Seeding Methods in Homology Search

70\6(/:0,%/ !
0 Vvlm[/(r\'rlt m[ﬂ‘jnr/m/n‘t @X”‘C‘f>ﬁl(\joft‘+hm -
@ Relatw 6n'tY47[>/ s cond *ﬁ*@%h column

—2—: () {/q V\[”‘)/Y\
A\ L2).
aey 9 15,

® APY”X‘(W‘H”"\ OvLjV”“LLIW) fﬂ SP-cuve
Wwesh 'TYcW‘SLM [ML7M7

5|’\ 0 9’
a\/\f) 4
s L

\/ -

N ~

0{:, Cék/é(/> £ ({(%,%)fﬁd(@ﬁ}{)_
< A4, 94" o2

A Qimi’qrify hetween monse and human

genomes

GCNTACACGTCACCATCTGTGCCACCACNCATGTCTCTAGTGATCCCTCATAAGTTCCAACAAAGTTTGC

Lererer e |l Leeeeerrreerereeer e rrererrr b et
GCCTACACACCGCCAGTTGTG-TTCCTGCTATGTCTCTAGTGATCCCTGAAAAGTTCCAGCGTATTTTGC

GAGTACTCAACACCAACATTGATGGGCAATGGAAAATAGCCTTCGCCATCACACCATTAAGGGTGA----

LErrrrreerr reerer el T T I T Y I B
GAATACTCAACAGCAACATCAACGGGCAGCAGAAAATAGGCTTTGCCATCACTGCCATTAAGGATGTGGG

—————————————————— TGTTGAGGAAAGCAGACATTGACCTCACCGAGAGGGCAGGCGAGCTCAGGTA

Lererrrreerrr e reerrrererr e rrrrerr re e I
TTGACAGTACACTCATAGTGTTGAGGARAGCTGACGTTGACCTCACCAAGTGGGCAGGAGAACTCACTGA

GGATGAGGTGGAGCATATGATCACCATCATACAGAACTCAC-——--—--—-- CAAGATTCCAGACTGGTTCTTG

T T I I I O O LEEEEE trerrrr el
GGATGAGATGGAACGTGTGATGACCATTATGCAGAATCCATGCCAGTACAAGATCCCAGACTGGTTCTTG

Smith-Waterman is the most accurate method.
Time complexity: O(mn).

Smith-Waterman Algorithm

S

* The old algorithm requires O(mn) and is too slow.
* Human v.s. mouse: 3x107x3x10°=9x101!®

Similarity Search

1 n sequence 2
* Most similarities (local alignments) are very short relative
to the genomes.

Similarity Search

1 n sequence 2
* For every pairs of (4, i), build a local alignment around it.
* O(mnT)

* Not better than Smith-Waterman.

* But this leads to an important idea...

Main Idea

Most pairs of (i, j) are useless. We only want to try local alignments on
the “promising” pairs of (i, j).

In the context of sequence similarity search in bioinformatics, these
“promising” pairs are called “seeds” or “hits”.

We need

* a proper definition of hits.

* some etficient way to enumerate the hits faster than trying every pair of (i, j).

BILAST Uses Short Consecutive Match as Hits

GCNTACACGTCACCATCTGTGCCACCACNCATGTCTCTAGTGATCCCTCATAAGTTCCAACAAAGTTTGC

I I I O N N R |l Lerrrrrrreeereerrr e rrrrrrrr bt
GCCTACACACCGCCAGTTGTG-TTCCTGCTATGTCTCTAGTGATCCCTGAAAAGTTCCAGCGTATTTTGC

1 m seql

1 n seq2

BILAST Uses Short Consecutive Match as Hits

GCNTACACGTCACCATCTGTGCCACCACNCATGTCTCTAGTGATCCCTCATAAGTTCCAACAAAGTTTGC

I I I O N N R |l Lerrrrrrreeereerrr e rrrrrrrr bt
GCCTACACACCGCCAGTTGTG-TTCCTGCTATGTCTCTAGTGATCCCTGAAAAGTTCCAGCGTATTTTGC

1 — m seql

1 r—— n seq2

* Majority of (1,j) are random and probability of generating a
random hit 1s small.

e For length-k seed, time complexity becomes O(4*mnT)

* By default, BLAST used k=11.

* What’s the speed up factor for k=117

The Idea behind Seeding

* A true similarity has a high chance of being hit.
* A random pair (i, |) has low chance of being hit.

* Thus, it we use hit to filter (1, j), we will
e Detect most true similarities.

* Not wasting time on random pairs of (1, j).

The Data Structure for Finding Hit?

e for each £-mer, index table to remember all its occurrences in S.
e for each £-mer of T, find its hits in the index table.

* The index table can be a trie or a hash table.

AR ———> () 6

AC S: AATCTTAA

AG

ar —> 1 012345067
CA

ole

CG

cT —— 3

GA T GAACTTA
GC

GG

GT

TA —> 5

C —> 2

TG

T ——> 4

The Data Structure for Finding H

1t?

AAC
AAG
AAT
ACA

— 1 o list of occurrences of AAAIn S
—1— List of occurrences of AAC in S

Space complexity?

11

Overall runtime

Build the index using S: O(#) time.

Find matches between the index and sequence T: O() time to scan T,

plus we need to examine all of the N hits found. Let t be the
examination time. Then

O(m+N?).
Overall runtime: O(n+m+N?).
The term N7is the most expensive part. Indexing overhead is small.

In practice, most of the hits encountered are random hits.

12

Filtration can have multiple rounds

GCNTACACGTCACCATCTGTGCCACCAGCCATGTCTCTAGTGATCCCTCATGGTGGCCAACAAAGTTTGC

. I Lt rrreerrre e reeeen R RN
TGCCTACACACCGCCAGTTGTGTTCCTGCTATGTCTCTAGTTATCCCTGAAAAGTTCCAGCGTATTTTGC

* After finding a hit, instead of trying to build a local alignment
directly, BLAST uses another round of filtration to determine if
a hit 1s a “good” or “bad” hit.
* Quick search in both directions; if most symbols match, it’s a
good hit. Otherwise it’s bad.
* More precisely, use ungapped extension to find HSPs.

e If an HSP is above a certain score threshold, build a local
alignment around it.

13

HSP extension

GCNTACACGTCACCATCTGTGCCACCAGCCATGTCTCTAGTGATCCCTCATGGTGGCCAACAAAGTTTGC

. I Lt rrreerrre e reeeen R RN
TGCCTACACACCGCCAGTTGTGTTCCTGCTATGTCTCTAGTTATCCCTGAAAAGTTCCAGCGTATTTTGC

best score

for k from 0O to ..
score += sc(S[1+k],T[j+k]) score
for k from 1 to ...

score += sc(S[1-k], T[}-k]) [~

dropoff > threshold

\

dropoff

* Score will increase and decrease during the extension.

* Extension stops when drop off greater than threshold.

14

HSP Extension

How long will the extension continue after reaching best score?

Assumptions:

* After reaching best score, sequence becomes random.

* match=1 and mismatch=-1
Expected score on each additional base 1s -0.5.
It dropott=k, then after 2k bases, the expected dropott will reach k.

Conclusion: Not too long.

15

Example of missing a target

e Fail:
GAGTACTCAACACCAACATTAGTGGGCAATGGAAAAT

LEctrrrrrr e reerer 1 rrrrn NENEN
GAATACTCAACAGCAACATCAATGGGCAGCAGAAAAT

* Dilemma
* Sensitivity — needs shorter seeds
* the success rate of finding a homology

* Speed — needs longer seeds
* Mega-BLLAST uses seeds of length 28.

16

PatternHunter uses “spaced seeds”

o 11T*P#F1*1**11*111 (called a spaced seed)
* Eleven required matches (weight=11, length = 18)

* Seven “don’t care” positions

GAGTACTCAACACCAACATTAGTGGCAATGGAAAAT..

e rrerrreer reeer bE rern NEREN
GAATACTCAACAGCAACACTAATGGCAGCAGAAAAT..

111 %] **]1*]*x*]11*111

* Hit = all the required matches are satistied.
e BILLAST’sseed = 11111111111

17

Notes about the notation

A homology/similarity region’s actual sequences do not matter, the
match /mismatch matters.

Therefore, a region is often denoted by a binary 0-1 sequence,

11011111001110111011111

A hit is then as follows:
11011111001110111011111

111*]1**]1*]1**]11*111

18

The Data Structure for Finding Hit

* The same as consecutive seed. Except that now we

AA?A
11%1

have a length /, weight » seed. E.g. 11*1.

* Fach Fmer, take the w letters out and put in index table.

* The index table can be a hash table.

AAC
AAG
AAT
ACA

—> J.ist of occurrences of AA?A in S

—>

19

Time Complexity Comparison

Lemma: for random sequence S and T with lengths 7 and 7, the expected number
of hits for weight w, length /seed is

(m—I[+D(n—-1+1)4""

Because usually [is much shorter than S and T, this is approximately 4™ mn

That is, the expected number of hits in random regions only depends on the
weight, but not the shape of the seed. So does the running time.

So, speed-wise, spaced seed is similar to consecutive seed.

What about the sensitivity?

20

Simulated sensitivity curves

prabaHilfy af o least 1 H

a3

a3

Q7

a8

as

a4 r

a3 +

a1

a2

a3

a4a

.5 a8 q.7 a3 a.9 1
=mlilardty averlengh &4

21

Why spaced seeds are better?

TTGACCTCACC? | |CAA?A??A?C??TA?TGG?
LT rre? LEI2122121220 1212
TTGACCTCACC? CAA?A??A?C??TA?TGG?

| 11111111111 111*]**]1*]1**11*111
11111111111 111%1%*1*1%%11%111

* BLAST’s seed usually uses more than one hits to
detect one homology (redundant)

* Spaced seeds uses fewer hits to detect one
homology (etficient)

Trre

tree

