
Speed Optimization

• Algorithm 2:
For each MS/MS spectrum

For each protein in the database
In-silico digest the protein into peptides
For each peptide

if (precursor mass error < allowed error tolerance)
Evaluate the peptide-spectrum match

Assign the highest-scoring peptide to the spectrum

• Precursor mass error = | theoretical precursor mass – observed precursor mass |
• The mass filtration reduces the number of PSM evaluation.
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Speed Optimization

• Algorithm 3:
Sort the spectra according to precursor mass.
For each protein in the database

In-silico digest the protein into peptides
For each peptide

For each spectrum with matching precursor mass
Evaluate the peptide-spectrum match
Keep the highest scoring peptide for the spectrum
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Result Validation
• Some spectra are of lower quality.
– Peptides do not fragment well
– Peptides fragment too much
– Peptides do not get charged
– Peptides are of low concentration
– Etc.

• Some spectra’s true peptides are not in database.
• Therefore, search results of some spectra are junk.
• Computer scientists may think these are not their problems. After all,

they’ve reported the “optimal” peptide for each spectrum.
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Peptide Spectrum Matches (PSM)

These two PSMs are all the best match from database for two different spectra. 
Their confidences are clearly different.  



Biologists vs. Computer Scientists

I found the optimal 
solution!

Is it REAL？



Biologists vs. Computer Scientists

No. Half of them are 
wrong.



Biologists vs. Computer Scientists

I don’t know...

Which half?



Solution to Noisy Input

• Only report results if you’re confident.
• Discard the less confident ones.
• This increases accuracy to make the results useful at the price

of discarding some data.



Only Report Highly Confident Results

score

false

true 

FDR =
#reported false hits

#reported hits

• By choosing different score threshold, one can calculate the FDR for all target PSMs above the threshold.
Or conversely, one can choose a proper threshold to meet a FDR requirement.

• As of today, a typical FDR requirement is 1%.
• Unfortunately, we only know the aggregated distribution (grey curve)

PSM :

peptide - spectrum match →

False - Discovery Kate
.
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FDR Estimation with Target-Decoy
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FDR Estimation
Distribution of PSM scores



Question

• Consider in assignment 2, we mix N true and N random
peptides together.

• By using your score, from the N top-scoring peptides, there are
about 0.6N true peptides and 0.4N random peptides.

• How many of the “true” peptides are selected because your
scoring function is truly amazing, and how many are pure luck?
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A Test

• Now you’ve learned about target-decoy method. 
• Can you help me out in the following problem?
• Suppose I’m asked to make and mark a final exam as a 

substitute teacher. But I know absolutely nothing about the 
subject.

• Fortunately, I have previous year’s exam and all questions are 
multiple choices. But I do not know the correct answers.



The Challenge
decoys .
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Review :

① database search
> protein 1

precursor/peptide mass µTAKE
-
-

. .

> protein 2
.
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.
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② PSM ( peptide- spectrum math )
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top-scoring .

③ FDR (false - discovery rate)
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Roadmap :

• More details
- better score

- troubles
. CPTM ,

speed , FDR )
.

- De novo sequencing .

- Quantification & Multiple Myeloma

- spectrum prediction with deep learning .

-

Alpha folds

- classic bioinformatics.



Better Scoring Function

• The empirical score is only good for start up.
• Soon competition will get fierce and you’ll need a better 

scoring function.



Likelihood Ratio

• Let ! be the m/z of a y-ion, and indeed, we see a peak with
m/z = ! in the spectrum.

• Two assumptions: 
– The peptide is the real peptide so peak is caused by the y-ion.
• Pr(observe a peak at m|m is a y-ion m/z of the real peptide)

– The peptide is a random peptide so the match is purely by chance.
• Pr(observe a peak at m|m is a random mass)



Log Likelihood Ratio
• Learn two probabilities from large training data

– ! : Prob(a peak is observed at a y-ion m/z).
– " : Prob(a peak is observed at a random m/z).
– Usually ! > ".

• Given a peptide sequence, calculate m/z of all possible y-ions. For each y-ion, 
– If a peak observed, log !" is added to score.

– If no peak is observed, log #$!#$", is added to score.

• Thus, matching ion is rewarded and missing ion is penalized.
• Other fragment ion types can be considered similarly, and added to the score. 



Ideas of Even Better Scores

• Machine learning that combines many factors
– Log likelihood ratio score
– Empirical score (log of relative intensity)
– Precursor error tolerance
– Number of matching peaks
– Number of unmatched peaks
– Number of unmatched y-ions
– Include b-ions.
– Include charge 2 fragment ions.
– Etc.
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OTHER PRACTICAL CONCERNS



Post-Translational Modifications (PTM)

Phosphorylation (Δm = +80) Oxidation (Δm = +16)

• PTM important to protein functions.
• Hundreds of different types of PTMs
• PTM normally change the mass of an amino acid.
• Some PTMs can be on and off.
• The figure shows two common types of PTMs.
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Post-Translational Modifications
• There are many hundreds of different types of PTMs included in 

the unimod PTM database.  
• 30% of human proteins are phosphorylated, 50% are glycosylated.
• PTMs are important to the functions of proteins.
– For example: Reversible phosphorylation of proteins is an important 

regulatory mechanism. Many enzymes are switched "on" or "off" by 
phosphorylation and dephosphorylation.  The structural change caused by 
the PTM changes the function of the protein.



Variable PTMs
• If user selects some PTMs as “variable”, all possible modification forms of a 

database peptide need to be tried to match the spectra. This results in 
exponential growth of search space. E.g.

• Consequently, one can only search with a few variable PTMs.

PEPTIDEPTM
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PEPTIDEPT(+80)M
PEPT(+80)IDEPT(+80)M
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Fixed PTMs
• Certain modifications are deliberately added during the sample preparation

and is (almost) 100%. These are called fixed PTMs.
• The most common one is that cysteines are usually modified chemically.

And the most common modification changes the mass from 103.00919 to
160.03065. Roughly 57.02 Da were added.

• Fixed modification changes the amino acid residue mass table, but does not
affect the database search speed.

• For curiosity only, cysteines are modified to avoid the formation of
“disulphide bonds”.
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Missed and Nonspecific Cleavages
• The proteolyses may not be 100% efficient.
– Assuming Trypsin digests the following protein with 100% efficiency 
– SSAYSR/GVFR/R/DTHK/SEIAHR/F

• Missed cleavages: a digestion site is not cut.
– E.g. peptide GVFRR

• Non-specific cleavages: a non-digestion site got cut.
– E.g. peptide SEIAH

• Allowing them will both affect the algorithm’s time complexity.
– Which one has a bigger impact?
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Summary

• MS/MS data includes survey scans and MS/MS scans.
• Database search to assign peptides to MS/MS scans.
• Scoring functions.
• Target-decoy for FDR estimation.
• Practical issues:
– Fixed and variable PTMs
– Nonspecific cleavages


