Introduction

CS482/682

Computational Techniques in Biological Sequence Analysis

Course Logistics

- Instructor: Bin Ma (DC 3345, http://www.cs.uwaterloo.ca/~binma)
- TA: Ruisheng (Benson) Guo. https://cs.uwaterloo.ca/~r9guo/
- Course webpage: https://cs.uwaterloo.ca/~binma/cs482
- No required textbooks.
- Lecture notes will be provided.
- Class attendance is required.

Grades

• 4 assignments: 60% = 15+15+15+15

• Final exam: 40%

Bioinformatics

Biology: the reason, goal, purpose.

Informatics: the method.

Biology Can be Studied at Different Scales

Organisms: living things

Organs and tissues

Cell Level

The Animal Cell

Molecular Level

DNA: chain of nucleotide bases

...GCTTACACGTCACCAT...

Protein: chain of amino acids.

...LVQSGAEVKKP...

Public Molecular Data

- There are tremendous amount of public biomolecule data and free software.
- NCBI's sequence data bank:
 - E.g. https://www.ncbi.nlm.nih.gov/nuccore/NC 045512
- PDB protein structure database
 - E.g. https://www.rcsb.org/structure/6vxx

DNA

>NC_045512.2 Severe acute respiratory syndrome coronavirus 2 isolate Wi complete genome

TAATTACTGTCGTTGACAGGACACGAGTAACTCGTCTATCTTCTGCAGGCTGCTTACGGTTTCGTCCGTG TTGCAGCCGATCATCAGCACATCTAGGTTTCGTCCGGGTGTGACCGAAAGGTAAGATGGAGAGCCTTGTC ${\tt CCTGGTTTCAACGAGAAAACACACGTCCAACTCAGTTTGCCTGTTTTACAGGTTCGCGACGTGCTCGTAC}$ GTGGCTTTGGAGACTCCGTGGAGGAGGTCTTATCAGAGGCACGTCAACATCTTAAAGATGGCACTTGTGG $\mathtt{CTTAGTAGAAGTTGAAAAAGGCGTTTTGCCTCAACTTGAACAGCCCTATGTGTTCATCAAACGTTCGGAT$ GCTCGAACTGCACCTCATGGTCATGTTATGGTTGAGCTGGTAGCAGAACTCGAAGGCATTCAGTACGGTC GTAGTGGTGAGACACTTGGTGTCCTTGTCCCTCATGTGGGCGAAATACCAGTGGCTTACCGCAAGGTTCT TCTTCGTAAGAACGGTAATAAAGGAGCTGGTGGCCATAGTTACGGCGCCCGATCTAAAGTCATTTGACTTA GGCGACGAGCTTGGCACTGATCCTTATGAAGATTTTCAAGAAAACTGGAACACTAAACATAGCAGTGGTG TTACCCGTGAACTCATGCGTGAGCTTAACGGAGGGGCATACACTCGCTATGTCGATAACAACTTCTGTGG CCCTGATGGCTACCCTCTTGAGTGCATTAAAGACCTTCTAGCACGTGCTGGTAAAGCTTCATGCACTTTG TCCGAACAACTGGACTTTATTGACACTAAGAGGGGTGTATACTGCTGCCGTGAACATGAGCATGAAATTG

Protein Sequence and Structure

```
21563..25384
/gene="S"
/locus_tag="GU280 gp02"
/gene_synonym="spike glycoprotein"
/note="structural protein; spike protein"
/codon start=1
/product="surface glycoprotein"
/protein id="YP 009724390.1"
/db xref="GeneID: 43740568"
/translation="MFVFLVLLPLVSSQCVNLTTRTQLPPAYTNSFTRGVYYPDKVFR
SSVLHSTODLFLPFFSNVTWFHAIHVSGTNGTKRFDNPVLPFNDGVYFASTEKSNIIR
GWIFGTTLDSKTQSLLIVNNATNVVIKVCEFQFCNDPFLGVYYHKNNKSWMESEFRVY
SSANNCTFEYVSOPFLMDLEGKOGNFKNLREFVFKNIDGYFKIYSKHTPINLVRDLPO
GFSALEPLVDLPIGINITRFQTLLALHRSYLTPGDSSSGWTAGAAAYYVGYLQPRTFL
LKYNENGTITDAVDCALDPLSETKCTLKSFTVEKGIYOTSNFRVOPTESIVRFPNITN
LCPFGEVFNATRFASVYAWNRKRISNCVADYSVLYNSASFSTFKCYGVSPTKLNDLCF
TNVYADSFVIRGDEVROIAPGOTGKIADYNYKLPDDFTGCVIAWNSNNLDSKVGGNYN
YLYRLFRKSNLKPFERDISTEIYQAGSTPCNGVEGFNCYFPLQSYGFQPTNGVGYQPY
RVVVLSFELLHAPATVCGPKKSTNLVKNKCVNFNFNGLTGTGVLTESNKKFLPFQQFG
RDIADTTDAVRDPOTLEILDITPCSFGGVSVITPGTNTSNOVAVLYODVNCTEVPVAI
HADQLTPTWRVYSTGSNVFQTRAGCLIGAEHVNNSYECDIPIGAGICASYQTQTNSPR
RARSVASQSIIAYTMSLGAENSVAYSNNSIAIPTNFTISVTTEILPVSMTKTSVDCTM
YICGDSTECSNLLLQYGSFCTQLNRALTGIAVEQDKNTQEVFAQVKQIYKTPPIKDFG
GFNFSQILPDPSKPSKRSFIEDLLFNKVTLADAGFIKQYGDCLGDIAARDLICAQKFN
GLTVLPPLLTDEMIAQYTSALLAGTITSGWTFGAGAALQIPFAMQMAYRFNGIGVTQN
VLYENQKLIANQFNSAIGKIQDSLSSTASALGKLQDVVNQNAQALNTLVKQLSSNFGA
ISSVLNDILSRLDKVEAEVQIDRLITGRLQSLQTYVTQQLIRAAEIRASANLAATKMS
ECVLGOSKRVDFCGKGYHLMSFPOSAPHGVVFLHVTYVPAOEKNFTTAPAICHDGKAH
FPREGVFVSNGTHWFVTORNFYEPQIITTDNTFVSGNCDVVIGIVNNTVYDPLOPELD
SFKEELDKYFKNHTSPDVDLGDISGINASVVNIOKEIDRLNEVAKNLNESLIDLOELG
KYEQYIKWPWYIWLGFIAGLIAIVMVTIMLCCMTSCCSCLKGCCSCGSCCKFDEDDSE
PVLKGVKLHYT"
```


https://www.rcsb.org/structure/6vxx

Why Do People Do Bioinformatics?

- Understand life at molecular level
- Human health.
 - E.g. Sequencing SARS-Cov2 genomes allowed people study the evolution of this virus.
 - E.g. Study the structure of the spike protein and its iteraction with the host cells
 - E.g. A lot of human diseases are related to genetics.

Phylogeny tree of 3475 SARS-Cov2 genomes sampled between Dec 2019 and Dec 2021. Image credit: https://nextstrain.org/

- Sequencing
- Comparison
- Phylogeny

How SARS-Cov2 Invades Human Cells

- Gene prediction
- Protein identification
- Structure prediction
- Protein-protein interaction
- Structure determination

How SARS-Cov2 Invades Human Cells

- Immune system
- Antigen & Antibody
- MHC & T-cells

Bioinformatics

- Determine the molecule information
 - Through analyzing the data produced by measuring instruments
 - Usually in large scale and high throughput
- Use the molecular data to make inference

Difference Made by Bioinformatics

- Example: genome sequencing.
- Human Genome Project
 - 3B\$ from 1990-2003 to study human genome.
 - identify all the approximately 20,000-25,000 genes in human DNA,
 - determine the sequences of the 3 billion chemical base pairs that make up human DNA.
 - Bioinformatics played an essential role in analyzing the data and assemble the genome.
- Today one can sequence a human's genome with <1000\$ in a couple of weeks.
 Bioinformatics is the key to utilize the NGS (next generation sequencing) data for genome sequencing.
- As such, today's cancer treatment starts to become personalized. And many new drugs now require gene sequencing as companion diagnostic.

Cost per Human Genome

Objectives of This Course

- Know bioinformatics
 - Purpose and method
 - General topics
- Learn classic problems and algorithms in bioinformatics
- Learn wide-applicable computational techniques
 - String algorithms
 - Hidden Markov Model
 - Log likelihood ratio score
 - Statistical validation
 - A bit of machine learnine

A Typical Problem

Human genome has ~ 3G base pairs (letters).

>A substring of the genome

GCTTACACGTCACCATCTGTGCCACCACCCATGTCTCTAGTGAT

CCCTCATAAGTTCCAACAAAGTTTGCGAGTACTCAACACCAACA

TTGATGGGCAATGGAAAATAGCCTTCGCCATCACACCATTAAGG

GTGATGTTGAGGAAAAGCAGACATTGACCTCACCGAGAGGGCAGG

CGAGCTCAGGTAGGATGAGGTGGAGCATATGATCACCATCATAC

AGAACTCACCAAGATTCCAGACTGGTTC

- Only 1-2% encode proteins (genes).
 - where are they?

An Analog

Find the English words.

fbjpsikocxltfestkvdvjiixjsasisxmhbqpvpwb ulfddurluvwrritrbsbhcpeyhbekydaibmwyfntj nwvporabwuahvsdgknpkzihjqagrpspixtzqphhk tvwbioinformaticsisusefulcrsqibcadosyvoz vhuzdxabqrjzfagiysqfcmyrkqdytjtjbusysqga etyllzbinma@uwaterloo.cawpxuprgokixkoiyv

Another Typical Problem

- Find the longest shared substring between human and mouse genomes
 - Each has 3×10⁹ base pairs.
 - Cannot afford 3×10⁹×3×10⁹ comparisons.

Longest Common Substring

- Longest Common Substring can be done in linear time!
- What if all similarities (instead of exact matches) are to be found?
 - This leads to the homology search problem.
 - Some of the key techniques are developed by profs in this school.

A Third Typical Problem

sp|P21333|FLNA_HUMAN Filamin-A OS=Homo sapiens OX=9606 GN=FLNA PE=1 SV=4 sp|Q09666|AHNK_HUMAN Neuroblast differentiation-associated protein AHNAK OS=Homo sapiens OX=9606 GN=AHN... sp|O75369|FLNB_HUMAN Filamin-B OS=Homo sapiens OX=9606 GN=FLNB PE=1 SV=2 sp|P78527|PRKDC_HUMAN DNA-dependent protein kinase catalytic subunit OS=Homo sapiens OX=9606 GN=PRKDC P... sp|Q15149|PLEC_HUMAN Plectin OS=Homo sapiens OX=9606 GN=PLEC PE=1 SV=3 sp|P63261|ACTG_HUMAN Actin, cytoplasmic 2 OS=Homo sapiens OX=9606 GN=ACTG1 PE=1 SV=1 sp|P31327|CPSM_HUMAN Carbamoyl-phosphate synthase [ammonia], mitochondrial OS=Homo sapiens OX=9606 GN=... sp|Q2UVX4|CO3_BOVIN Complement C3 OS=Bos taurus OX=9913 GN=C3 PE=1 SV=2 sp|Q3T052|ITIH4_BOVIN Inter-alpha-trypsin inhibitor heavy chain H4 OS=Bos taurus OX=9913 GN=ITIH4 PE=1 SV=1 sp|Q14204|DYHC1_HUMAN Cytoplasmic dynein 1 heavy chain 1 OS=Homo sapiens OX=9606 GN=DYNC1H1 PE=1 SV=5 sp|P35579|MYH9_HUMAN Myosin-9 OS=Homo sapiens OX=9606 GN=MYH9 PE=1 SV=4 sp|P14618|KPYM_HUMAN Pyruvate kinase PKM OS=Homo sapiens OX=9606 GN=PKM PE=1 SV=4 sp|Q00610|CLH1_HUMAN Clathrin heavy chain 1 OS=Homo sapiens OX=9606 GN=CLTC PE=1 SV=5 sp|P06733|ENOA_HUMAN Alpha-enolase OS=Homo sapiens OX=9606 GN=ENO1 PE=1 SV=2 sp|P12763|FETUA_BOVIN Alpha-2-HS-glycoprotein OS=Bos taurus OX=9913 GN=AHSG PE=1 SV=2 sp|P46940|IQGA1_HUMAN Ras GTPase-activating-like protein IQGAP1 OS=Homo sapiens OX=9606 GN=IQGAP1 PE=1 S...

Peptide Identification

peptide sequence: LGSSEVEQVQLVVDGVK

tandem mass spectrometry: MS/MS spectrum

Assignments

- All are programming assignments. You submit source code and a half-page document.
 - Based on your own work. Use of library needs to be documented.
- Evaluation is mostly based on correctness and the performance of the program (speed, accuracy, etc.).

Assignments

- 1. Pairwise sequence alignment and COVID variants assignment
 - Every Bioinformatics course does this.
- 2. Is it a natural/real peptide?
 - A taste of scoring and machine learning.
- 3. Peptide identification from mass spec.
- 4. Predict structure of SARS-Cov2 spike protein.

Read More

- Modern molecular biology studies a few types of biologically important molecules: DNA, RNA, protein, lipid, glycan
- Bioinformatics has mostly studied DNA, then RNA and protein.
 - Because they are "easier"
 - their primary structures are sequences.
 - Also because the measuring technology has been developed.
- If you don't have much biology background, read the following articles (and other related articles) from Wikipedia: Protein, DNA, RNA, gene, genome, genetic code.
- We will also <u>briefly</u> review the necessary biology knowledge when needed.

Summary

- We talked about:
- course logistics
- basic biology (wikipedia good resource)
- course topics

Next time: sequence alignment