Sequence Alignment

Example:

>AVP78042.1 spike protein [Bat SARS-like coronavirus]
MLFFLFLOQFALVNSQCDLTGRTPLNPNYTNSSQRGVYYPDTIYRSDTLVLSQGYFLPFYSNVSWYYSLTT
NNAATKRTDNPILDFKDGIYFAATEHSNIVRGWIFGTTLDNTSQSLLIVNNATNVIIKVCNEFDFCYDPYL
SGYYHNNKTWSIREFAVYSFYANCTFEYVSKSFMLNISGNGGLENTLREFVFRNVDGHFKIYSKFTPVNL
NRGLPTGLSVLQPLVELPVSINITKFRTLLTIHRGDPMSNNGWTAFSAAYFVGYLKPRTFMLKYNENGT I
TDAVDCALDPLSETKCTLKSLSVQKGIYQTSNFRVQPTQSIVREFPNITNVCPFHKVENATREFPSVYAWER
TKISDCIADYTVEFYNSTSEFSTFKCYGVSPSKLIDLCFTSVYADTFLIRFSEVRQVAPGQTGVIADYNYKL
PDDFTGCVIAWNTAKQDTGHYFYRSHRSTKLKPFERDLSSDENGVRTLSTYDENPNVPLEYQATRVVVLS
FELLNAPATVCGPKLSTQLVKNQCVNENENGLKGTGVLTDSSKRFQSFQQFGKDASDEFIDSVRDPQTLET
LDITPCSFGGVSVITPGTNTSSEVAVLYQDVNCTDVPTTIHADQLTPAWRIYAIGTSVEFQTQAGCLIGAE
HVNASYECDIPIGAGICASYHTASILRSTGQKAIVAYTMSLGAENSIAYANNSIATIPTNFSISVTTEVMP
VSMAKTSVDCTMYICGDSIECSNLLLQYGSFCTQLNRALSGIAIEQDKNTQEVFAQVKQIYKTPPIKDEG
GEFNFSQILPDPSKPSKRSFIEDLLENKVTLADAGFIKQYGDCLGDISARDLICAQKEFNGLTVLPPLLTDE
MIAAYTAALISGTATAGWTEFGAGAALQIPFAMOMAYREFNGIGVTONVLYENQKLIANQFNSATIGKIQESL
TSTASALGKLODVVNQONAQALNTLVKQLSSNFGAISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQOTYV
TOOLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLMSFPQOSAPHGVVFLHVTYIPSQEKNFTTA
PATCHEGKAHFPREGVEVSNGTHWEVTQRNFYEPQIITTDNTEVSGNCDVVIGIINNTVYDPLQPELDSE
KEELDKYFKNHTSPDIDLGDISGINASVVNIQKEIDRLNEVARNLNESLIDLOQELGKYEHY IKWPWYVWL
GFIAGLIAIVMVTILLCCMTSCCSCLKGCCSCGFCCKEFDEDDSEPVLKGVKLHYT

 How do we know these two proteins are similar?

* Many existing tools: such as Clustal Omega.

>YP 009724390.1 surface glycoprotein [Severe acute respiratory syndrome coronavirus 2]

MEVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFRSSVLHSTQDLFLPFEFSNVIWFHAIHV
SGTNGTKRFDNPVLPENDGVYFASTEKSNIIRGWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPF
LGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDLEGKQGNFKNLREFVEFKNIDGYFKIYSKHTPI
NLVRDLPQGFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFLLKYN
ENGTITDAVDCALDPLSETKCTLKSFTVEKGIYQTSNFRVQPTESIVREFPNITNLCPFGEVENATRFASV
YAWNRKRISNCVADYSVLYNSASEFSTFKCYGVSPTKLNDLCEFTNVYADSFVIRGDEVRQIAPGQTGKIAD
YNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGENCYF
PLOSYGFQPTNGVGYQPYRVVVLSFELLHAPATVCGPKKSTNLVKNKCVNENFNGLTGTGVLTESNKKEL
PFQQFGRDIADTTDAVRDPQTLEILDITPCSEFGGVSVITPGTNTSNQVAVLYQDVNCTEVPVATIHADQLT
PTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPRRARSVASQSITAYTMSLG
AENSVAYSNNSIAIPTNEFTISVTITEILPVSMTKTSVDCTMYICGDSTECSNLLLQYGSFCTQLNRALTGI
AVEQDKNTQEVFAQVKQIYKTPPIKDFGGENEFSQILPDPSKPSKRSFIEDLLEFNKVTLADAGFIKQYGDC
LGDIAARDLICAQKFNGLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMOMAYRENGIG
VTONVLYENQKLIANQEFNSAIGKIQDSLSSTASALGKLODVVNONAQALNTLVKQLSSNEFGAISSVLNDI
LSRLDKVEAEVQIDRLITGRLOSLOTYVTQQLIRAAEIRASANLAATKMSECVLGQSKRVDFCGKGYHLM
SFPOSAPHGVVFLHVTYVPAQEKNFTTAPATICHDGKAHFPREGVEVSNGTHWEVTQRNEYEPQIITTDNT
FVSGNCDVVIGIVNNTVYDPLOQPELDSFKEELDKYFKNHTSPDVDLGDISGINASVVNIQKEIDRLNEVA
KNLNESLIDLOQELGKYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKEDEDD
SEPVLKGVKLHYT

Sequence Alignment

AVP78042.1
YP_009724390.1

AVP78042.1
YP_009724390.1

AVP78042.1
YP _009724390.1

AVP78042.1
YP 009724390.1

AVP78042.1
YP 009724390.1

AVP78042.1
YP _009724390.1

VNNATNVIIKVCNFDFCYDPYLSGYYHN-NKTWSIREFAVYSFYANCTFEYVSKSFMLNI
VNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVYSSANNCTFEYVSQPFLMDL

khkhkkhkhkkghhkdkhkokohd dhhkek khkks Fkgk *k Khkxk khkkkkkhkkgs dgosoee

SGNGGLFNTLREFVFRNVDGHFKIYSKFTPVNLNRGLPTGLSVLOQPLVELPVSINITKFR
EGKQGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPOGFSALEPLVDLPIGINITRFQ

ke Kk ke hhkhkhkhkkekeoekhhkeoekhkhkhkdhhk Khhkekk * Kk Kheoek hekdhkokdho dkhkhkk o ko
! ad B 3Rt H . H . 87 e N .. [i

TLLTIHRGDP---MSNNGWTAFSAAYFVGYLKPRTFMLKYNENGTITDAVDCALDPLSET
TLLALHRSYLTPGDSSSGWTAGAAAYYVGYLOPRTFLLKYNENGTITDAVDCALDPLSET

Kkky g kk Ko kkkk gkkkgkkkkgkhkkghkh kAR ARk Ak hkFhkkkkkkhk
KCTLKSLSVOKGIYQTSNFRVQOPTQOSIVRFPNITNVCPFHKVFNATRFPSVYAWERTKIS
KCTLKSFTVEKGIYQTSNFRVOPTESIVRFPNITNLCPFGEVFNATRFASVYAWNRKRIS

Khkkkkokg sk ahhhhhhhhhhhhkhk ghhhhhhhhhh ghhk shhhhhhdk *hkhhkok 2Kk

DCIADYTVFYNSTSFSTFKCYGVSPSKLIDLCFTSVYADTFLIRFSEVRQVAPGQTGVIA
NCVADYSVLYNSASFSTFKCYGVSPTKLNDLCFTNVYADSFVIRGDEVRQIAPGQTGKIA

shokkhkokokhhohkhhhhkhhhkhhhkhkohd Fhkddhkdk dhkhkkskghd Fdhkdkkshkdhhhd *&

DYNYKLPDDFTGCVIAWNTAKQDT=====— GHYFYRSHRSTKLKPFERDLSSDEN=====—
DYNYKLPDDFTGCVIAWNSNNLDSKVGGNYNYLYRLFRKSNLKPFERDISTEIYQAGSTP
khkhkkkhkdkhkhkhkdkhkhkhdkhdd, s ki sk kk * s ekkkkhkkdk gk

* Too many identical positions to be random.
* Insertion/deletion (indel) needed for a proper comparison.

177
179

237
239

294
299

354
359

414
419

463
479

DNA

Mitochondria ——

Plasma membrance

Enoplasmatic reticulum

Golgr apparatus

Filamentous cytoskeleton
Nucleus

Lysosome

sugar-phosphate backbon
hydrogen bond ———

base ——

Genome = total of all chromosomes

chromosomefragment

nuclcotide bascparcs

Nucleotide and Base Pairs

Cytosine Guanine

5! 3
Phosphate Hydroxyl
b 4

Two classes of necleutide bases:

e @ * Purine:Aand G

| * Pyrimidine: Tand C

* Base pairs are due to hydrogen bonds.

* G-C bind stronger because of 3 H-bonds.

 DNA moleculre is oriented (5" -> 3’).

Hydroxyl

Phosphate

Reverse Complement a DNA Sequence

* DNA is double-helical, with two complementary strands.

* Complementary bases:
* Adenine (A) - Thymine (T)
* Guanine (G) - Cytosine (C)

* Example: What is the reverse complement of AAGGTAGC?

DNA Mutation

* DNA mutates with a small probability when inherited by the offspring.
®* For example, one base can be substituted by another.

®* This creates different alleles of the same gene.
®* An alleleis a variant form of a gene at the same location of the genome among different
individuals.

®* Also, one only inherits half of each parent’s genome.

* These together cause the differences between individuals of the same species.

Single Nucleotide Polymorphisms

» Single base variation between
members of a species.

* For Human, 90% of all human
genetic variation is caused by
SNPs. SNPs occur every 100 to
300 bases along the 3-billion-
base human genome.

* Major risk for genetic disease.

Compare DNA sequences

* The most often used distance on strings in computer science is Hamming
distance.
e AGTTTAATCA

I I O
« AGTATAACGA

* This makes some sense on comparing DNA sequences in some cases. But there
are other mutations
o Substitution ACAGT =2 ACGGT
* Insertion/deletion (indel) ACAGT - ACGT

* Other DNA rearrangements can also happen. But substitutions and indel are the
two mutations we concern the most for this course.

Edit Distance

» Let’s focus on substitution and indel only. How “far” away are two sequences from each other?

* E.g. CGATA and GGATTA

* Edit distance: the minimum number of edit operations needed to convert one to another. Here
edit operations include substitutions and indels.

d (ATGCATTTA, ATGTACTTTC)
ATGCATTTA
ATGTACTTTC

Edit distance is a distance metric

* |dentity: d(x,y)=0 iff x=y
« Symmetry: d(x,y) = d(y,x)
* Triangular Inequality: d(x,z) <= d(x,y) + d(y,z)

Preparation for the Algorithm

* For convenience of the proof, we treat each occurrence of the same
letter different.

* E.g. ATAA -> ATA can be done by either deleting the 2" or 3 letter A
from the first string. These are different editing paths.

* This does not affect our definition of edit distance, but makes our
later proof more precise.

Dynamic Programming Algorithm for Edit
distance

* Let DJi,j] = edit distance between S[1..i] to T[1..j].

* Consider the edit operations associated with S[i] and T[j] in the optimal edit
operations. One of the following cases will happen (why?):
1. SJi] is deleted
2. TJj] is inserted
3. S[i] becomes T[j]

Recurrence Relation

D[i—1,j] +1
* D[i,j] = min Dli,j—1]+1
Dli—1,j—1]+6CS[i], TljD

* Here 6 (S[i], T|j]) = 0if S[i]=T[j] and 1 if not.

Dynamic Programming Algorithm for Edit
distance

* D[0,0] =0.
* D[O, i] =ifori=1..|S]
 D[i,0] =ifori=1..|T|
e forifrom 1..|S|
forjfrom1..|T|
D[i,j] = min {D[i-1,j]+1, D[i,j-1]+1, D[i-1, j-1]+d(S[i], T[i])}.
e Return D[|S], |T|]

A Note about Dynamic Programming

* Define “subproblems”
* Develop recurrence relation to compute subproblems
* Initialization (base cases)

* Determine the computation order for solving the subproblems.
» Usually bottom-up (smaller to larger)

* Find the solution of the original input

Longest Common Subsequence

* The second way to evaluate the similarity of two sequences is through LCS.

* A subsequence is obtained by deleting some of the letters from the
supersequence and concatenating the remaining letters together.

* What is the LCS of the following two sequences?
e ATGCATTTA
e ATGTACTTTC
e LCS can be computed with dynamic programming as well. (Exercise)

Alignment

 The third way to compare to sequences is through sequence alignment.

 Align the two sequences by inserting spaces, so that they are the most similar column-wisely.
e ATGCA-TTTA

.
ATGTACTT-A

What does “similar” mean? Usually we need a “scoring function” or a “score function”.

* Let’s define the alignment score to be the total of column scores. And each column is assigned
by a constant score depending on matching conditions.

e E.g. Match =1, mismatch =-1, indel =-1. This is sometimes called the “score scheme”.

Two Example Alignments

e AATGCGA-TTTT * +1 = match
| .
G-TG--ACTTTC * -1 = mismatch
e -1 =indel

* AATG-CGATTTT

NN
G-TGAC-TTTC-

* Which of the two alignments better?

Alignment with Dynamic Programming

* Now we develop the dynamic programming algorithm for alignment.

* Scoring scheme is f(a,b) for a column with a and b. Here one of a and
b can be the dash character -.

* f(-,x) and f(x,-) represent scores of indels.

Last column of an alignment

* Suppose we are to align S[1..i] and T[1..j]. Consider the last column of
the optimal alignment. Three cases can happen:

S[1..i-1] S[i] ES[l..i-l] S[i] ¢ S[1..]
T[1.j-1] T | T - T i

(1)) 3)

* In each case, the sub-alignment without the last column is an optimal
one (why?)

Recurrence Relation

* Denote the optimal alignment score of S[1..i], T[1..j] by D[i,j]. Then D[m,n] is the optimal
alignment score.

* Let f(a,b) be the score between two letters a and b.

« Consider last column of the alignment. iﬁ;ﬂ iﬁ]]
* Case 1: S[i] v.s. T[j] |
. C oA : . S[L.i-1] 1 S[i]
* D[IIJ] = D[I-ll J_l] + f(S[I]I T[J])r T[1..j] -
* Case 2:S]i] v.s. -
. C D Y. S[1..] -
D[i,j] = D[i-1, j] + f(S[i], -); g

* Case 3:-v.s. T[j]
* DI[i,j] = DI[i, j-1] + (-, T[j1);

* Therefore... Dli-L, J-1] + LI, Thl)

DI[i,jl = max< D[i-1, j] + f(S[il, -);
DI, j-11 + f(-, T[j);

22

Algorithm

D[0,0] =0;
forifrom1ltom
D[i,0] =i* indel;
forjfrom1ton
D[0,j] =j* indel;
forifrom1ltom
forjfrom1ton
{ D[i-1, j-1] + f(S[i], T[j]);
DI[i,j] = max< DJ[i-1, j] + f(S][i], -);
D[i, j-1] + f(-, T[j]);
Output D[m,n];

23

Dynamic Programming Table

cC A T T G
0 |-1 [2 |3 |4 |-5
1o -2)3
2 |2 |
3
4

Dynamic Programming Table

cC A T G
0 -1 -2 {-3 =5
-1 (-1 |0 -1 -3
2 -2 -1 |1 =1
3 (-3 -2 |0 I
4 (-4 |3 |-] 3
S5 -5 -3 |2 2

Getting the actual alignment — backtracking

CcC A T T @
0 =1 (2 3 {4 |5
Ao f-1 10 -1 2 |3
I I I T
N i Nl
Sla s 20 |2 1t
IS T N
N I I K
s |5 15 13 |2 o |27

CATTG-
—ATTGA

Complexity

* Time Complexity:
* Filling the table takes O(nm) time: Each step requires
only 3 checks to other points in the matrix.

e How about the backtracking?
* Space Complexity:
e O(nm)

A Practical Trick

CcC A T T @
0 =1 (2 3 {4 |5
Ao f-1 10 -1 2 |3
I I I T
N i Nl
Sla s 20 |2 1t
IS T N
N I I K
s |5 15 13 |2 o |27

No need to physically record
the green arrows. Why?

CATTG-
—ATTGA

=)

Another Trick

CcC A T T @
0 =1 |2 {3 {4 {5
1|0 1 2 3
I I I S
2 (2 |-1 |1 .Jo |
313 210 |2 1t
IS T N
4 |4 |3 (-1 1

| | | 4
515 |3 12 o 2

If only score is needed, then
space complexity can be
reduced.

Score Function

* Now we have the algorithm for any score scheme f(x,y)

* Such separation of scoring and algorithm is a good thing. It allows us to
optimize the score scheme independent to the algorithm.

The effective exploitation of his powers of
abstraction must be regarded as one of the
most vital activities of a competent
programmer.

&6

%9

- Dijkstra

Transition vs. Transversion

NH, o}
N7 NN HN J
. _ | N>
N ll:li purines HoN N
adenine Transitions graninie
AA‘ >AG
Transversions Transversions
v‘)v
'|‘1H2 C Transitions T 0
f'\' | NH
pyrimidines
N/]\O NAO
H H
cytosine thymine

Transition happens more frequently 2/3 of SNPs
are transitions.

In other words, transition is easier and therefore
should be less penalized.
E.g.:

AAAGCAAA
AAAT-AAA

vs AAAGCAAA
AAA-TAAA

This can be easily achieved by changing score
scheme f(a,b).

Alignment v.s. LCS vs. Edit Distance

* By a properly defined score scheme, alignment can represent
LCS and Edit distance, respectively.
* match =
* mismatch =
* indel =

How to Build a Score Function

First, know what you want.
Purpose 1: the optimal alighment reveals the true evolutionary history.
Purpose 2: high score indicates homology (derived from same ancestor).

We want purpose 1 if possible, but purpose 2 is also useful.

ATGCA-TTTATTCCGAGG

BN N N
ATGTACTT-ATTACGTGG

Philosophy of a Score Function

For purpose 1, right away: we might be wrong.

That is, the alignment that has highest score may not be the one that actually
matches evolutionary history.

So you should never trust that an alignment must be right. It just optimizes the
score.

Should we give up purpose 1 at all?

Philosophy of A Score Function

* For purpose 1, the optimal alignment may be approximately correct under certain conditions in
practice.

* As long as we know the limitation, we can still use it.

* For example, for the following alignment, it is “very likely” the alignment is approximately equal
to the evolutionary history.
*ACGTATTACCGG-TTACCG
[l et rrrrl
*ACGGATTACCGGATTACCG

 Limitation we keep in mind: when score is low, alignment itself is not too useful.

AGATTTTTTTC AGATTTTTTTTTC
AGA-—--TTTTC AGA-T-T-T-T-C

 The left seems “simpler” than the right.

* Indeed, during evolution, indels are relatively rare. However, insertion or
deletion a segment of k consecutive bases is much easier than k scattered
indels.

 But our current scoring method (adding up column scores) cannot distinguish
the two.

* Currently, a gap of length k costs k*indel. Thus, this is called the linear gap
penalty.

Arbitrary gap penalty

* Consecutive insertions or deletions are called a gap. Suppose the gap penalty of a length
k gap is g(k) instead of the simple c*k.

« Assume g(x)+g(y)<= g(x+y). (Otherwise does not serve the purpose of grouping indels.)
* Can the old DP still work?

S[1..i-1] S[i] S[1..i-1] S[i] S[1..i]
T[1..j-1] T[j] T[1..j] - T[1..j-1] T[j]

(1) (2) (3)

Arbitrary Gap Penalty

* Old algorithm does not work anymore because we do not know the contribution of the
last column to the gap penalty in the last two cases.

* The length of the gap is needed.

Alignment Algorithm for Arbitrary Gap Penalty

* We still use DJi,j] to denote the optimal alignment score of S[1..i] and T[1..j].

* We change cases 2 and 3 to include the last gap (not the last column).

* DJi,j] = max of the following three cases:

(s[i] v.s. t[j])

e D[i-1,j-1]+f(s[i],t[j]).

* maxiq<; Dli-k,j] + g(k)
* max <; Dli,j-K] + g(k)

S[1..i-1]

T[1..j-1]
(1)

S[i]

Th]

S[1..i-k]

T[1..j]

S[i-k+1..k]

(2)

S[1..i]
T[1.jk] | Tl-k+1..k]
(3)

Time Complexity

Cubic time complexity.

In bioinformatics, very often we face the choice between:
* Reality: How close it approximates the real biology
* Simplicity: How easy it can be computed

Now let’s simplify the g(k) a little. We basically want a function that grows slower
than linear.

g(k) = a + b*k
* a= gap open penalty
* b =gap extension penalty

* This is called affine gap penalty, in contrast to linear gap penalty.

Affine gap penalty example

For example: match = 1; mismatch = -1; gap open = -5; gap extension = -1.

* ATAGG--AAG
I I I N

e ATTGGCAATG
6 match, 2 mismatch, 1 gap open, 2 gap
extension, score = ?

e ATAGG-AA-G

I N
* ATTGGCAATG

Old Algorithm Does not Work

Consider the last column of an alignment again:

AT-GG- ATGG—--

NN N
ATTGGC ATTGGC

* When the last column is an indel, the added cost depends on the previous column.
* |If previous column has a gap opened already, then
. D[4,6] = D[4,5] + gapext
* Else
. D[4,6] = D[4,5] + gapopen + gapext

* How do we know the previous column’s configuration?

* Because by induction we know the optimal solution for D[i,j-1], can we simple look at it
and use the configuration?

Algorithm for Affine Gap

* We compute the optimal solution by limiting the last column to one
of the following three configurations:

ATAGG ATAGG— ATAGGC
. . .

ATTGG ATTGGC ATTGG-
DO[IIJ] Dl[IIJ] DZ[IIJ]

* We only distinguish them by the last column, there is no constraint
for columns before the last column.

Recurrence Relation

Dolij] = f(s[il, t[jl) + max<

(D,[i-1, j-1];
D]_[i_lr J_l]r

DZ[i_ll J_l]r
-

D,[i,j] = gapext + max) D,

D,[i,j] = gapext + max

D
2

™ D,li, j-1] + gapopen;

"D, li-1, j] +gapopen;

Note the grayed cases can’t be
optimal so can be safely
removed.

Algorithm

No difference to the simple DP but now uses three arrays.

Backtracking should be very careful!

Still O(nm) time. Approximately 3 times slower.

This is okay because the model is more expressive.

Much faster than the general gap penalty.

Gotoh, O., 1982. An improved algorithm for matching biological
sequences. Journal of molecular biology, 162(3), pp.705-708.

Review: Evolution and alignment

* Two sequences aIways arise from a common ancestor.

* Since that ancestor lived, there have been a long number of descendants,
leading up to the present time.

* A full evolutionary history would detail the mutations that happened over
the course of history.

 We don’t have a time machine.
* The next best thing: alignments.

* Characterize which positions in the two sequences arose from the
common ancestor.

|”

 Between these, “indel” mutations.

Review

* DP algorithm for alighnment

* Matrix entry: score of best alignment of S(1...i) to T(1...j).

« Can compute matrix entries in constant time =»O(nm) runtime.
* Can backtrack through matrix to find optimal alignment.

* If only score is needed, then linear space.

Scoring function important

Some do not change DP (better scoring scheme)

Some change (gap penalty)

General gap penalty cubic time.

Affined gap penalty still quadratic time.

