Seeding Methods in Homology Search
A similarity between mouse and human genomes

Smith-Waterman is the most accurate method.

Time complexity: $O(mn)$.

Smith-Waterman is the most accurate method.
Smith-Waterman Algorithm

• The old algorithm requires $O(mn)$ and is too slow.
• Human v.s. mouse: $3 \times 10^9 \times 3 \times 10^9 = 9 \times 10^{18}$
• Most similarities (local alignments) are very short relative to the genomes.
Similarity Search

- For every pairs of (i, j), build a local alignment around it.
 - $O(mnT)$
 - Not better than Smith-Waterman.
- But this leads to an important idea…
Main Idea

• Most pairs of \((i, j)\) are useless. We only want to try local alignments on the “promising” pairs of \((i, j)\).

• In the context of sequence similarity search in bioinformatics, these “promising” pairs are called “seeds” or “hits”.

• We need
 • a proper definition of hits.
 • some efficient way to enumerate the hits faster than trying every pair of \((i, j)\).
BLAST Uses Short Consecutive Match as Hits

```
GCNTACACGTCACTGTCGACCAACACNCATGTCTCTAGTGTCCCTCATAAGTCCAAAAAGTTTGC
|| |||| | |||  | ||||  |  |||||
GCCTACACACCGGCACTTGTG-TTCCTGCTAGTCTCTAGTGTCCCTGAAAAAGTTCCAGCGTATTTTGC
```

Diagram:

1

\[\text{seq1} \]

\[\text{seq2} \]
BLAST Uses Short Consecutive Match as Hits

Majority of \((i,j)\) are random and probability of generating a random hit is small.

For length-\(k\) seed, time complexity becomes \(O(4^{-k}mnT)\)

By default, BLAST used \(k=11\).

What’s the speed up factor for \(k=11\)?
The Idea behind Seeding

• A true similarity has a high chance of being hit.
• A random pair \((i, j)\) has low chance of being hit.
• Thus, if we use hit to filter \((i, j)\), we will
 • Detect most true similarities.
 • Not wasting time on random pairs of \((i, j)\).
The Data Structure for Finding Hit?

- for each \(k \)-mer, index table to remember all its occurrences in \(S \).
- for each \(k \)-mer of \(T \), find its hits in the index table.
- The index table can be a trie or a hash table.

\[
\begin{align*}
\text{AA} & \rightarrow 0, 6 \\
\text{AC} & \\
\text{AG} & \\
\text{AT} & \rightarrow 1 \\
\text{CA} & \\
\text{CC} & \\
\text{CG} & \\
\text{CT} & \rightarrow 3 \\
\text{GA} & \\
\text{GC} & \\
\text{GG} & \\
\text{GT} & \\
\text{TA} & \rightarrow 5 \\
\text{TC} & \rightarrow 2 \\
\text{TG} & \\
\text{TT} & \rightarrow 4
\end{align*}
\]

\[
S: \quad \text{AATCTTAA} \\
T: \quad \text{GAACCTTA}
\]
The Data Structure for Finding Hit?

List of occurrences of AAA in S
List of occurrences of AAC in S
List of occurrences of AAG in S
List of occurrences of AAT in S
List of occurrences of ACA in S

Space complexity?
Overall runtime

• Build the index using S: $O(n)$ time.
• Find matches between the index and sequence T: $O(m)$ time to scan T, plus we need to examine all of the N hits found. Let t be the examination time. Then $O(m+Nt)$.
• Overall runtime: $O(n+m+Nt)$.
• The term Nt is the most expensive part. Indexing overhead is small.
• In practice, most of the hits encountered are random hits.
Filtration can have multiple rounds

- After finding a hit, instead of trying to build a local alignment directly, BLAST uses another round of filtration to determine if a hit is a “good” or “bad” hit.
- Quick search in both directions; if most symbols match, it’s a good hit. Otherwise it’s bad.
 - More precisely, use ungapped extension to find HSPs.
- If an HSP is above a certain score threshold, build a local alignment around it.

```
GCNTACACGTCCATCTGTGCCACCCAGCCATGTCTCTAGTGATCCCTCATGGTGCCCAACAAAGTTTGC
TGCCTACACCCGCACTGTGTGTTCTGCTATGTCTCTAGTTATCCCTGAAAAGTTCCACGGATATTTG
```
HSP extension

for k from 0 to …
\[\text{score } += \text{sc}(S[i+k],T[j+k]) \]

for k from 1 to …
\[\text{score } += \text{sc}(S[i-k],T[j-k]) \]

• But when to stop?
• Score will increase and decrease during the extension.
• Extension stops when drop off greater than threshold.
HSP Extension

• How long will the extension continue after reaching best score?
• Assumptions:
 • After reaching best score, sequence becomes random.
 • match=1 and mismatch=-1
• Expected score on each additional base is -0.5.
• If dropoff=k, then after 2k bases, the expected dropoff will reach k.
• Conclusion: Not too long.
Example of missing a target

- Fail:

 \[
 \begin{array}{c}
 \text{GAGTACTCAACACCAACATTA}\text{GTTGGGCAATGGAAAAT} \\
 \text{GAATACTCAACAGCAACATCAATG}\text{GGCAGCAGAAAAT}
 \end{array}
 \]

- Dilemma
 - Sensitivity – needs shorter seeds
 - the success rate of finding a homology
 - Speed – needs longer seeds
 - Mega-BLAST uses seeds of length 28.
PatternHunter uses “spaced seeds”

- 111*1**1*1**11*111 (called a spaced seed)
 - Eleven required matches (weight=11, length = 18)
 - Seven “don’t care” positions

```
GAGTACTCAACACCCATTAGTGGCAATGGAAAAT...
|| || || || || || || || || ||
GAATACTCAACACGCAACACTAATGCCGAGAGAAAAT...
111*1**1*1**11*111
```

- Hit = all the required matches are satisfied.
- BLAST’s seed = 11111111111
Notes about the notation

• A homology/similarity region’s actual sequences do not matter, the match/mismatch matters.
• Therefore, a region is often denoted by a binary 0-1 sequence, 11011111001110111011111
• A hit is then as follows:
 • 11011111001110111011111
 • 111*1**1*1**11*111
The Data Structure for Finding Hit

- The same as consecutive seed. Except that now we have a length l, weight w seed. E.g. 11*1.
 - Each l-mer, take the w letters out and put in index table.
- The index table can be a hash table.

```
AA?A  →  AAA  →  List of occurrences of AA?A in S
    11*1   →  AAC  →  ....
            →  AAG  →  ....
            →  AAT  →  ....
            →  ACA  →  ....
            →  ....
            →  ....
```
Time Complexity Comparison

• Lemma: for random sequence S and T with lengths m and n, the expected number of hits for weight w, length l seed is

$$(m - l + 1)(n - l + 1)4^{-w}$$

• Because usually l is much shorter than S and T, this is approximately $4^{-w}mn$

• That is, the expected number of hits in random regions only depends on the weight, but not the shape of the seed. So does the running time.

• So, speed-wise, spaced seed is similar to consecutive seed.

• What about the sensitivity?
Simulated sensitivity curves
Why spaced seeds are better?

• BLAST’s seed usually uses more than one hits to detect one homology (redundant)
• Spaced seeds uses fewer hits to detect one homology (efficient)
PH’s seed does not overlap much

• PH’s seed do not overlap heavily when shifts:

 111*1**1*1**11*111
 111*1**1*1**11*111
 111*1**1*1**11*111
 111*1**1*1**11*111
 111*1**1*1**11*111
 111*1**1*1**11*111
 111*1**1*1**11*111
 111*1**1*1**11*111

• The hits at different positions are independent.

• The probability of having the second hit is 3*p^6 + …
 • compare to BLAST’s seed p + p^2 + p^3 + p^4 + …
Lossless Filtration

• When seeds are short enough and HSP similarity is high enough, lossless filtration is also possible.
• For example, seed 111 can guarantee to match when a sufficiently long HSP has similarity 66.7%.
• Proof: To fail being hit by 111, the HSP must have a mismatch in every 3 adjacent positions.
• On the other hand, 110110110…, which has 66.6% similarity, will fail the seed 111.
• Now consider spaced seed 11*1.
• Claim: For any $\epsilon > 0$, seed 11*1 will hit every sufficiently long region with similarity $0.6 + \epsilon$.
Proof

- Suppose there is a sufficiently long region not hit by 11^*1.
- We can break the region into blocks of 1^a0^b. Besides the last block that can have at most three 1s, each of the other blocks is one of the following three cases:
 - 10^b for $b \geq 1$
 - 110^b for $b \geq 2$
 - 1110^b for $b \geq 2$
- In each block, similarity ≤ 0.6.
- So the long region’s similarity is $< 0.6 + \epsilon$.
Compute a Seed’s Sensitivity

- R: A probabilistic distribution of HSP, Pr(R[i]=1) = p;
- We want Pr(length-n R is hit by a seed x). |x| = k
- s: A length-k 0-1 string.
- Rs: The concatenation of R and s.
- Let $D[i, s]$ be the probability Rs is hit by x for a length-i R.

\[
\text{0101101}
\]

\[
R \quad s
\]

- By total probability law, answer is $\sum_s (p(s) \cdot D[n - k, s])$. Note the summation is over all length k binary string s, and $p(s) = p^{\#1 \text{ in } s}(1 - p)^{\#0 \text{ in } s}$
Dynamic Programming

• Case I: s is hit by x. Then $D[i, s] = 1$.

• Case II: s is not hit by x:

R

\[
\begin{align*}
R' & \quad 0101101 \\
\text{probability } p & \\
\text{probability } 1-p & \\
R' & \quad 10101101 \\
\text{R'} & \quad 0101101 \\
\text{R'} & \quad 0101101 \\
\end{align*}
\]

R’ is the length-(i-1) distribution. s’ is the length-(k-1) prefix of s.

$D[i, s] = p \cdot D[i - 1, 1s'] + (1 - p) \cdot D[i - 1, 0s']$
Dynamic Programming

- Initialize $D[0,s]$
- For i from 1 to n
 - for every binary string s
 - if s is hit by x
 - $D[i,s] = 1$
 - else
 - $D[i,s] = p \cdot D[i-1,1s'] + (1-p) \cdot D[i-1,0s']$
- Return $\sum_s p(s) \cdot D[n-k,s]$

Here $p(s) = p^{\#1 in s}(1-p)^{\#0 in s}$.

Time complexity $O(2^kn)$

More efficient algorithm exists (not lectured here). $O(2^{\#0 in s}n)$.
The “algorithm” to select the optimal spaced seed

• Enumerate all spaced seeds with weight 11 and no longer than 18, calculate the sensitivity of each, and output the one with the highest sensitivity.
• This is the ONLY known algorithm that guarantees the finding of optimal seed.
• Many heuristics exist to find suboptimal seeds.
Multiple Seeds – PatternHunter II:
Multiple Spaced Seeds

- Seeds with different shapes can detect different homologies.
 - Some seeds *may* detect more homologies than others. This leads to the use of optimized spaced seed.
 - Can use several seeds simultaneously to hit more homologies
 - Approaching 100% sensitive homology search
Multiple Seeds Example

(homology identity = 0.7, homology length=64)

111*11**1*11*1*111
1111***1***1**11*1*111
11**11*1**1*1***11*111
111*1***1111**1***11*1

• To use multiple seeds, one only needs to search multiple times with different seeds, and combine results. Of course, you can search with them simultaneously.

• In either case, this slows down approximately k times if k seeds are used.

• Is it worth it? How does it compare with using one shorter seed?
Simulated sensitivity curves:

- Solid curves: Multiple (1, 2, 4, 8, 16) weight-12 spaced seeds.
- Dashed curves: Optimal spaced seeds with weight = 11, 10, 9, 8.
- Typically, “Doubling the seed number” gains better sensitivity than “decreasing the weight by 1”.
Seeding for Proteins - BLASTP

• With nucleotides, we’re requiring k positions with exact matches.

• For proteins, that’s not really reasonable: some amino acids mutate to another one very often.

• So BLASTP looks for 3- or 4-letter protein sequences that are “very close” to each other, and then builds matches from them.

• Where very close \Rightarrow total BLOSUM score in the short window is at least $+13$ (or $+11$ for 3 mer).
Excercise

- For query RRR, threshold 11, what are the other 3-mers that can generate hits?
How to implement that?

• With BLASTP:
 • Build an automaton that reflects all strings close to short strings in T (the short sequence)
 • Scan S (the longer sequence), looking for matches.
• We do not study the classic ways to match multiple patterns efficiently. If interested, you can read at https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm
A Simpler Way

• There is another way:

1) For every 3-mer, find all “neighboring” 3-mers that, score at least +11 (or whatever). Build these into a data structure NeighborList.

2) Build a hash table H for S of its 3-mers, just like for the nucleotide case.

3) For every 3-mer \(x \) in T, retrieve all neighbors from NeighborList. For each neighbor, query H to find hits in S.

NeighborList is a small structure: there are only 8000 3-mers.
Which sequence to index?

- That’s actually a tough question.

- Here’s a typical scenario:
 - S is the human genome (length n)
 - P_1 is a short protein sequence (length m_1)
 - P_2 is another short sequence (length m_2)

- If we’re smart, build an index for S, once, and then look up the short sequences in it.
- Added time for P_2 is more like $O(m_2)$, not $O(n+m_2)$.
More on indexing

- But memory is a concern:
- Indexing the human genome is expensive!
- Oh, wait. No, it isn’t, not anymore… you probably should index the longer sequence.
- BLASTN (1990) indexes the query, not the database.
- BLAT (2000) indexes the database, not the query.

- BLASTP also indexes the query.
Extensions to this idea

• Two-hit BLAST:

• Require two seeds (probably shorter) that are nearer than k from each other, and base the alignment on their enclosing box.

• Potentially even fewer false positives, but one has to use shorter seeds. There’s quite a tradeoff here.
Wrap-up

- Local alignment slow when sequences are large
- Use 11 consecutive matches as hits
 - How these hits are found efficiently
 - What to do after hits are found
- Spaced seeds better
 - How sensitivity is computed and how optimal seed is found
 - How hits are found for spaced seed
- Multiple spaced seed.
- Protein seeds.
- Two hits.