Speed Optimization

* Algorithm 2:
For each MS/MS spectrum

For each protein in the database
In-silico digest the protein into peptides
For each peptide

if (precursor mass error < allowed error tolerance)
Evaluate the peptide-spectrum match
Assign the highest-scoring peptide to the spectrum

* Precursor mass error = | theoretical precursor mass — observed precursor mass
* The mass filtration reduces the number of PSM evaluation.



Speed Optimization

* Algorithm 3:
Sort the spectra according to precursor mass.
For each protein in the database
In-silico digest the protein into peptides
For each peptide
For each spectrum with matching precursor mass

Evaluate the peptide-spectrum match
Keep the highest scoring peptide for the spectrum



Result Validation

Some spectra are of lower quality.
— Peptides do not fragment well
— Peptides fragment too much
— Peptides do not get charged
— Peptides are of low concentration
— Etc.

Some spectra’s true peptides are not in database.
Therefore, search results of some spectra are junk.

Computer scientists may think these are not their problems. After all,
they’ve reported the “optimal” peptide for each spectrum.



Peptide Spectrum Matches (PSM)
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These two PSMs are all the best match from database for two different spectra.
Their confidences are clearly different.



Biologists vs. Computer Scientists

| found the optimal
solution!
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Biologists vs. Computer Scientists

( No. Half of them are




Biologists vs. Computer Scientists
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Solution to Noisy Input

* Only report results if you're confident.
* Discard the less confident ones.

* This increases accuracy to make the results useful at the price
of discarding some data.



Only Report Highly Confident Results

#reported false hits
#reported hits

|
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By choosing different score threshold, one can calculate the FDR for all target PSMs above the threshold.
Or conversely, one can choose a proper threshold to meet a FDR requirement.

As of today, a typical FDR requirement is 1%.

Unfortunately, we only know the aggregated distribution (grey curve)



FDR Estimation with Target-Decoy
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Target-decoy search strategy for increased
confidence in large-scale protein
identifications by mass spectrometry

Joshua E Elias' & Steven P Gygi'?

Nature Methods 4, 207 - 214 (2007)
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FDR Estimation

Distribution of PSM scores
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* Consider in assignment 2, we mix N true and N random
peptides together.

* By using your score, from the N top-scoring peptides, there are
about 0.6N true peptides and 0.4N random peptides.

* How many of the “true” peptides are selected because your
scoring function is truly amazing, and how many are pure luck?



A Test

Now you’ve learned about target-decoy method.
Can you help me out in the following problem?

Suppose I’'m asked to make and mark a final exam as a
substitute teacher. But | know absolutely nothing about the
subject.

Fortunately, | have previous year’s exam and all questions are
multiple choices. But | do not know the correct answers.



geteyi.
The Challenge " crs

Multiple choice I'll use a randomized
algorithm for this exam.
—)
E ¢

.\‘/‘l\-:) .
\ \26 s Abeo g g

q fof-(4, Q@

B jé@f C(S//%é;)




> ‘)mﬁz{n (

Lull
MTAKE -~ -

@ w > ()Ww_‘r“l
psp ( pophid specerem pwirh )
e - e,
® @Y ¢cwfng
FDR ({W@Q —o{/\QWﬂf7 Yor
) ef}
S
/—\—E—/ﬁ
@ ‘§we Hmc\ﬂ"@l
WM—\ Aszuo/
¢ Tour§eA



Rood oy

- N\o‘(‘L Dlmb
- bgjctﬂv ¢ o

— &rvabler . CpTm, Sped, Fop )
- Da nove Sﬂlmmd«g,

- @WHT\\MU"\ @ Mw(rh“olf M/éfmvw\
| 4])@,(,wm (z'wi/i(ﬁh i deop \aawiﬂ_
Al Fold >

N



Better Scoring Function

 The empirical score is only good for start up.

* Soon competition will get fierce and you’ll need a better
scoring function.



Likelihood Ratio

* Let m be the m/z of a y-ion, and indeed, we see a peak with
m/z = m in the spectrum.

* Two assumptions:
— The peptide is the real peptide so peak is caused by the y-ion.
* Pr(observe a peak at m|m is a y-ion m/z of the real peptide)

— The peptide is a random peptide so the match is purely by chance.

* Pr(observe a peak at m|m is a random mass)



Log Likelihood Ratio

Learn two probabilities from large training data
— p : Prob(a peak is observed at a y-ion m/z).

— q : Prob(a peak is observed at a random m/z).

— Usuallyp > gq.

Given a peptide sequence, calculate m/z of all possible y-ions. For each y-ion,
— If a peak observed, logg is added to score.

— If no peak is observed, logi:—z, is added to score.

Thus, matching ion is rewarded and missing ion is penalized.
Other fragment ion types can be considered similarly, and added to the score.



ldeas of Even Better Scores

* Machine learning that combines many factors
— Log likelihood ratio score
— Empirical score (log of relative intensity)
— Precursor error tolerance
— Number of matching peaks
— Number of unmatched peaks
— Number of unmatched y-ions
— Include b-ions.
_ :;(C:Mde charge 2 fragment ions. KE{W\\\ \



OTHER PRACTICAL CONCERNS



Post-Translational Modifications (PTM)

OH
|
Gt
1
Nl ==
| | Il

H H O
/ serine

serine/threonine
protein kinases

CHj
|
\ HC—OH
—N—C—C—
|
H H O

threonine

tyrosine OH
protein kinases

e
—N—C—C—
[

H H O

tyrosine

1
0=P-0-

(o)
ATP ADP +Pj |

LA
—N—C—C—
R
H H O
phosphoserine

o)

Il
0=

|

P
ATP ADP+P; 9§
! E H?—CHs
—N—C—C
| | |6
H H
phosphothreonine

0
0=P-0r

-0"

ATP ADP +Pj

N

CHy

H H O

phosphotyrosine

Phosphorylation (Am = +80)

PTM important to protein functions.

Hundreds of different types of PTMs

PTM normally change the mass of an amino acid.
Some PTMs can be on and off.

The figure shows two common types of PTMs.
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Post-Translational Modifications

 There are many hundreds of different types of PTMs included in
the unimod PTM database.

* 30% of human proteins are phosphorylated, 50% are glycosylated.

 PTMs are important to the functions of proteins.

— For example: Reversible phosphorylation of proteins is an important
regulatory mechanism. Many enzymes are switched "on" or "off" by

phosphorylation and dephosphorylation. The structural change caused by
the PTM changes the function of the protein.



Variable PTMs

* |f user selects some PTMs as “variable”, all possible modification forms of a
database peptide need to be tried to match the spectra. This results in
exponential growth of search space. E.g.

PEPTIDEPTM
Pho PEPT(+80)IDEPTM
PEPTIDEPT(+80)M
PEPTIDEPTM PEPT(+80)IDEPT(+80)M
PEPTIDEPTM
PEPT(+80)IDEPTM
PEPTIDEPT(+80)M
PEPT(+80)IDEPT(+80)M

* Consequently, one can only search with a few variable PTMs.



Fixed PTMs

Certain modifications are deliberately added during the sample preparation
and is (almost) 100%. These are called fixed PTMs.

The most common one is that.cysteines are usually modified chemically.

And the most common modification changes the mass from 103.00919 to
160.03065. Roughly 57.02 Da were added.

Fixed modification changes the amino acid residue mass table, but does not
affect the database search speed.

For curiosity only, cysteines are modified to avoid the formation of
“disulphide bonds”.



Missed and Nonspecific Cleavages

The proteolyses may not be 100% efficient.

— Assuming Trypsin digests the following protein with 100% efficiency
— SSAYSR/GVFR/R/DTHK/SEIAHR/F

Missed cleavages: a digestion site is not cut.

— E.g. peptide GVFRR

Non-specific cleavages: a non-digestion site got cut.

— E.g. peptide SEIAH

Allowing them will both affect the algorithm’s time complexity.
— Which one has a bigger impact?



Summary

MS/MS data includes survey scans and MS/MS scans.
Database search to assign peptides to MS/MS scans.
Scoring functions.

Target-decoy for FDR estimation.

Practical issues:
— Fixed and variable PTMs

— Nonspecific cleavages



