
Sequence Alignment



Example:
>AVP78042.1 spike protein [Bat SARS-like coronavirus]
MLFFLFLQFALVNSQCDLTGRTPLNPNYTNSSQRGVYYPDTIYRSDTLVLSQGYFLPFYSNVSWYYSLTT
NNAATKRTDNPILDFKDGIYFAATEHSNIVRGWIFGTTLDNTSQSLLIVNNATNVIIKVCNFDFCYDPYL
SGYYHNNKTWSIREFAVYSFYANCTFEYVSKSFMLNISGNGGLFNTLREFVFRNVDGHFKIYSKFTPVNL
NRGLPTGLSVLQPLVELPVSINITKFRTLLTIHRGDPMSNNGWTAFSAAYFVGYLKPRTFMLKYNENGTI
TDAVDCALDPLSETKCTLKSLSVQKGIYQTSNFRVQPTQSIVRFPNITNVCPFHKVFNATRFPSVYAWER
TKISDCIADYTVFYNSTSFSTFKCYGVSPSKLIDLCFTSVYADTFLIRFSEVRQVAPGQTGVIADYNYKL
PDDFTGCVIAWNTAKQDTGHYFYRSHRSTKLKPFERDLSSDENGVRTLSTYDFNPNVPLEYQATRVVVLS
FELLNAPATVCGPKLSTQLVKNQCVNFNFNGLKGTGVLTDSSKRFQSFQQFGKDASDFIDSVRDPQTLEI
LDITPCSFGGVSVITPGTNTSSEVAVLYQDVNCTDVPTTIHADQLTPAWRIYAIGTSVFQTQAGCLIGAE
HVNASYECDIPIGAGICASYHTASILRSTGQKAIVAYTMSLGAENSIAYANNSIAIPTNFSISVTTEVMP
VSMAKTSVDCTMYICGDSIECSNLLLQYGSFCTQLNRALSGIAIEQDKNTQEVFAQVKQIYKTPPIKDFG
GFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDISARDLICAQKFNGLTVLPPLLTDE
MIAAYTAALISGTATAGWTFGAGAALQIPFAMQMAYRFNGIGVTQNVLYENQKLIANQFNSAIGKIQESL
TSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYV
TQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQSAPHGVVFLHVTYIPSQEKNFTTA
PAICHEGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNTFVSGNCDVVIGIINNTVYDPLQPELDSF
KEELDKYFKNHTSPDIDLGDISGINASVVNIQKEIDRLNEVARNLNESLIDLQELGKYEHYIKWPWYVWL
GFIAGLIAIVMVTILLCCMTSCCSCLKGCCSCGFCCKFDEDDSEPVLKGVKLHYT

>YP_009724390.1 surface glycoprotein [Severe acute respiratory syndrome coronavirus 2]
MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFFSNVTWFHAIHV
SGTNGTKRFDNPVLPFNDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPF
LGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVFKNIDGYFKIYSKHTPI
NLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYN
ENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVRFPNITNLCPFGEVFNATRFASV
YAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIAD
YNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYF
PLQSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFL
PFQQFGRDIADTTDAVRDPQTLEILDITPCSFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVAIHADQLT
PTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSIIAYTMSLG
AENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGI
AVEQDKNTQEVFAQVKQIYKTPPIKDFGGFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDC
LGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIG
VTQNVLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGAISSVLNDI
LSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLM
SFPQSAPHGVVFLHVTYVPAQEKNFTTAPAICHDGKAHFPREGVFVSNGTHWFVTQRNFYEPQIITTDNT
FVSGNCDVVIGIVNNTVYDPLQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVA
KNLNESLIDLQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDD
SEPVLKGVKLHYT

• How do we know these two proteins are similar?
• Many existing tools: such as Clustal Omega.



Sequence Alignment

• Too many identical positions to be random.
• Insertion/deletion (indel) needed for a proper comparison.



DNA
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Nucleotide and Base Pairs
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• Two classes of necleutide bases:
• Purine: A and G
• Pyrimidine: T and C

• Base pairs are due to hydrogen bonds.
• G-C bind stronger because of 3 H-bonds.
• DNA moleculre is oriented (5’ -> 3’).



Reverse Complement a DNA Sequence

• DNA is double-helical, with two complementary strands. 
• Complementary bases:

• Adenine (A) - Thymine (T) 
• Guanine (G) - Cytosine (C)

• Example: What is the reverse complement of AAGGTAGC?
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DNA Mutation

• DNA mutates with a small probability when inherited by the offspring.
• For example, one base can be substituted by another.
• This creates different alleles of the same gene.
• An allele is a variant form of a gene at the same location of the genome among different

individuals.

• Also, one only inherits half of each parent’s genome. 
• These together cause the differences between individuals of the same species.
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Single Nucleotide Polymorphisms

• Single base variation between 
members of a species.

• For Human, 90% of all human 
genetic variation is caused by
SNPs. SNPs occur every 100 to 
300 bases along the 3-billion-
base human genome.

• Major risk for genetic disease.



Compare DNA sequences

• The most often used distance on strings in computer science is Hamming 
distance.
• AGTTTAATCA
• ||| |||  |
• AGTATAACGA

• This makes some sense on comparing DNA sequences in some cases.  But there 
are other mutations
• Substitution ACAGT à ACGGT
• Insertion/deletion (indel)   ACAGT à ACGT

• Other DNA rearrangements can also happen. But substitutions and indel are the 
two mutations we concern the most for this course. 
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Edit Distance

• Let’s focus on substitution and indel only. How “far” away are two sequences from each other?

• E.g. CGATA and GGATTA

• Edit distance: the minimum number of edit operations needed to convert one to another. Here
edit operations include substitutions and indels.
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d(ATGCATTTA,ATGTACTTTC)
ATGCATTTA
ATGTACTTTC



Edit distance is a distance metric

• Identity: d(x,y)=0 iff x=y
• Symmetry: d(x,y) = d(y,x)
• Triangular Inequality: d(x,z) <= d(x,y) + d(y,z)
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Preparation for the Algorithm

• For convenience of the proof, we treat each occurrence of the same
letter different.
• E.g. ATAA -> ATA can be done by either deleting the 2nd or 3rd letter A

from the first string. These are different editing paths.
• This does not affect our definition of edit distance, but makes our

later proof more precise.



Dynamic Programming Algorithm for Edit 
distance
• Let D[i,j] = edit distance between S[1..i] to T[1..j].

• Consider the edit operations associated with S[i] and T[j] in the optimal edit
operations. One of the following cases will happen (why?):

1. S[i] is deleted
2. T[j] is inserted
3. S[i] becomes T[j]
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Recurrence Relation

• 𝐷[𝑖, 𝑗] = min+
𝐷 𝑖 − 1, 𝑗 + 1
𝐷 𝑖, 𝑗 − 1 + 1

𝐷 𝑖 − 1, 𝑗 − 1 + 𝛿 𝑆 𝑖 , 𝑇 𝑗
• Here 𝛿 𝑆 𝑖 , 𝑇 𝑗 = 0 if S[i]=T[j] and 1 if not.



Dynamic Programming Algorithm for Edit
distance
• D[0,0] = 0.
• D[0, i] = i for i=1..|S|
• D[i, 0] = i for i=1..|T|
• for i from 1..|S|
• for j from 1..|T|
• D[i,j] = min {D[i-1,j]+1, D[i,j-1]+1, D[i-1, j-1]+d(S[i], T[j])}.
• Return D[|S|, |T|]



A Note about Dynamic Programming

• Define “subproblems”
• Develop recurrence relation to compute subproblems
• Initialization (base cases)
• Determine the computation order for solving the subproblems.
• Usually bottom-up (smaller to larger)

• Find the solution of the original input



Longest Common Subsequence

• The second way to evaluate the similarity of two sequences is through LCS.
• A subsequence is obtained by deleting some of the letters from the 

supersequence and concatenating the remaining letters together.
• What is the LCS of the following two sequences?
• ATGCATTTA
• ATGTACTTTC

• LCS can be computed with dynamic programming as well. (Exercise)
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Alignment

• The third way to compare to sequences is through sequence alignment. 

• Align the two sequences by inserting spaces, so that they are the most similar column-wisely.
• ATGCA-TTTA

||| | || |
ATGTACTT-A

• What does “similar” mean? Usually we need a “scoring function” or a “score function”.

• Let’s define the alignment score to be the total of column scores. And each column is assigned
by a constant score depending on matching conditions.

• E.g. Match = 1, mismatch =-1, indel =-1. This is sometimes called the “score scheme”.
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Two Example Alignments

• AATGCGA-TTTT
||  | |||

G-TG--ACTTTC

• AATG-CGATTTT
|| |  || 

G-TGAC-TTTC-

• Which of the two alignments better?
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• +1 = match
• -1 = mismatch
• -1 = indel



Alignment with Dynamic Programming

• Now we develop the dynamic programming algorithm for alignment.
• Scoring scheme is f(a,b) for a column with a and b. Here one of a and 

b can be the dash character -.
• f(-,x) and f(x,-) represent scores of indels.
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1

• Suppose we are to align S[1..i] and T[1..j].  Consider the last column of 
the optimal alignment.  Three cases can happen:

• In each case, the sub-alignment without the last column is an optimal 
one (why?)

Last column of an alignment

S[1..i-1]

T[1..j-1]

S[i]

T[j]

(1)

S[1..i-1]

T[1..j]

S[i]

-

(2)

S[1..i]

T[1..j-1]

-

T[j]

(3)



Recurrence Relation
• Denote the optimal alignment score of S[1..i], T[1..j] by D[i,j].  Then  D[m,n] is the optimal 

alignment score.
• Let f(a,b) be the score between two letters a and b. 
• Consider last column of the alignment.
• Case 1: S[i] v.s. T[j]

• D[i,j] = D[i-1, j-1] + f(S[i], T[j]);
• Case 2: S[i] v.s. -

• D[i,j] = D[i-1, j] + f(S[i], -);
• Case 3: - v.s. T[j]

• D[i,j] = D[i, j-1] + f(-, T[j]);
• Therefore…
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D[i-1, j-1] + f(S[i], T[j]);
D[i,j] = max      D[i-1, j] + f(S[i], -);

D[i, j-1] + f(-, T[j]);

S[1..i-1]
T[1..j-1]

S[i]
T[j]

S[1..i-1]
T[1..j]

S[i]
-

S[1..i]
T[1..j-1]

-
T[j]
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Algorithm
D[0,0] = 0;
for i from 1 to m 

D[i,0] = i*  indel;
for j from 1 to n 

D[0,j] = j* indel;
for i from 1 to m

for j from 1 to n
D[i-1, j-1] + f(S[i], T[j]);

D[i,j] = max      D[i-1, j] + f(S[i], -);
D[i, j-1] + f(-, T[j]);

Output D[m,n];



2
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Dynamic Programming Table

C  A   T  T  G

0 -1 -2 -3 -4 -5

-1 -1 0 -1 -2 -3

-2 -2 -1

-3

-4

-5

A

T

T

G

A



Dynamic Programming Table

C  A   T  T  G

0 -1 -2 -3 -4 -5

-1 -1 0 -1 -2 -3

-2 -2 -1 1 0 -1

-3 -3 -2 0 2 1

-4 -4 -3 -1 1 3

-5 -5 -3 -2 0 2

A

T

T

G

A
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Getting the actual alignment – backtracking

C  A   T  T  G

0 -1 -2 -3 -4 -5

-1 -1 0 -1 -2 -3

-2 -2 -1 1 0 -1

-3 -3 -2 0 2 1

-4 -4 -3 -1 1 3

-5 -5 -3 -2 0 2

A

T

T

G

A
CATTG-
-ATTGA



2
7

Complexity

• Time Complexity:
• Filling the table takes O(nm) time: Each step requires 

only 3 checks to other points in the matrix.
• How about the backtracking?

• Space Complexity:
• O(nm)
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A Practical Trick

C  A   T  T  G

0 -1 -2 -3 -4 -5

-1 -1 0 -1 -2 -3

-2 -2 -1 1 0 -1

-3 -3 -2 0 2 1

-4 -4 -3 -1 1 3

-5 -5 -3 -2 0 2

A

T

T

G

A
CATTG-
-ATTGA

No need to physically record 
the green arrows.  Why?
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Another Trick

C  A   T  T  G

0 -1 -2 -3 -4 -5

-1 -1 0 -1 -2 -3

-2 -2 -1 1 0 -1

-3 -3 -2 0 2 1

-4 -4 -3 -1 1 3

-5 -5 -3 -2 0 2

A

T

T

G

A
CATTG-
-ATTGA

If only score is needed, then
space complexity can be
reduced.



Score Function

• Now we have the algorithm for any score scheme f(x,y)
• Such separation of scoring and algorithm is a good thing. It allows us to

optimize the score scheme independent to the algorithm.

3
0

The effective exploitation of his powers of 
abstraction must be regarded as one of the 
most vital activities of a competent 
programmer.

- Dijkstra



Transition vs. Transversion

• Transition happens more frequently 2/3 of SNPs 
are transitions.

• In other words, transition is easier and therefore
should be less penalized.

E.g.:
AAAGCAAA
AAAT-AAA

AAAGCAAA
AAA-TAAA

vs

• This can be easily achieved by changing score
scheme f(a,b).



Alignment v.s. LCS vs. Edit Distance

• By a properly defined score scheme, alignment can represent 
LCS and Edit distance, respectively.
• match =  
• mismatch = 
• indel = 

3
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How to Build a Score Function

• First, know what you want.
• Purpose 1: the optimal alignment reveals the true evolutionary history.
• Purpose 2: high score indicates homology (derived from same ancestor).
• We want purpose 1 if possible, but purpose 2 is also useful.
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ATGCA-TTTATTCCGAGG
||| | || ||| || ||
ATGTACTT-ATTACGTGG



Philosophy of a Score Function

• For purpose 1, right away: we might be wrong.
• That is, the alignment that has highest score may not be the one that actually 

matches evolutionary history.
• So you should never trust that an alignment must be right.  It just optimizes the 

score.
• Should we give up purpose 1 at all?
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Philosophy of A Score Function

• For purpose 1, the optimal alignment may be approximately correct under certain conditions in
practice.

• As long as we know the limitation, we can still use it. 
• For example, for the following alignment, it is “very likely” the alignment is approximately equal

to the evolutionary history.
•ACGTATTACCGG-TTACCG
•||| |||||||| ||||||
•ACGGATTACCGGATTACCG

• Limitation we keep in mind: when score is low, alignment itself is not too useful.
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Gaps

• The left seems “simpler” than the right.
• Indeed, during evolution, indels are relatively rare. However, insertion or

deletion a segment of k consecutive bases is much easier than k scattered 
indels. 

• But our current scoring method (adding up column scores) cannot distinguish
the two.

• Currently, a gap of length k costs k*indel. Thus, this is called the linear gap
penalty.
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AGATTTTTTTC

AGA---TTTTC

AGATTTTTTTTTC

AGA-T-T-T-T-C



Arbitrary gap penalty

• Consecutive insertions or deletions are called a gap.  Suppose the gap penalty of a length 
k gap is g(k) instead of the simple c*k. 

• Assume g(x)+g(y)<= g(x+y). (Otherwise does not serve the purpose of grouping indels.) 
• Can the old DP still work?
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S[1..i-1]

T[1..j-1]

S[i]

T[j]

(1)

S[1..i-1]

T[1..j]

S[i]

-

(2)

S[1..i]

T[1..j-1]

-

T[j]

(3)



Arbitrary Gap Penalty

• Old algorithm does not work anymore because we do not know the contribution of the
last column to the gap penalty in the last two cases.

• The length of the gap is needed.
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Alignment Algorithm for Arbitrary Gap Penalty

• We still use D[i,j] to denote the optimal alignment score of S[1..i] and T[1..j].
• We change cases 2 and 3 to include the last gap (not the last column).
• D[i,j] = max of the following three cases:
• D[i-1,j-1]+f(s[i],t[j]).      (s[i] v.s. t[j])
• max1≤k ≤ i D[i-k,j] + g(k)
• max1≤k ≤ j D[i,j-k] + g(k)
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S[1..i-k]

T[1..j]

S[i-k+1..k]

-…-

S[1..i-1]

T[1..j-1]

S[i]

T[j]

(1) (2)

S[1..i]

T[1..j-k] T[j-k+1..k]

-…-

(3)



Time Complexity

• Cubic time complexity.
• In bioinformatics, very often we face the choice between:

• Reality: How close it approximates the real biology
• Simplicity: How easy it can be computed

• Now let’s simplify the g(k) a little.  We basically want a function that grows slower 
than linear.

• g(k) = a + b*k 
• a =  gap open penalty
• b = gap extension penalty

• This is called affine gap penalty, in contrast to linear gap penalty.
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Affine gap penalty example

•ATAGG--AAG
•|| ||  | |

•ATTGGCAATG

•6 match, 2 mismatch, 1 gap open, 2 gap 
extension, score = ?

•ATAGG-AA-G

•|| || || |

•ATTGGCAATG

41

For example: match = 1; mismatch = -1; gap open = -5; gap extension = -1.



Old Algorithm Does not Work

• Consider the last column of an alignment again:

• When the last column is an indel, the added cost depends on the previous column.
• If previous column has a gap opened already, then 
• D[4,6] = D[4,5] + gapext
• Else 
• D[4,6] = D[4,5] + gapopen + gapext

• How do we know the previous column’s configuration?
• Because by induction we know the optimal solution for D[i,j-1], can we simple look at it 

and use the configuration?
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AT-GG-

|| ||

ATTGGC

ATGG--

|| |

ATTGGC



Algorithm for Affine Gap

• We compute the optimal solution by limiting the last column to one
of the following three configurations:

• We only distinguish them by the last column, there is no constraint
for columns before the last column.

43

ATAGG

|| ||

ATTGG

ATAGG-

|| ||

ATTGGC

ATAGGC

|| ||

ATTGG-

D0[i,j] D1[i,j] D2[i,j]



Recurrence Relation
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D0[i-1, j-1];
D0[i,j] = f(s[i], t[j]) + max    D1[i-1, j-1];

D2[i-1, j-1];

D0[i-1, j] +gapopen;
D2[i,j] = gapext + max    D1[i-1, j] + gapopen;

D2[i-1, j];

D0[i, j-1] + gapopen;
D1[i,j] = gapext +  max    D1[i, j-1];

D2[i, j-1] + gapopen;

Note the grayed cases can’t be
optimal so can be safely
removed.



Algorithm

• No difference to the simple DP but now uses three arrays.
• Backtracking should be very careful!
• Still O(nm) time.  Approximately 3 times slower.  
• This is okay because the model is more expressive.
• Much faster than the general gap penalty. 

45

Gotoh, O., 1982. An improved algorithm for matching biological 
sequences. Journal of molecular biology, 162(3), pp.705-708.



Review: Evolution and alignment

• Two sequences always arise from a common ancestor.  
• Since that ancestor lived, there have been a long number of descendants, 

leading up to the present time.
• A full evolutionary history would detail the mutations that happened over 

the course of history.
• We don’t have a time machine.
• The next best thing: alignments.
• Characterize which positions in the two sequences arose from the 

common ancestor. 
• Between these, “indel” mutations.
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Review

• DP algorithm for alignment

• Matrix entry: score of best alignment of S(1…i) to T(1…j).

• Can compute matrix entries in constant time èO(nm) runtime.
• Can backtrack through matrix to find optimal alignment.

• If only score is needed, then linear space.
• Scoring function important

• Some do not change DP (better scoring scheme)

• Some change (gap penalty)
• General gap penalty cubic time.

• Affined gap penalty still quadratic time.
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