Hidden Markov Model



HMM

 Hidden Markov model was first invented in speech
recognition. But are widely used in many other areas

including bioinformatics.

« An automata that has “hidden states”. At each time
point, it emits a symbol, and change a state with certain

probability.
« We want to derive the hidden states by the emitted
symbols.



Classroom example

« Think of a student in classroom.
« At any minute, a student is in one of 3 hidden states that | try to
figure out:
« U: understands
« T: does not understand but tries to understand
« L:is lost completely and does not try to understand
« Meanwhile, the student emits one of 3 symbol/s that | can observe
« Look at me
 Write/Type
« Sleep



Classroom Example

 Now suppose | see a student’s behavior
is the following in the past several
minutes. What is his internal states at
each minute?
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Classroom Example
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Typically, HMM assumes that emission probability depends only on
current state; and current state only depends on previous state.

We want to find the most likely path of states given the symbols
(observations).

...... Transitions




Classroom Example

(T) Transition matrix
- u T L
U 0.8 02 0
T 0.4 0.4 0.2
L 0.05 0.05 0.9

(E) Emission matrix

- Look | Write | Sleep
U: Understands

T: Tries to understand 0.35 0.05

L: Lost completely
T 0.9 0.1 0
L 0.1 0.6 0.3




Classroom Example

5=S,S,...S, : sequence of symbols;

P=P,P,...P,: path of states.
We want to maximize Pr(P|S) = Pr(P,S) / Pr(S).
Therefore, we want to maximize
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* Note: To deal with the first state, we can
define Pr(P;|Py) = 1 in above formula.
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Solving HMM

« We use dynamic programming again. Define
D[k,p] be the maximum probability achieved by
first k states given that the last state is p.
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 Then max, D[n,p] is the maximum probability
achieved by the complete path, which is what we
want to compute.

[t is not hard to obtain a recurrence, Relation:
Dlk, p]= MaxX pry k1.prk1=p TE.,,FELR,S]

l=<i<



Solving HMM
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D[k, p] = n}of;lxD[k — 1,p'] Pr(p|p’) Pr(S;lp)
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Solving HMM

The algorithm:

Input: S = S,5,...5,

Output: P=P;P,...P,

1. for every state p, let D[1,p] = Pr(S;|p).

2. for k from 2 to n,

2.1 for every state p,

2.1.1 let Dlk,p] = maxDlk — 1,p"] Pr(p|p") Pr(S;|p)
3. backtrace to compute the opptimal path.
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(E) emission matrix

_______[Look Write |Sleep_

Understand 0.6 0.35 0.05

Try 0.9 0.1 0
Lost 0.1 0.6 0.3

5 @
pot o4
20317237
0.6
0.9
0.1

12



Notes

Do not multiply

« because soon the numbers become so small that the double precision will
give you value 0.

* Do a logarithm and use additions instead.

Dlk,p] = rrlloe,lxD[k —1,p'| Pr(plp") Pr(S;|p)

log D[k,p] = max(log D[k — 1,p'] + log Pr(p|p’) + log Pr(S;|p))
p
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Parameter Estimation

« All of our computation depends on the transition probabilities
and emission probabilities. How do we estimate these
parameters?
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Parameter Estimation

If we have an annotated sequence with both symbols and states,
then these can be trained by counting.

If we do not, then we can start with a reasonable guess of the
parameters and annotate the sequence.

Then we use the annotation to train a new set of probabilities.
Repeat until converge.

There is some guarantee to the convergence. But does not
guarantee this will converge to the right solution.
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Pseudocounts

 |f the training data include no cases of a particular
emission from a particular state, then its probability will

be 0 in this model.
« That’s no good.

« So we add pseudocounts to make the probabilities not
zero when an event should be able to happen.
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Higher Order HMM

 Think again the classroom example:

(E) Emission matrix

U: Understands
T: Tri nderstand
0.35 0.05
T 0.9 0.1 0
L 0.1 0.6 0.3

 The emission of a symbol should not only depend on
current state, but sometimes also the previous symbol.

« E.g. Sleeping at previous moment leads to a higher probability
of sleeping now.
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1st Order HMM

« To accommodate the correlation between the adjacent symbols,
the emission matrix needs to be expanded.

e The emission matrix becomes Pr(S; |P,S._,).
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1st Order HMM

Before

Pr(P,S) =] | Pr(, | P_)Px(S, | P)
Now l

Pr(P,S) =] | Pr(B | P_)Pr(S, | B,S,.))

To find the path P to ma>l<imize, we let D[k,p] be the maximum

probability obtained by the first k states ending at p. We can
obtain the following recurrence relation similarly as before.

Dlk,p] = max D[k — 1,p'| Pr(p|p") Pr(S;|p, Si-1)
We can still do dynamPc programming.
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Higher Order HMM

To generalize, we can let the current
emission depend on the current state,
and previous k symbols.

Then this is called the k-th order HMM.

Solving such a HMM is similar as before.
Running time not changed.

The only difficulty is the parameter
training because the emission matrix has
many more parameters for larger k.
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Prokaryote Gene Finding

 The prokaryotes (pronounced /prou'kaeriouts/; singular
prokaryote /prou'kaerisat/) are a group of organisms
that lack a cell nucleus (= karyon).

« The opposite is the eukaryotes.
« Most of prokaryotes are unicellular.

* Prokaryote genes do not have introns. So their genes is
a linear structure.

Intron video:
http://www.youtube.com/watch?v=00BQJbLNYSg
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http://www.youtube.com/watch?v=o0BQJbLNYSg

From Gene to Protein (in Prokaryotes)

/ Coding strand

5’ TGATCATGATCTCGTAAGATATC 3’DNA
3’ ’

ACTAGTACTAGAGCATTCTATAG ‘\5

Template (noncoding) strand

‘ Transcription

START STOP
COLON CODON

3’ wmANA

l \L L \L | V ‘ translation

BB e

N-‘erminus C-fermninus




Genetic code

First letter

Second letter

U A G
UUU| phenvi-  |lUcU UAU . UGU ; U
Uuc ala;r;{)lfe R UAC Tyrosine uGc | Cysteine C
— Serine
UUA [ ggé WIVN Stop codon Stop codon | A
UuG [8J.Xe] Stop codon Tryptophan |G
T =T T
CUA Leucine CCA Proline Al o . CGA Arginine A

utamine

CUG CCe CAG CGG o
AUU : AAU . ||AGU| .. U
AUC |Tsoleucine || ¢ Ve Py
AUA ACA Threonine

Methionine; || ACG ﬁﬁé Lysine ﬁgé Arginine A
5] start codon G
GUU GCU GAU| Aspartic ||GGU ch
Guc : G y acid GGC .
GUA Valine GCA Alanine T GCA Glycine “
GUG GCG GAG acid GGG G

® 2001 Sinauer Asgociates, Inc.
codons

Third letter

>O0O0-o0>r0>0—A->"

—

—

O
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A Trivial Gene Finder

« Open Reading Frame (ORF) is a substring that
« starts with a start codon
« ends with a stop codon
* no stop codon in the middle

« |If ORF is long, then likely it is a gene or a part of a gene.
« Why?

...TAG
...TGA
ATG... ...TAA
\ }
start codon Y stop codon

no stop codon in middle 24



Codon bias

« A codon XYZ occurs with different
frequencies in coding regions and non-
coding regions
« different amino acids have different freq.

« Diff. codons for the same amino acid have diff.
freq.

* In random regions approx. p(X)*p(Y)*p(Z)

Codon Bias Tables
(% of codons used
for each residue)

Amino Acid
Gly
Gly
Gly
Gly
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http:/ /www.kazusa.or.jp/codon/

Escherichia coli 0157:H7 EDL933 [gbbct]: 5347 CDS's (1611503 codons)

fields: [triplet] [frequency: per thousand] ([number])

UUU 22.2( 35846) UCU 8.7( 14013) UAU 16.5( 26648) UGU 5.2( 8458)
UUC 15.9( 25565) UCC 8.9( 14420) UAC 12.3( 19766) UGC 6.4( 10285)
UUA 13.8( 22316) UCA 8.1( 13117) UAA 2.0( 3163) UGA 1.1( 1751)
UUG 13.0( 20904) UCG 8.8( 14220) UAG 0.3( 435) UGG 15.3( 24656)
CUU 11.4( 18366) CCU 7.2( 11657) CAU 12.8( 20631) CGU 20.2( 32590)

COC 10.5( 16869) CCC 5.6( 8961l) CAC 9.4( 1511e6) CGC 20.8( 33547)
coa 3.9( 6257) CCA 8.4( 13507) CaAA 14.7( 23703) CGA 3.8( 6166)
CUG 51.1( 82300) CCG 22.4( 36178) CAG 29.4( 47324) CGG 6.2( 9955)

AUU 29.7( 47838) ACU 9.1( 14639) AAU 19.2( 30864) AGU 9.4( 15123)
AUC 23.9( 38504) ACC 22.8( 36724) AAC 21.7( 34907) AGC 16.0( 25800)
AUA 5.5( 8835) ACA 8.1( 13030) AAA 34.0( 54723) AGA 2.9( 4656)
AUG 27.2( 43846) ACG 15.0( 24122) AAG 11.0( 17729) AGG 1.8( 2915)

GUU 18.1( 29200) GCU 15.4( 24855) GAU 32.8( 52914) GGU 24.2( 38983)
GUC 14.8( 23870) GCC 25.2( 40571) GAC 19.2( 30953) GGC 28.1( 45226)
GUA 10.9( 17561) GCA 20.7( 33343) GAA 39.3( 63339) GGA 8.9( 14286)
GUG 26.2( 42261) GCG 32.3( 52091) GAG 18.7( 30158) GGG 11.8( 18947)

Coding GC 51.50% 1st letter GC 58.44% 2nd letter GC 40.88% 3rd letter GC 55.17%



A Better Gene Finder

We can use the log likelihood ratio score to evaluate
each ORF. Each codon XYZ contributes score
log P(XYZ)

P(X)P(Y)P(Z)
An ORF is predicted as a gene if the sum of codon score
is above a threshold.

This is better. But it does not catch the correlation
between adjacent codons.




HMM

« We have used HMM in the classroom example to catch
correlations between adjacent events.

« This can be used to model gene prediction.
* For example:
« Symbols: Nucleotide bases.

« States: start codon, stop codon, coding, non-coding
(intergenic).



Prokaryote gene finding HMM

29



Gene Prediction as HMM

Symbols: ATAATGAAATAACCA
o 1 Tt
State path: >i~>i—s > C s —— i~
start codon « Annotated the sequence with most
coding probable path of states. This
gr%geprgcgrgllgn provides a reasonable answer to

gene prediction.

« A difference here: emission is not
fixed length. But this does not
forbid us from solving it with
dynamic programming.



Dynamic Programming

Symbols: ATAATGAAATAACCA
rrrot T oot

State path: >i~>i—s > C s —— i~

start codon
coding

Isrggeprgcgrélgn + Define D[k,p] be the max
probability achieved by first k
symbols for a path with the
last state being p.



Recurrence Relation

Symbols: ATAATGAAATAACCA
Tt ! Tt
State path: >i~>i—s > C s —— i~
start codon
coding
intergenic
stop codon

For p=intergenic
Dlk,p] = DIk — 1,p'] Pr(p|p") Pr(Sklp)

For p=start, coding, or stop
Dlk,p] = DIk —3,p'| Pr(p|p") Pr(Sk—2Sk-1SkIp)



Dynamic Programming

e Once the recurrence relation is obtained. It is
straightforward to work out a dynamic programming
algorithm.



Easy enough to implement?

* This is very easy to implement.

 |f desired, one can also use a higher-
order HMM.

« Parameter training must be done
carefully.
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Gene Prediction

« Besides the codon bias that can be
captured by HMM, there are other signals
in a gene structure that can be employed
by a gene prediction program.

« E.g. the promoter of a gene is a region of
DNA sequence located near the start codon.

<-- upstream downstream -->
5" -XXXXPPPPPPXXXXXXXXXPPPPPPXXXXGGGGGGGGGGGGGGGGGGGGGGGGGEGGGGGEGGEGGGEGGEEGEGEGXX XX =31
-35 -10 Gene to be translated



Promoters

<-- upstream downstream —-->

5" -XXXXPPPPPPXXXXXXXXXPPPPPPXXXXGGGGGCGCGGGGGGGGGGGGGGEGGGEGEGGEGEGEGGEGEGEGEGEGEGEEXXKXX -3

-35 -10 Gene to be translated
-10: T A T A A T
77% 76% 60% 61% 56% 82%
-35: T T G A C A
69% 79% 61% 56% 54% 54%

« These rules are only approximately correct.
« The presence of promoters allow a very high
transcription rate.

« Exercise: How to assign a score to the promoter.



Summary

HMM is a general model to predict some hidden states by
examining emitted symbols.

HMM can be used in gene prediction to harvest the codon bias
and adjacent codon correlation.

Gene prediction can use more information about the gene
structure than codon bias.

We only talked about prokaryote gene prediction. Eukaryote gene
prediction is harder because of introns.



