* 3 purposes of a score
 - compare different solutions of same input.
 - compare different inputs.
 - significance

* Likelihood ratio
\[\log \frac{\text{Pr}(\text{alignment} \mid \text{homology})}{\text{Pr}(\text{alignment} \mid \text{random})} \]

* BLOSUM
\[2 \cdot \log \frac{P(a,b)}{2P(a)P(b)} \quad \log \frac{P(a,a)}{P(a)P(a)} \]
\[d(s,t) \]
\[a \quad b \quad d(ss,tt) \]
\[b \quad a \]
Deal with Sample Bias

- Some protein families are more well studied so they are over-represented in the database.
- Such bias is caused by the studies, not reflecting what’s going on during evolution.
- To remove this bias in statistics, those “redundant” proteins are classified together before BLOSUM calculation.
• The sequences that are 62% or above similarity are grouped together and given total weight 1.
• This way, the AA pairs are counted between groups that are 62% similar or below.
• The lower this number is, the better is the matrix suitable to distant homology search.
• The original BLOSUM paper found out 62 is best at the time the paper was prepared.
A quick review

• Where does a score come from?
• Homology model: Two sequences are homologous using the alignment/evolutionary history.
• Random model: Two sequences are irrelevant.
• Which model better explains the alignment?
• Log likelihood ratio
• If greater than zero, supports Homolog, else, supports Random.

• Statistics should be done carefully to avoid oversampling.
Does the alignment indicate a homology?

PURPOSE 3
Significance

• Consider that BLAST matches a query sequence with all database sequences, and return the highest scoring local alignments.
• The best local alignment score is 100. Does it mean good or bad?
• The answer depends on the score scheme you use so we need to standardize it for effective communication.
• Intuitively, we would ask “can this happen randomly”?
• This is formalized as the p-value.