: $D[k, p] = \max_{P[1..k]; P[k]=p} \prod_{1 \le i \le k} T[P_{i-1}, P_i] E[P_i, S_i]$

Solving HMM

$$D[k,p] = \max_{p'} D[k-1,p'] \operatorname{Pr}(p|p') \operatorname{Pr}(S_i|p)$$

k

Solving HMM

- The algorithm:
- Input: $S = S_1 S_2 ... S_n$
- Output: $P=P_1P_2...P_n$
- 1. for every state p, let $D[1,p] = Pr(S_1|p)$.
- 2. for k from 2 to n,
- 2.1 for every state p,
- 2.1.1 let $D[k,p] = \max_{p'} D[k-1,p'] \Pr(p|p') \Pr(S_i|p)$
- 3. backtrace to compute the optimal path.

Example

$$D[k,p] = \max_{p'} D[k-1,p'] \Pr(p|p') \Pr(S_i|p)$$

0.6	
0.9	
0.1	

Notes

- Do not multiply
 - because soon the numbers become so small that the double precision will give you value 0.
 - Do a logarithm and use additions instead.

$$D[k,p] = \max_{p'} D[k-1,p'] \operatorname{Pr}(p|p') \operatorname{Pr}(S_i|p)$$

$$\bigcup_{p'} \log D[k,p] = \max_{p'} (\log D[k-1,p'] + \log \operatorname{Pr}(p|p') + \log \operatorname{Pr}(S_i|p))$$

Parameter Estimation

• All of our computation depends on the transition probabilities and emission probabilities. How do we estimate these parameters?

Parameter Estimation

- If we have an annotated sequence with both symbols and states, then these can be trained by counting.
- If we do not, then we can start with a reasonable guess of the parameters and annotate the sequence.
- Then we use the annotation to train a new set of probabilities. Repeat until converge.
- There is some guarantee to the convergence. But does not guarantee this will converge to the right solution.

Pseudocounts

- If the training data include no cases of a particular emission from a particular state, then its probability will be 0 in this model.
- That's no good.
- So we add pseudocounts to make the probabilities not zero when an event should be able to happen.

Higher Order HMM

• Think again the classroom example:

- The emission of a symbol should not only depend on current state, but sometimes also the previous symbol.
 - E.g. Sleeping at previous moment leads to a higher probability of sleeping now.

1st Order HMM

- To accommodate the correlation between the adjacent symbols, the emission matrix needs to be expanded.
- The emission matrix becomes $Pr(S_i | P_i, S_{i-1})$.

1st Order HMM

• Before

$$\Pr(P,S) = \prod_{i} \Pr(P_i \mid P_{i-1}) \Pr(S_i \mid P_i)$$

• Now

 $\Pr(P, S) = \prod \Pr(P_i \mid P_{i-1}) \Pr(S_i \mid P_i, S_{i-1})$

• To find the path P to maximize, we let D[k,p] be the maximum probability obtained by the first k states ending at p. We can obtain the following recurrence relation similarly as before.

$$D[k,p] = \max D[k-1,p'] \operatorname{Pr}(p|p') \operatorname{Pr}(S_i|p,S_{i-1})$$

• We can still do dynam[®]ć programming.

Higher Order HMM

- To generalize, we can let the current emission depend on the current state, and previous k symbols.
- Then this is called the k-th order HMM.
- Solving such a HMM is similar as before. Running time not changed.
- The only difficulty is the parameter training because the emission matrix has many more parameters for larger k.

Prokaryote Gene Finding

- The prokaryotes (pronounced /proʊˈkærioʊts/; singular prokaryote /proʊˈkæriət/) are a group of organisms that lack a cell nucleus (= karyon).
 - The opposite is the eukaryotes.
- Most of prokaryotes are unicellular.
- Prokaryote genes do not have introns. So their genes is a linear structure.

Intron video: <u>http://www.youtube.com/watch?v=o0BQJbLNYSg</u>

From Gene to Protein (in *Prokaryotes*)

Genetic code

Η Α Α S G G G

Α

 \odot 2001 Sinauer Associates, Inc.

codons

A Trivial Gene Finder

- Open Reading Frame (ORF) is a substring that
 - starts with a start codon
 - ends with a stop codon
 - no stop codon in the middle
- If ORF is long, then likely it is a gene or a part of a gene.
- Why?

Codon bias

- A codon XYZ occurs with different frequencies in coding regions and noncoding regions
 - different amino acids have different freq.
 - Diff. codons for the same amino acid have diff. freq.
 - In random regions approx. p(X)*p(Y)*p(Z)

http://www.kazusa.or.jp/codon/

Escherichia coli O157:H7 EDL933 [gbbct]: 5347 CDS's (1611503 codons)

fields: [triplet] [frequency: per thousand] ([number])

υυυ	22.2(35846)	UCU	8.7(14013)	UAU	16.5(26648)	UGU	5.2(8458)	
UUC	15.9(25565)	UCC	8.9(14420)	UAC	12.3(19766)	UGC	6.4(10285)	
UUA	13.8(22316)	UCA	8.1(13117)	UAA	2.0(3163)	UGA	1.1(1751)	
UUG	13.0(20904)	UCG	8.8(14220)	UAG	0.3(435)	UGG	15.3(24656)	
CUU	11.4(18366)	CCU	7.2(11657)	CAU	12.8(20631)	CGU	20.2(32590)	
CUC	10.5(16869)	CCC	5.6(8961)	CAC	9.4(15116)	CGC	20.8(33547)	
CUA	3.9(6257)	CCA	8.4(13507)	CAA	14.7(23703)	CGA	3.8(6166)	
CUG	51.1(82300)	CCG	22.4(36178)	CAG	29.4(47324)	CGG	6.2(9955)	
AUU	29.7(47838)	ACU	9.1(14639)	AAU	19.2(30864)	AGU	9.4(15123)	
AUC	23.9(38504)	ACC	22.8(36724)	AAC	21.7(34907)	AGC	16.0(25800)	
AUA	5.5(8835)	ACA	8.1(13030)	AAA	34.0(54723)	AGA	2.9(4656)	
AUG	27.2(43846)	ACG	15.0(24122)	AAG	11.0(17729)	AGG	1.8(2915)	
GUU	18.1(29200)	GCU	15.4(24855)	GAU	32.8(52914)	GGU	24.2(38983)	
GUC	14.8(23870)	GCC	25.2(40571)	GAC	19.2(30953)	GGC	28.1(45226)	
GUA	10.9(17561)	GCA	20.7(33343)	GAA	39.3(63339)	GGA	8.9(14286)	
GUG	26.2(42261)	GCG	32.3(52091)	GAG	18.7(30158)	GGG	11.8(18947)	

Coding GC 51.50% 1st letter GC 58.44% 2nd letter GC 40.88% 3rd letter GC 55.17%

A Better Gene Finder

- We can use the log likelihood ratio score to evaluate each ORF. Each codon XYZ contributes score
- $\log \frac{P(XYZ)}{P(X)P(Y)P(Z)}$
- An ORF is predicted as a gene if the sum of codon score is above a threshold.
- This is better. But it does not catch the correlation between adjacent codons.

HMM

- We have used HMM in the classroom example to catch correlations between adjacent events.
- This can be used to model gene prediction.
- For example:
 - Symbols: Nucleotide bases.
 - States: start codon, stop codon, coding, non-coding (intergenic).

Prokaryote gene finding HMM

29

Gene Prediction as HMM

start codon coding intergenic stop codon

- Annotated the sequence with most probable path of states. This provides a reasonable answer to gene prediction.
- A difference here: emission is not fixed length. But this does not forbid us from solving it with dynamic programming.

Dynamic Programming

start codon coding intergenic stop codon

 Define D[k,p] be the max probability achieved by first k symbols for a path with the last state being p.

Recurrence Relation

For p=intergenic $D[k,p] = D[k-1,p'] \Pr(p|p') \Pr(S_k|p)$

For p=start, coding, or stop $D[k,p] = D[k-3,p'] \Pr(p|p') \Pr(S_{k-2}S_{k-1}S_k|p)$

Dynamic Programming

• Once the recurrence relation is obtained. It is straightforward to work out a dynamic programming algorithm.

Easy enough to implement?

- This is very easy to implement.
- If desired, one can also use a higherorder HMM.
- Parameter training must be done carefully.

Gene Prediction

- Besides the codon bias that can be captured by HMM, there are other signals in a gene structure that can be employed by a gene prediction program.
 - E.g. the promoter of a gene is a region of DNA sequence located near the start codon.

Promoters

<-- upstream

downstream -->

-35 -10	Gene to be translated
---------	-----------------------

-10:	Т	A	Т	A	A	Т
	77 %	76 %	60 %	61 %	56 %	82 %
-35:	Т	Т	G	A	С	Α
	69 %	7 9 %	61 %	56 %	54 %	54 %

- These rules are only approximately correct.
- The presence of promoters allow a very high transcription rate.
- Exercise: How to assign a score to the promoter.

Summary

- HMM is a general model to predict some hidden states by examining emitted symbols.
- HMM can be used in gene prediction to harvest the codon bias and adjacent codon correlation.
- Gene prediction can use more information about the gene structure than codon bias.
- We only talked about prokaryote gene prediction. Eukaryote gene prediction is harder because of introns.