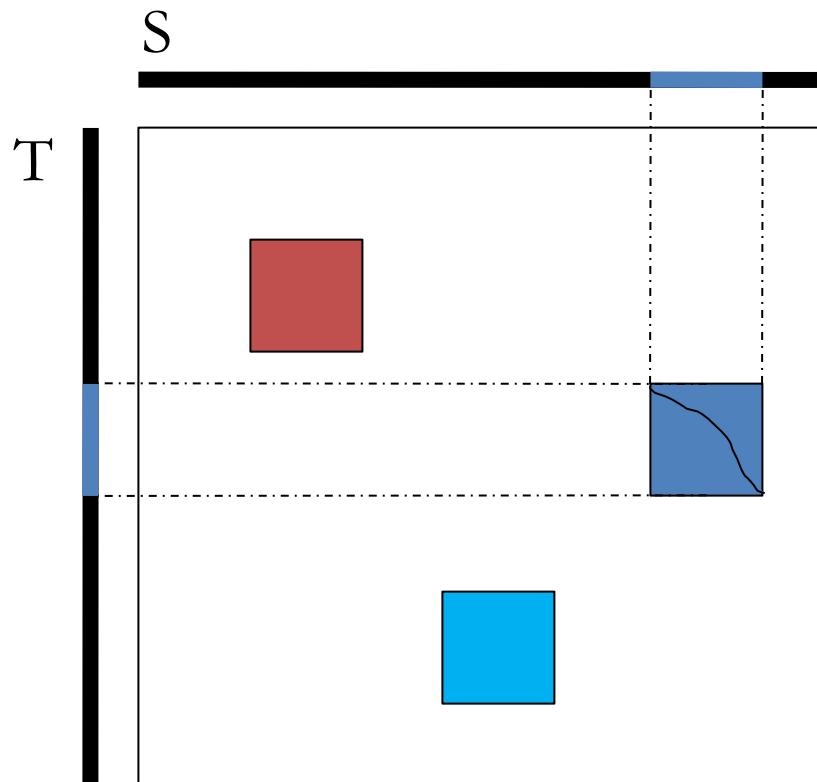

Seeding Methods in Homology Search

A similarity between mouse and human genomes

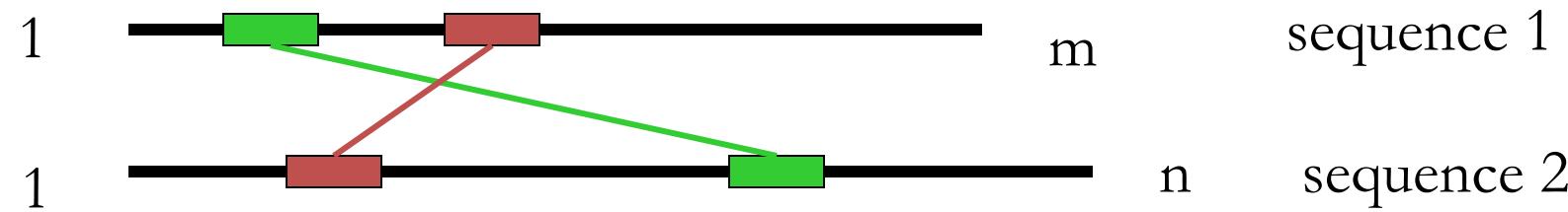
Smith-Waterman is the most accurate method.
Time complexity: $O(mn)$.

Smith-Waterman Algorithm



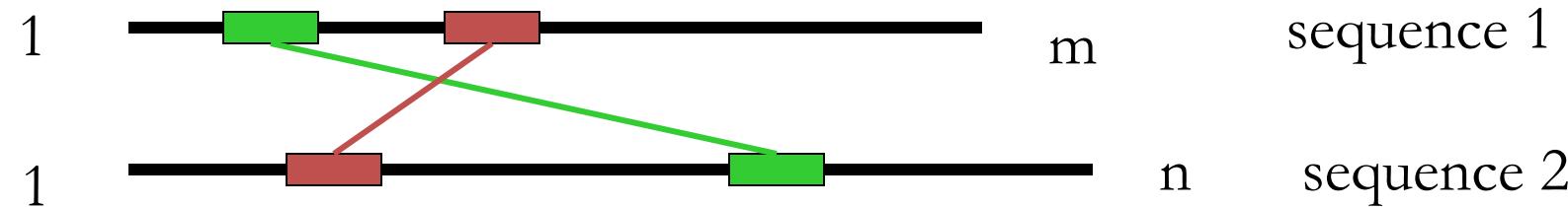
- The old algorithm requires $O(mn)$ and is too slow.
- Human v.s. mouse: $3 \times 10^9 \times 3 \times 10^9 = 9 \times 10^{18}$

Similarity Search



- Most similarities (local alignments) are very short relative to the genomes.

Similarity Search

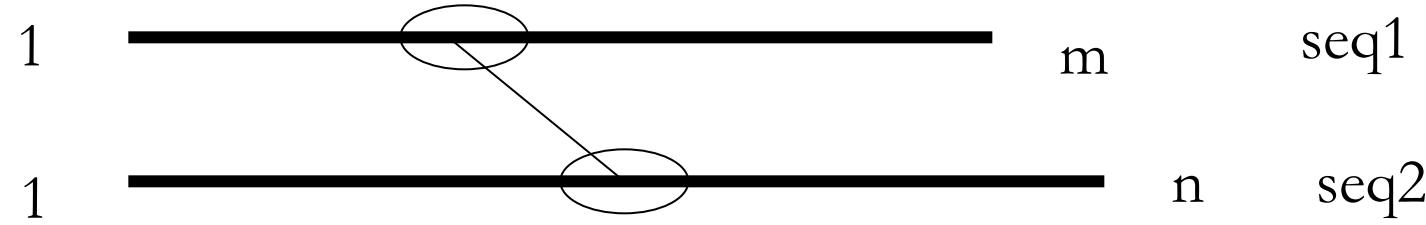


- For every pairs of (i, j) , build a local alignment around it.
 - $O(mnT)$
 - Not better than Smith-Waterman.
- But this leads to an important idea...

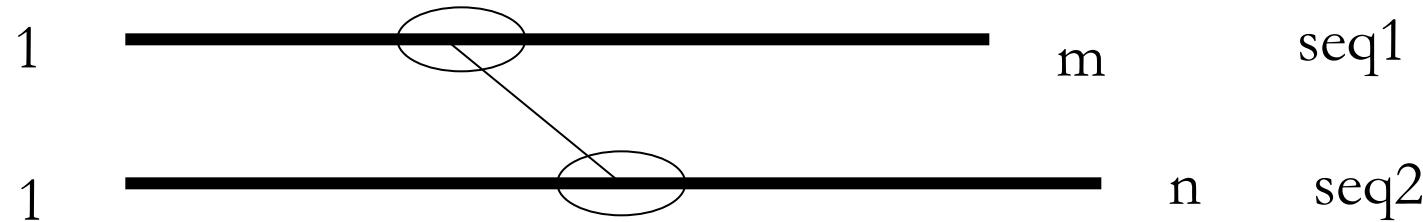
Main Idea

- Most pairs of (i, j) are useless. We only want to try local alignments on the “promising” pairs of (i, j) .
- In the context of sequence similarity search in bioinformatics, these “promising” pairs are called “seeds” or “hits”.
- We need
 - a proper definition of hits.
 - some efficient way to enumerate the hits faster than trying every pair of (i, j) .

BLAST Uses Short Consecutive Match as Hits



BLAST Uses Short Consecutive Match as Hits



- Majority of (i,j) are random and probability of generating a random hit is small.
- For length- k seed, time complexity becomes $O(4^{-k}mnT)$
- By default, BLAST used $k=11$.
- What's the speed up factor for $k=11$?

The Idea behind Seeding

- A true similarity has a high chance of being hit.
- A random pair (i, j) has low chance of being hit.
- Thus, if we use hit to filter (i, j) , we will
 - Detect most true similarities.
 - Not wasting time on random pairs of (i, j) .

The Data Structure for Finding Hit?

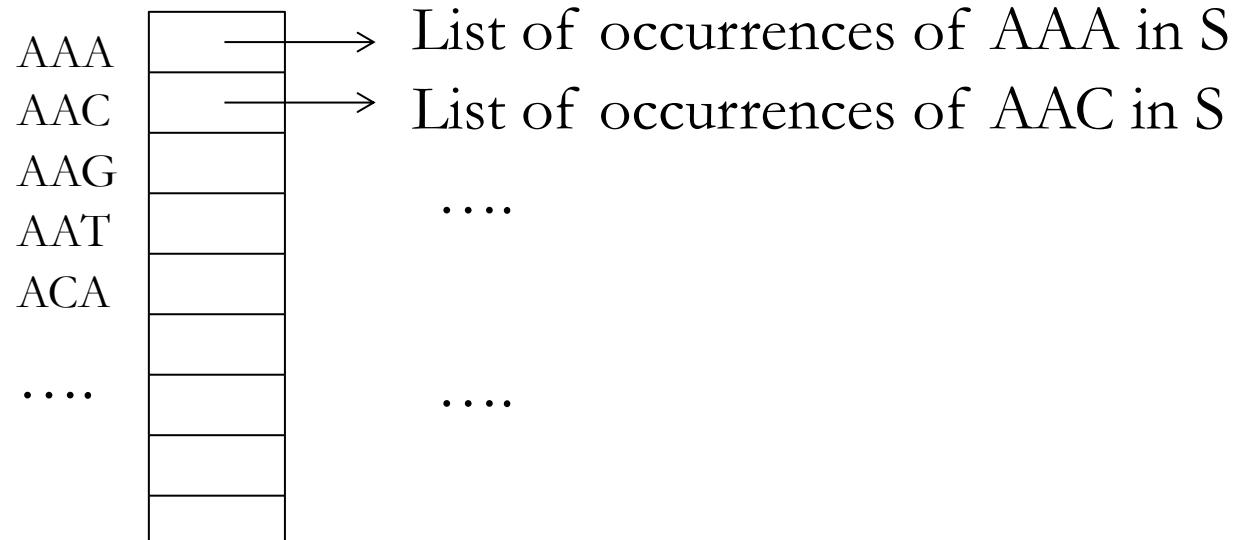
- for each k -mer, index table to remember all its occurrences in S .
- for each k -mer of T , find its hits in the index table.
- The index table can be a trie or a hash table.

AA	→	0, 6
AC		
AG		
AT	→	1
CA		
CC		
CG		
CT	→	3
GA		
GC		
GG		
GT		
TA	→	5
TC	→	2
TG		
TT	→	4

S: AATCTTAA
01234567

T: GAACTTA

The Data Structure for Finding Hit?



Space complexity?

Overall runtime

- Build the index using S : $O(n)$ time.
- Find matches between the index and sequence T : $O(m)$ time to scan T , plus we need to examine all of the N hits found. Let t be the per-hit examination time. Then $O(m+Nt)$.
- Overall runtime: $O(n+m+Nt)$.
- The term Nt is the most expensive part. Indexing overhead is small.
- In practice, most of the hits encountered are random hits.

Filtration can have multiple rounds

```
GCNTACACGTCACCATCTGTGCCACCAGCCATGTCTCTAGTGATCCCTCATGGTGGCCAACAAAGTTGC
|   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |   |
TGCCTACACACCGCCAGTTGTGTTCCCTGCTATGTCTCTAGTTATCCCTGAAAAGTTCCAGCGTATTTGC
```

- After finding a hit, instead of trying to build a local alignment directly, BLAST uses another round of filtration to determine if a hit is a “good” or “bad” hit.
- Quick search in both directions; if most symbols match, it’s a good hit. Otherwise it’s bad.
 - More precisely, use ungapped extension to find HSPs.
 - If an HSP is above a certain score threshold, build a local alignment around it.

HSP extension

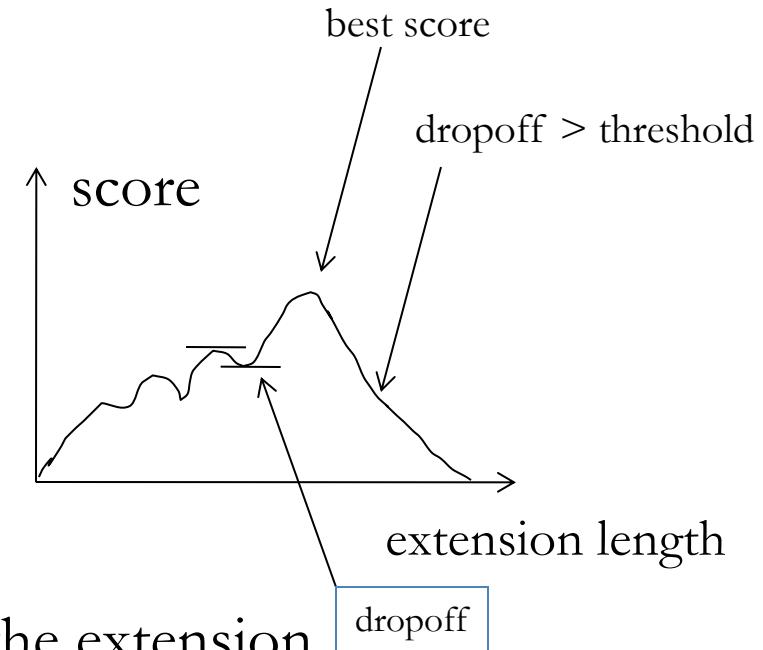
for k from 0 to ...

```
score += sc(S[i+k],T[j+k])
```

for k from 1 to ...

```
score += sc(S[i-k],T[j-k])
```

- But when to stop?
- Score will increase and decrease during the extension. dropoff
- Extension stops when score greater than reporting threshold, or drop off greater than drop threshold.



HSP Extension

- How long will the extension continue after reaching best score?
- Assumptions:
 - After reaching best score, sequence becomes random.
 - $\text{match}=1$ and $\text{mismatch}=-1$
- Expected score on each additional base is -0.5 .
- If $\text{dropoff}=k$, then after $2k$ bases, the expected dropoff will reach k .
- Conclusion: Not too long.

Example of missing a target

- Fail:

GAGTACTAACACCAACATTAGTGGGCAATGGAAAAT

- Dilemma

- **Sensitivity** – needs shorter seeds
 - the success rate of finding a homology
- **Speed** – needs longer seeds
 - Mega-BLAST uses seeds of length 28.

PatternHunter uses “spaced seeds”

- 111*1**1*1**11*111 (called a spaced seed)
 - Eleven required matches (**weight**=11, **length** = 18)
 - Seven “don’t care” positions

GAGTACTCAACACCAACATTAGTGGCAATGGAAAAT...

A horizontal sequence of vertical bars. The bars are black, except for a group of four blue bars located in the center of the sequence.

GAATACTCAACAGCAACACTAATGGCAGCAGAAAAT...

111 *1 **1*1 **11 *111

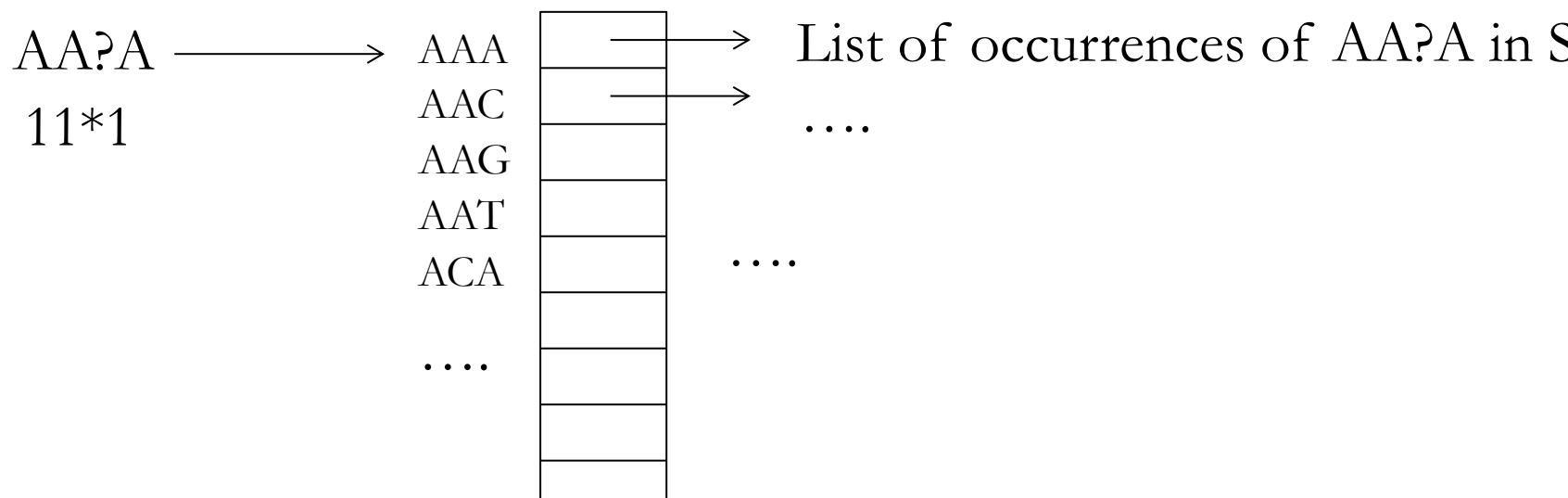
- Hit = all the required matches are satisfied.
- BLAST's seed \equiv 111111111111

Notes about the notation

- A homology/similarity region's actual sequences do not matter, the match/mismatch matters.
- Therefore, a region is often denoted by a binary 0-1 sequence,
1101111001110111011111
- A hit is then as follows:
- **1101111001110111011111**
- **111*1**1*1**11*111**

The Data Structure for Finding Hit

- The same as consecutive seed. Except that now we have a length l , weight w seed. E.g. $11*1$.
 - Each l -mer, take the w letters out and put in index table.
 - The index table can be a hash table.



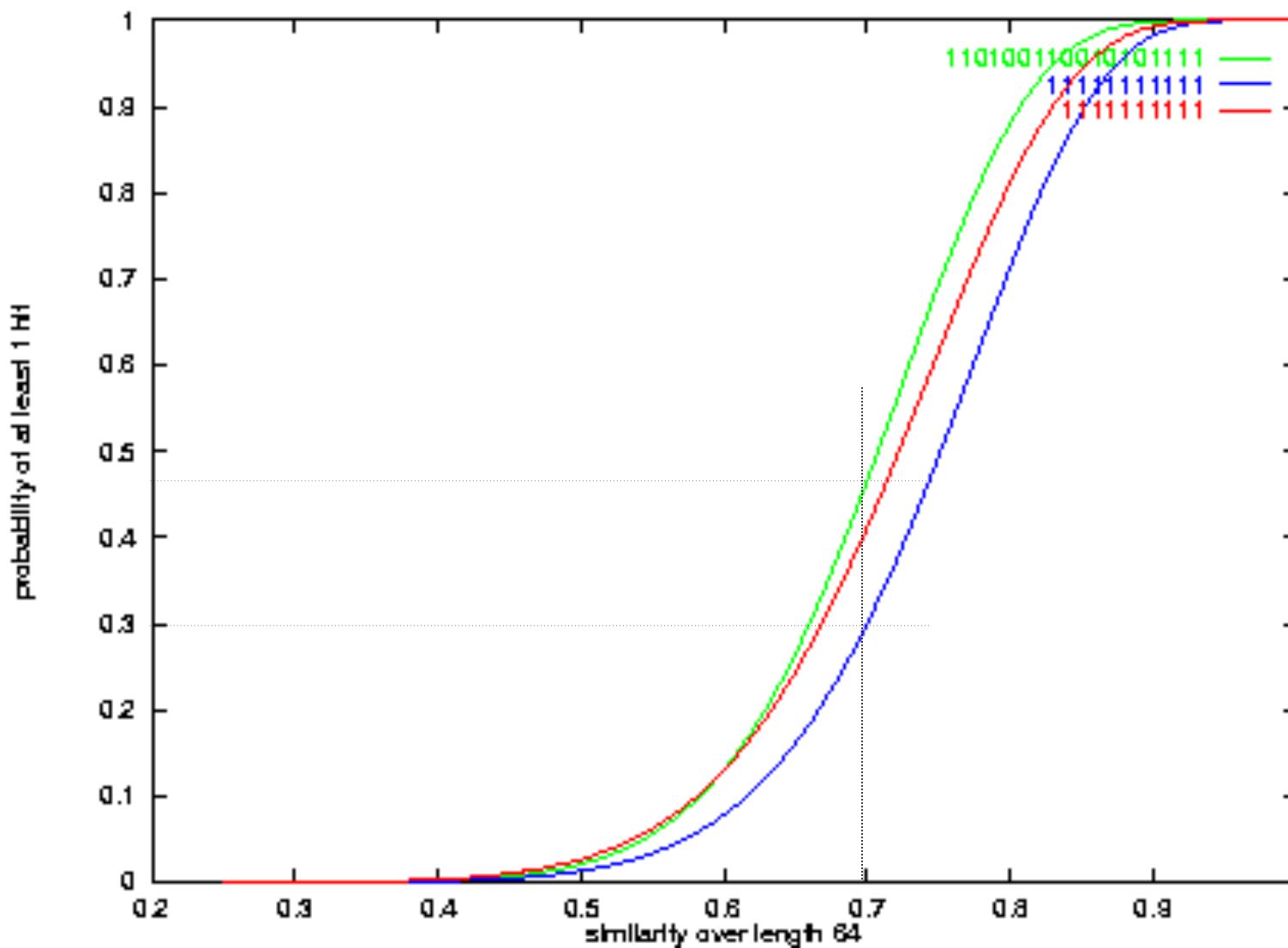
Time Complexity Comparison

- Lemma: for random sequence S and T with lengths m and n , the expected number of hits for weight w , length l seed is

$$(m-l+1)(n-l+1)4^{-w}$$

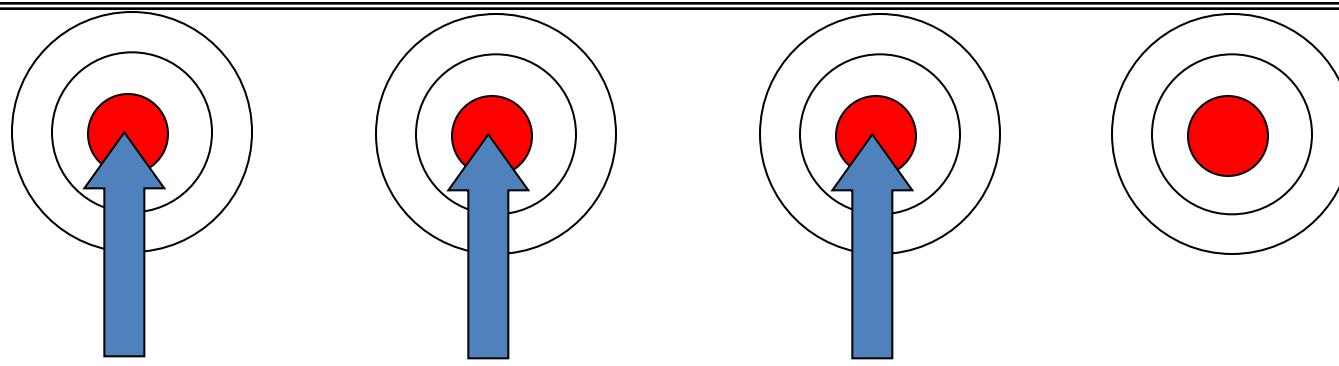
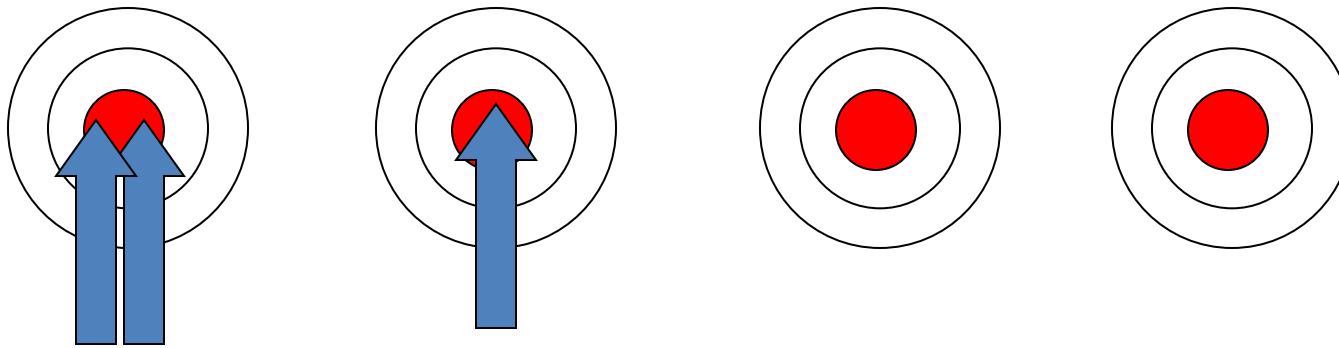
- Because usually l is much shorter than m and n , this is approximately $4^{-w}mn$
- That is, the expected number of hits in random regions only depends on the weight, but not the shape of the seed. So does the running time.
- So, speed-wise, spaced seed is similar to consecutive seed.
- What about the sensitivity?

Simulated sensitivity curves



Why spaced seeds are more sensitive?

- Consider a simple scenario where there are n HSPs to be detected. Each HSP has length L . Each position of the HSP is a match with probability p independently. L is much larger than seed length.
- Compare weight- w spaced seed s and contiguous seed t .
- At each position, probability of hit is p^w for both seeds.
- $E[\# \text{ of hits}] = n \cdot (L - l + 1) \cdot p^w$, here l is the length of the seed.
- Two seeds have comparable number of hits.
- But why spaced seeds are more sensitive?



Why spaced seeds are more sensitive?

TTGACCTCACC?

|||||||?|

TTGACCTCACC?

1111111111

11111111111

111111111111

CAA?A??A?C??TA?TGG?

|||?|??|?|??|||?|||?

CAA?A??A?C??TA?TGG?

111*1**1*1**11*111

111*1**1*1**11*111

- BLAST's seed usually uses more than one hits to detect one homolog (wasteful)
- A spaced seed uses fewer hits to detect one homolog (efficient)

Good spaced seed does not overlap much

- The following spaced seed does not overlap heavily when shifts:

```
111*1**1*1**11*111
111*1**1*1**11*111
111*1**1*1**11*111
111*1**1*1**11*111
111*1**1*1**11*111
111*1**1*1**11*111
111*1**1*1**11*111
.
.
.
.
```

- The hits at different positions are independent.
- The probability of having the second hit is $3*p^6 + \dots$
 - compare to BLAST's seed $p + p^2 + p^3 + p^4 + \dots$

Lossless Filtration

- When seeds are short enough and HSP similarity is high enough, lossless filtration is also possible.
- For example, seed 111 can guarantee to match when a sufficiently long HSP has similarity 66.7%.
- Proof: To fail being hit by 111, the HSP must have a mismatch in every 3 adjacent positions.
- On the other hand, 110110110..., which has 66.6% similarity, will fail the seed 111.

Lossless Filtration

- Now consider spaced seed $11*1$.
- Claim: For any $\epsilon > 0$, seed $11*1$ will hit every sufficiently long region with similarity $0.6 + \epsilon$.

Proof

- Suppose there is a sufficiently long region not hit by 11^*1 .
- We can break the region into blocks of 1^a0^b . Besides the last block that can have at most three 1s, each of the other blocks is one of the following three cases:
 - 10^b for $b \geq 1$
 - 110^b for $b \geq 2$
 - 1110^b for $b \geq 2$
- In each block, similarity ≤ 0.6 .
- So the long region's similarity is $< 0.6 + \epsilon$.

Compute a Seed's Sensitivity

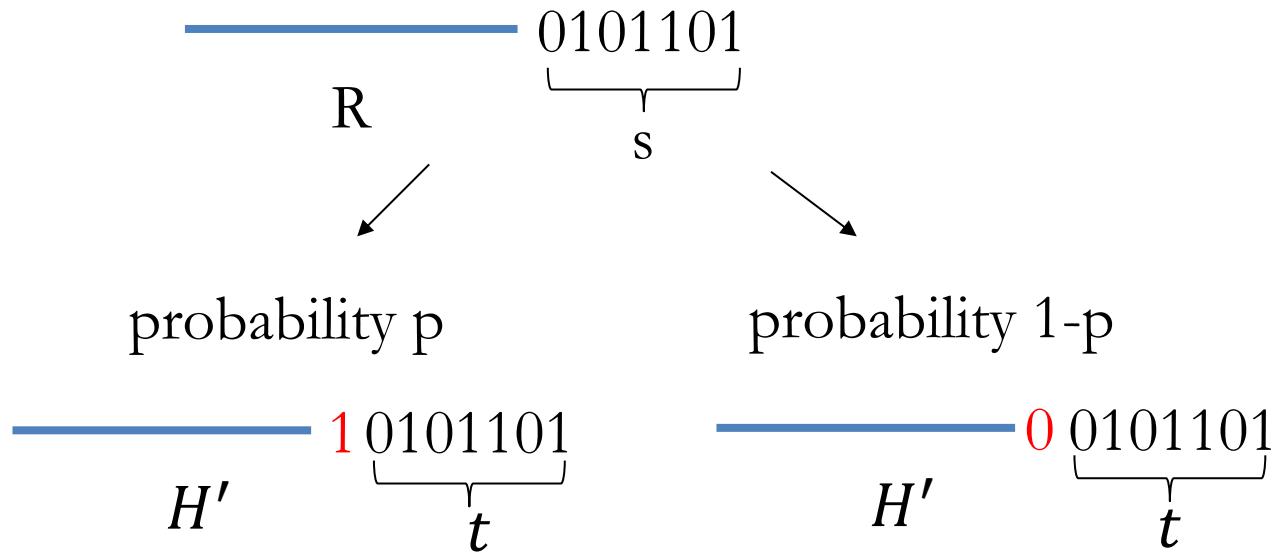
- H : A probabilistic distribution of HSP, $\Pr(H[i] = 1) = p$;
- We want $\Pr(\text{length-}n \text{ such HSP is hit by a seed } s)$. $\text{len}(s) = l$
- t : A length- l 0-1 string.
- Ht : The concatenation of H and t .
- Let $D[i, t]$ be the probability Ht is hit by t for $\text{len}(H) = i$.

0101101
H s

- By total probability law, answer is $\sum_t (p(t) \cdot D[n - k, t])$. Note the summation is over all length l binary string t , and
- $p(s) = p^{\#1 \text{ in } t} (1 - p)^{\#0 \text{ in } t}$

Dynamic Programming

- Case I: t is hit by s . Then $D[i, t] = 1$.
- Case II: t is not hit by s :



H' is the length- $(i-1)$ distribution. t' is the length- $(l-1)$ prefix of t .

$$D[i, s] = p \cdot D[i - 1, 1t'] + (1 - p) \cdot D[i - 1, 0t']$$

Dynamic Programming

- Initialize $D[0,t]$
- For i from 1 to n
- for every length- l binary string t
- if t is hit by s
- $D[i,t] = 1$
- else
- $D[i,t] = p \cdot D[i-1,1t'] + (1-p) \cdot D[i-1,0t']$
- Return $\sum_t p(t) \cdot D[n-l,t]$

Here $p(t) = p^{\#1 \text{ in } t} (1-p)^{\#0 \text{ in } t}$.

Time complexity $O(n \cdot 2^l)$

More efficient algorithm exists (not lectured here). $O(n \cdot 2^{\#* \text{ in } s})$.

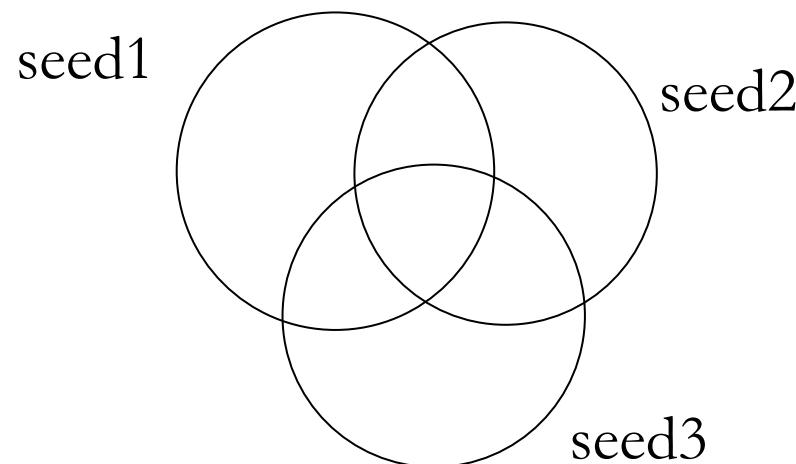
The “algorithm” to select the optimal spaced seed

- Enumerate all spaced seeds with weight 11 and no longer than 18, calculate the sensitivity of each, and output the one with the highest sensitivity.
- This is the ONLY known algorithm that guarantees the finding of optimal seed.
- Many heuristics exist to find suboptimal seeds.

Multiple Seeds – PatternHunter II:

Multiple Spaced Seeds

- Seeds with different shapes can detect different homologies.
 - Some seeds *may* detect more homologies than others. This leads to the use of optimized spaced seed.
 - Can use several seeds simultaneously to hit more homologies
 - Approaching 100% sensitive homology search



Multiple Seeds Example

(homology identity = 0.7, homology length=64)

111*11**1*11*1*111

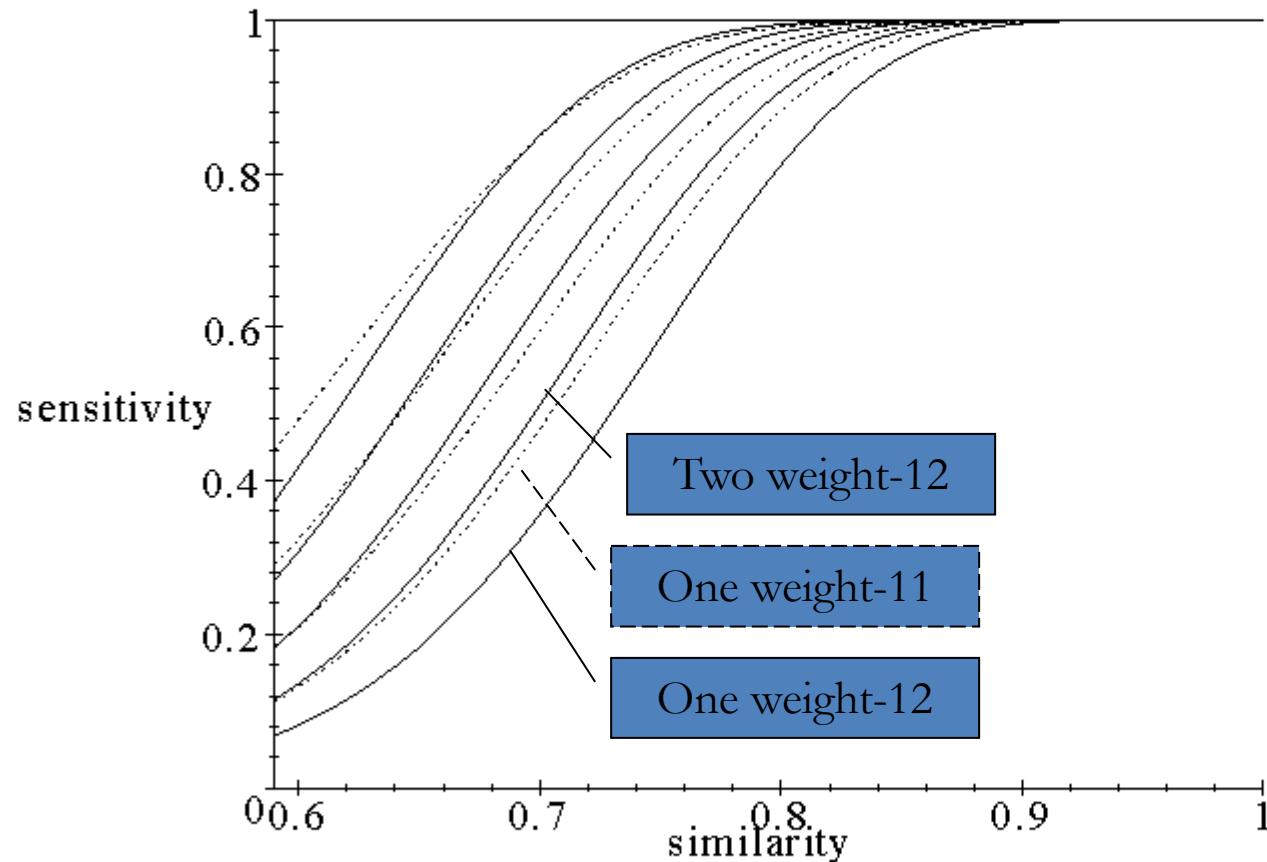
1111***1***1**11*1*111

11**11*1**1*1***11*111

111*1***1111**1***11*1

- To use multiple seeds, one only needs to search multiple times with different seeds, and combine results. Of course, you can search with them simultaneously.
- In either case, this slows down approximately k times if k seeds are used.
- Is it worth it? How does it compare with using one shorter seed?

Simulated sensitivity curves:



- Solid curves: Multiple (1, 2, 4, 8, 16) weight-12 spaced seeds.
- Dashed curves: Optimal spaced seeds with weight = 11, 10, 9, 8.
- Typically, “**Doubling the seed number**” gains better sensitivity than “**decreasing the weight by 1**”.

Seeding for Proteins - BLASTP

- With nucleotides, we're requiring k positions with exact matches.
- For proteins, that's not really reasonable: some amino acids mutate to another one very often.
- So BLASTP looks for 3- or 4-letter protein sequences that are “very close” to each other, and then builds matches from them.
- Where very close \rightarrow total BLOSUM score in the short window is at least +13 (or +11 for 3 mer).

Excercise

- For query RRR, threshold 11, what are the other 3-mers that can generate hits?

	A	R	N	D	C	Q	E	G	H	I	L	K	M	F	P	S	T	W	Y	V
A	4	-1	-2	-2	0	-1	-1	0	-2	-1	-1	-1	-1	-2	-1	1	0	-3	-2	0
R	-1	5	0	-2	-3	1	0	-2	0	-3	-2	2	-1	-3	-2	-1	-1	-3	-2	-3
N	-2	0	6	1	-3	0	0	0	1	-3	-3	0	-2	-3	-2	1	0	-4	-2	-3
D	-2	-2	1	6	-3	0	2	-1	-1	-3	-4	-1	-3	-3	-1	0	-1	-4	-3	-3
C	0	-3	-3	-3	9	-3	-4	-3	-3	-1	-1	-3	-1	-2	-3	-1	-1	-2	-2	-1
Q	-1	1	0	0	-3	5	2	-2	0	-3	-2	1	0	-3	-1	0	-1	-2	-1	-2
E	-1	0	0	2	-4	2	5	-2	0	-3	-3	1	-2	-3	-1	0	-1	-3	-2	-2
G	0	-2	0	-1	-3	-2	-2	6	-2	-4	-4	-2	-3	-3	-2	0	-2	-2	-3	-3
H	-2	0	1	-1	-3	0	0	-2	8	-3	-3	-1	-2	-1	-2	-1	-2	-2	2	-3
I	-1	-3	-3	-3	-1	-3	-3	-4	-3	4	2	-3	1	0	-3	-2	-1	-3	-1	3
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4	-2	2	0	-3	-2	-1	-2	-1	1
K	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5	-1	-3	-1	0	-1	-3	-2	-2
M	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5	0	-2	-1	-1	-1	-1	1
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6	-4	-2	-2	1	3	-1
P	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7	-1	-1	-4	-3	-2
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4	1	-3	-2	-2
T	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5	-2	-2	0
W	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	-4	-3	-2	11	2	-3
Y	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	-1
V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4
B	-2	-1	3	4	-3	0	1	-1	0	-3	-4	0	-3	-3	-2	0	-1	-4	-3	-3

How to implement that?

- With BLASTP:
 - Build an automaton that reflects all string close to short strings in T (the short sequence)
 - Scan S (the longer sequence), looking for matches.
- We do not study the classic ways to match multiple patterns efficiently. If interested, search for Aho–Corasick algorithm.

A Simpler Way

- There is another way:
 - 1) For every 3-mer, find all “neighboring” 3-mers that, score at least +11 (or whatever). Build these into a data structure `NeighborList`.
 - 2) Build a hash table `H` for `S` of its 3-mers, just like for the nucleotide case
 - 3) For every 3-mer x in `T`, retrieve all neighbors from `NeighborList`. For each neighbor, query `H` to find hits in `S`.

`NeighborList` is a small structure: there are only 8000 3-mers.

Which sequence to index?

- That's actually a tough question.
- Here's a typical scenario:
- S is the human genome (length n)
- P_1 is a short protein sequence (length m_1)
- P_2 is another short sequence (length m_2)
- If we're smart, build an index for S , *once*, and then look up the short sequences in it.
- Added time for P_2 is more like $O(m_2)$, not $O(n+m_2)$.

More on indexing

- But memory is a concern:
- Indexing the human genome is expensive!
- Oh, wait. No, it isn't, not anymore... you probably should index the longer sequence.
- BLASTN (1990) indexes the query, not the database.
- BLAT (2000) indexes the database, not the query.

- BLASTP also indexes the query.

Extensions to this idea

- Two-hit BLAST:
- Require two seeds (probably shorter) that are nearer than k from each other, and base the alignment on their enclosing box.
- Potentially even fewer false positives, but one has to use shorter seeds. There's quite a tradeoff here.

Wrap-up

- Local alignment slow when sequences are large
- Use 11 consecutive matches as hits
 - How these hits are found efficiently
 - What to do after hits are found
- Spaced seeds better
 - How sensitivity is computed and how optimal seed is found
 - How hits are found for spaced seed
- Multiple spaced seed.
- Protein seeds.
- Two hits.