Seeding Methods in Homology Search

A Qimi’qrify hetween monse and human

genomes

GCNTACACGTCACCATCTGTGCCACCACNCATGTCTCTAGTGATCCCTCATAAGTTCCAACAAAGTTTGC

Lererer e |l Leeeeerrreerereeer e rrererrr b et
GCCTACACACCGCCAGTTGTG-TTCCTGCTATGTCTCTAGTGATCCCTGAAAAGTTCCAGCGTATTTTGC

GAGTACTCAACACCAACATTGATGGGCAATGGAAAATAGCCTTCGCCATCACACCATTAAGGGTGA----

LErrrrreerr reerer el T T I T Y I B
GAATACTCAACAGCAACATCAACGGGCAGCAGAAAATAGGCTTTGCCATCACTGCCATTAAGGATGTGGG

—————————————————— TGTTGAGGAAAGCAGACATTGACCTCACCGAGAGGGCAGGCGAGCTCAGGTA

Lererrrreerrr e reerrrererr e rrrrerr re e I
TTGACAGTACACTCATAGTGTTGAGGARAGCTGACGTTGACCTCACCAAGTGGGCAGGAGAACTCACTGA

GGATGAGGTGGAGCATATGATCACCATCATACAGAACTCAC-——--—--—-- CAAGATTCCAGACTGGTTCTTG

T T I I I O O LEEEEE trerrrr el
GGATGAGATGGAACGTGTGATGACCATTATGCAGAATCCATGCCAGTACAAGATCCCAGACTGGTTCTTG

Smith-Waterman is the most accurate method.
Time complexity: O(mn).

Smith-Waterman Algorithm

S

* The old algorithm requires O(mn) and is too slow.
* Human v.s. mouse: 3x107x3x10°=9x101!®

Similarity Search

1 n sequence 2
* Most similarities (local alignments) are very short relative
to the genomes.

Similarity Search

1 n sequence 2
* For every pairs of (4, i), build a local alignment around it.
* O(mnT)

* Not better than Smith-Waterman.

* But this leads to an important idea...

Main Idea

Most pairs of (i, j) are useless. We only want to try local alignments on
the “promising” pairs of (i, j).

In the context of sequence similarity search in bioinformatics, these
“promising” pairs are called “seeds” or “hits”.

We need

* a proper definition of hits.

* some etficient way to enumerate the hits faster than trying every pair of (i, j).

BILLAST Uses Short Consecutive Match as Hits

GCNTACACGTCACCATCTGTGCCACCACNCATGTCTCTAGTGATCCCTCATAAGTTCCAACAAAGTTTGC

I I I O N N R |l Lerrrrrrreeereerrr e rrrrrrrr bt
GCCTACACACCGCCAGTTGTG-TTCCTGCTATGTCTCTAGTGATCCCTGAAAAGTTCCAGCGTATTTTGC

1 m seql

1 n seq2

BILLAST Uses Short Consecutive Match as Hits

GCNTACACGTCACCATCTGTGCCACCACNCATGTCTCTAGTGATCCCTCATAAGTTCCAACAAAGTTTGC

I I I O N N R |l Lerrrrrrreeereerrr e rrrrrrrr bt
GCCTACACACCGCCAGTTGTG-TTCCTGCTATGTCTCTAGTGATCCCTGAAAAGTTCCAGCGTATTTTGC

1 m seql
1 n seq2

* Majority of (1,j) are random and probability of generating a
random hit 1s small.

e For length-k seed, time complexity becomes O(4*mnT)

* By default, BLAST used k=11.

* What’s the speed up factor for k=117

The Idea behind Seeding

* A true similarity has a high chance of being hit.
* A random pair (i, |) has low chance of being hit.

* Thus, it we use hit to filter (1, j), we will
e Detect most true similarities.

* Not wasting time on random pairs of (1, j).

The Data Structure for Finding Hit?

e for each £-mer, index table to remember all its occurrences in S.
e for each £-mer of T, find its hits in the index table.

* The index table can be a trie or a hash table.

AR ———> () 6

AC S: AATCTTAA

AG

ar —> 1 01234567
CA

ole

CG

cT —— 3

GA T GAACTTA
GC

GG

GT

TA —> 5

C —> 2

TG

T ——> 4

The Data Structure for Finding H

1t?

AAC
AAG
AAT
ACA

— 1 o list of occurrences of AAAIn S
—1— List of occurrences of AAC in S

Space complexity?

11

Overall runtime

Build the index using S: O(#) time.

Find matches between the index and sequence T: O() time to scan T,

plus we need to examine all of the IN hits found. Let t be the per-hit
examination time. Then

O(m+N?).
Overall runtime: O(n+m+N?).
The term N7is the most expensive part. Indexing overhead is small.

In practice, most of the hits encountered are random hits.

12

Filtration can have multiple rounds

GCNTACACGTCACCATCTGTGCCACCAGCCATGTCTCTAGTGATCCCTCATGGTGGCCAACAAAGTTTGC

. I Lt rrreerrre e reeeen R RN
TGCCTACACACCGCCAGTTGTGTTCCTGCTATGTCTCTAGTTATCCCTGAAAAGTTCCAGCGTATTTTGC

* After finding a hit, instead of trying to build a local alignment
directly, BLAST uses another round of filtration to determine if
a hit 1s a “good” or “bad” hit.
* Quick search in both directions; if most symbols match, it’s a
good hit. Otherwise it’s bad.
* More precisely, use ungapped extension to find HSPs.

e If an HSP is above a certain score threshold, build a local
alignment around it.

13

HSP extension

GCNTACACGTCACCATCTGTGCCACCAGCCATGTCTCTAGTGATCCCTCATGGTGGCCAACAAAGTTTGC

. I Lt rrreerrre e reeeen R RN
TGCCTACACACCGCCAGTTGTGTTCCTGCTATGTCTCTAGTTATCCCTGAAAAGTTCCAGCGTATTTTGC

best score

for k from O to ...
score += sc(S[1+k],T[j+k]) score
for k from 1 to ...

score += sc(S[1-k], T[}-k]) [~

dropoff > threshold

\

dropoff

* Score will increase and decrease during the extension.

* Extension stops when score greater than reporting threshold,

or drop off greater than drop threshold.
14

HSP Extension

How long will the extension continue after reaching best score?

Assumptions:

* After reaching best score, sequence becomes random.

* match=1 and mismatch=-1
Expected score on each additional base 1s -0.5.
It dropott=k, then after 2k bases, the expected dropoftt will reach k.

Conclusion: Not too long.

15

Example of missing a target

e Fail:
GAGTACTCAACACCAACATTAGTGGGCAATGGAAAAT

LErrrrrrrer rerrer 1t rrrrr NENEN
GAATACTCAACAGCAACATCAATGGGCAGCAGAAAAT

* Dilemma
* Sensitivity — needs shorter seeds
* the success rate of finding a homology

* Speed — needs longer seeds
* Mega-BLLAST uses seeds of length 28.

16

PatternHunter uses “spaced seeds”

o 11T*1#*1*1**11*111 (called a spaced seed)
* Eleven required matches (weight=11, length = 18)

* Seven “don’t care” positions

GAGTACTCAACACCAACATTAGTGGCAATGGAAAAT..

e rrerrreer reeer bE rern NEREN
GAATACTCAACAGCAACACTAATGGCAGCAGAAAAT..

111 %] **]1*]*x*]11*111

* Hit = all the required matches are satistied.
e BILLAST’sseed = 11111111111

17

Notes about the notation

A homology/similarity region’s actual sequences do not matter, the
match /mismatch matters.

Therefore, a region is often denoted by a binary 0-1 sequence,

11011111001110111011111

A hit is then as follows:
11011111001110111011111

111*]1**]1*]1**]11*111

18

The Data Structure for Finding Hit

* The same as consecutive seed. Except that now we

AA?A
11%1

have a length /, weight » seed. E.g. 11*1.

* Fach Fmer, take the w letters out and put in index table.

* The index table can be a hash table.

AAC
AAG
AAT
ACA

—> J.ist of occurrences of AA?A in S

—>

19

Time Complexity Comparison

Lemma: for random sequence S and T with lengths 7 and 7, the expected number
of hits for weight w, length /seed is

(m—I[+D(n—-1+1)4""

Because usually [is much shorter than m and n, this is approximately 4~ mn

That is, the expected number of hits in random regions only depends on the
weight, but not the shape of the seed. So does the running time.

So, speed-wise, spaced seed is similar to consecutive seed.

What about the sensitivity?

20

Simulated sensitivity curves

prabaHilfy af o lea=t 1 H

a8

a4 r

a3

a2

a1

az

a3

a4

Q.5 a8 q.7 a3 a.9 1
=mlilardty averlengh &4

21

Why spaced seeds are more sensitiver

Consider a simple scenario where there are n HSPs to be detected.
Each HSP has length L. Each position of the HSP 1s a match with
probability p independently. L is much larger than seed length.

Compare weight-W spaced seed s and contingous seed .

At each position, probability of hit is p* for both seeds.

E|# ofhits] =n - (L =1+ 1) - p", here L is the length of the seed.

Two seeds have comparable number of hits.

But why spaced seeds are more sensitive?

22

Trre

tree

Why spaced seeds are more sensitiver

TTGACCTCACC? | |CAA?A??A?C??TA?TGG?
LT rre? LEI2122121220 1212
TTGACCTCACC? CAA?A??A?C??TA?TGG?
11111111111 111*]**]1*]1**11*111
11111111111 111%1%*1*1%%11%111

* BLAST’s seed usually uses more than one hits to
detect one homolog (wasteful)

* A spaced seed uses fewer hits to detect one
homolog (efficient)

Good spaced seed does not overlap much

* 'The following spaced seed does not overlap heavily when shifts:

111*1**]*]**x]11*111
111*1**]*]**x]1*111
111*1**]*]**x]]7*x111
111*1**]*]**x]]1*x111
111 *1**]*]**x]]7*x111
111 *1**]*]**x]]7*x111
111*1**]*]**x]11*111

* 'The hits at different positions are independent.

* The probability of having the second hit is 3*p°® + ...
* compate to BLAST’s seed p + p> + p> + p* + ...

25

lL.ossless Filtration

When seeds are short enough and HSP similarity is high
enough, lossless filtration is also possible.

For example, seed 111 can guarantee to match when a
sufficiently long HSP has similarity 66.7%.

Proof: To fail being hit by 111, the HSP must have a
mismatch in every 3 adjacent positions.

On the other hand, 110110110..., which has 66.6% similarity,
will fail the seed 111.

26

lL.ossless Filtration

* Now consider spaced seed 11*1.

* Claim: For any € > 0, seed 11*1 will hit every sufficiently
long region with similarity 0.6 + €.

27

Proof

Suppose there 1s a sufficiently long region not hit by 11*1.

We can break the region into blocks of 130°. Besides the last block that
can have at most three 1s, each of the other blocks 1s one of the
following three cases:

* 10 for b>=1
* 110° for b>=2
* 1110° for b>=2
In each block, similarity <= 0.6.
So the long region’s similarity is < 0.6 + €.

28

Compute a Seed’s Sensitivity

H: A probabilistic distribution of HSP, Pr(H|[i] = 1) = p;
We want Pr(length-n such HSP is hit by a seed). len(s) =1
t: A length-I 0-1 string.

Ht: The concatenation of H and t.

Let D|i, t] be the probability Ht is hit by t for len(H) = i.

0101101
H S

By total probability law, answer is },;(p(t) - D|n — k, t]). Note the

summation is over all length [binary string t, and

p(S) — p#l in t(l _ p)#o int

29

Dynamic Programming

* Case I: t is hit by 5. Then D[i, t] = 1.
* Case II: t is not hit by s:

0101101
R '
S
/ W
probability p probability 1-p
10101101 00101101
H' H'

t t

H' is the length-(i-1) distribution. t' is the length-(I-1) prefix of t.

Dli,s]=p-D|li—1,1t'| + (1 —p) - D]i — 1,0t']

Dynamic Programming

Initialize DJ[0,t]
e Forifrom1ton

* for every length-[binary string ¢

. it t 1s hit by s

. D[i,t] = 1

. else

. Dli,t]=p-D[i—1,1t'|+ (1 —p) - D[i — 1,0t"]

Return), p(t) - D[n — [, t]

Here p(t) — p#l in t(l _ p)#o int
Time complexity O(n : Zl)

More eftficient algorithm exists (not lectured here). O(n WAL S).
31

The “algorithm” to select the optimal spaced seed

* Enumerate all spaced seeds with weight 11 and no
longer than 18, calculate the sensitivity of each, and

output the one with the highest sensitivity.

* This is the ONLY known algorithm that guarantees
the finding of optimal seed.

* Many heuristics exist to find suboptimal seeds.

32

Multiple Seeds — PatternHunter II:

33

Multiple Spaced Seeds

* Seeds with different shapes can detect different homologies.

* Some seeds 7ay detect more homologies than others. This leads to the
use of optimized spaced seed.

* Can use several seeds simultaneously to hit more homologies

* Approaching 100% sensitive homology search

seedl cced?

seed?3

34

Multiple Seeds |

Hxample

(homology identity = 0.7, homology length=064)

111*11**1*11*1*111

1111 ***] *x**x]**]1*1*111
11**11*x1**]1*1***11*111
111 *1***1 111 *1***11*1

* 'To use multiple seeds, one only

needs to search multile times with

different seeds, and combine results.

Ot course, you can search with
them simultaneously.

In either case, this slows down
approximately k times if k seeds are
used.

* Isit worth 1t? How does it compare

with using one shorter seed?

35

Simulated sensitivity curves:

0.87 * Solid curves: Multiple (1, 2, 4, 8, 16)
weight-12 spaced seeds.

* Dashed curves: Optimal spaced seeds

0.61
.] with weight = 11, 10, 9, 8.
sensitivity '

0.44 . -

P4 * Typically, “Doubling the seed

I number” gains better sensitivity than
0.2} “decreasing the weight by 17

006 07 '.?.’8. 09 1
similarity

36

Seeding for Proteins - BLASTP

With nucleotides, we’re requiring £ positions with exact matches.

For proteins, that’s not really reasonable: some amino acids mutate to
another one very often.

So BLASTP looks for 3- or 4-letter protein sequences that are “very
close” to each other, and then builds matches from them.

Whete very close = total BLOSUM score in the short window is at
least +13 (or +11 for 3 mer).

37

LXCErCISce

B B\

* For query RRR, threshold 11, what are the other 3-

mers that can generate hits?

E G H I L KMF P S T WY V
-1 © -1 -1 -1 -1 1 ©

AR N D C Q

A 4
R
N
D

-3 -2 ©
-3 -2

-4
-4
-2
-2

-1 -2

-2

-1
-2 ©

-2 ©
-2

-2

-1

-3
-3

-1 -1

-1 -3 -2

-2

-3 -2 2

1 ©

5 © -3
-3
-3

-1

1 © -2

-3 -2

-2 0 6 1 © o 0 1 -3 -3 0
0 2
-3

-2

-3 -3

-2
-1

-1
-1
-1
-1
-2
-2
-1
-1
-1
-1

-3 -3 -1 ©

-1

-4
-1

-3

-1 -1

-2 1 6
-3 -3 -3

-1
-2
-2

-3 -1

-3 -1 -2

-4 -3 -3 -1
-2 @

9
-3

cC ©

Q -1

-3 -1 ©
-3 -1 ©

-3 -2 1 ©
-3 -3 1

-4

2

1 o © 5
E-1 0 o0 2

G ©
H

-3 -2
-2

-2

5 -2 0

-2 6

-4 2

-3 -3

-3 -3 -2 ©

-2

-2
-1
-3

-4

-2

-2 8
-4
-4
-2

-2 0 -1 -3 -2

-2 0 1

-2 -1 -2 2 -3
3

-1

-3 -3

0 ©
-3
-2

-1 -3

-3 -1
-2

-3 -3 4 2 1 © -3 -2
-3 -3 -2

-3

I -1-3-3-3-1

-1 1

-2 2 ©

2 4

L -1 -2 -3 -4 -1

K
M

-2

-3 -2

5-1-3 -1 0

-1 -3 -2
-1
-3
-1

1 1
-3 -2 1 2

2 0 -1 -3
-1

-1
-1

-1 -1 1

-1
-2
-1

-2
-4

(%]

5

-3 -1 0 -2

-2

-1

-3 -3 -1 0 © 0 6 -2 1 3
-2

-1

-3 -3 -3 -2 -3
-2

F -2

P

-3 -2

-4

-4 7 -1

-3 -3
-2
-1

-2
-1
-2
-2

-2

-3 -1

-1

-2

-1

-2

-3 -2

-1 1 06-1 @ © © 2 ©-1-2-1 4 1
-1 -1 101
-2 -4

-1 ©

S 1

-2 ©

5 -2
-2 11 2

-1 -2

-1

-1 -2

-1
-2
-1
-2

-1
-4

T ©
W
Y

-3
-1

-3

1

-3 -1
-2

-3 -2

-1
3
-3

-3 -2

-2
-2

-4
-2

-3 -3
-2

2 -1 -1 3 -3-2-2 2 7

-3

-3 -2

-2

-3 -1 4

-4

-2 ©

-2 1 -1 -2

1

-3 -3

-3 -3 -3 -1
-1

V ©
B

-3 -3

-1

-3 -3 -2 ©

4 -3 0 1-1 0 -4 ©

3

-2

38

How to implement that?

* With BLASTP:

* Build an automaton that reflects all string close to short strings in T (the short
sequence)

* Scan S (the longer sequence), looking for matches.

* We do not study the classic ways to match multiple patterns efficiently.
If interested, search for Aho—Corasick algorithm.

39

A Simpler Way

* 'There 1s another way:

1) For every 3-mer, find all “neighboring” 3-mers that, score at least +11
(or whatever). Build these into a data structure NeighborList.

2) Build a hash table H for S of its 3-mers, just like for the nucleotide

casc

3) For every 3-mer x in T, retrieve all neighbors from NeighborlList. For
each neighbor, query H to find hits in S.

NeighborList 1s a small structure: there are only 8000 3-mers.

40

Which sequence to index?

That’s actually a tough question.

Here’s a typical scenario:
S 1s the human genome (length 7)
P, 1s a short protein sequence (length)

P, 1s another short sequence (length 72,)

If we’re smart, build an index for S, once, and then look up the short
sequences 1n it.

Added time for P, is more like O(z,), not O(n+m,).

41

More on indexing

But memory is a concern:
Indexing the human genome 1s expensive!

Oh, wait. No, it isn’t, not anymore... you probably should index the
longer sequence.

BLASTN (1990) indexes the query, not the database.
BLAT (2000) indexes the database, not the query.

BLLASTP also indexes the query.

42

Extensions to this idea

Two-hit BLLAST:

Require two seeds (probably shorter) that are nearer than £ from each
other, and base the alighment on their enclosing box.

Potentially even fewer false positives, but one has to use shorter seeds.
There’s quite a tradeotf here.

43

Wrap-up

Local alignment slow when sequences are large

Use 11 consecutive matches as hits

* How these hits are found efficiently
e What to do after hits are found

Spaced seeds better
* How sensitivity is computed and how optimal seed is found

* How hits are found for spaced seed
Multiple spaced seed.
Protein seeds.

Two hits.

44

