
Small-World Datacenters

Ji-Yong Shin† Bernard Wong‡ Emin Gün Sirer†

†Dept. of Computer Science ‡David R. Cheriton School of
Cornell University Computer Science

{jyshin, egs}@cs.cornell.edu University of Waterloo
bernard@uwaterloo.ca

ABSTRACT
In this paper, we propose an unorthodox topology for dat-
acenters that eliminates all hierarchical switches in favor
of connecting nodes at random according to a small-world-
inspired distribution. Specifically, we examine topologies
where the underlying nodes are connected at the small scale
in a regular pattern, such as a ring, torus or cube, such
that every node can route efficiently to nodes in its immedi-
ate vicinity, and amended by the addition of random links
to nodes throughout the datacenter, such that a greedy al-
gorithm can route packets to far away locations efficiently.
Coupled with geographical address assignment, the result-
ing network can provide content routing in addition to tra-
ditional routing, and thus efficiently implement key-value
stores. The irregular but self-similar nature of the net-
work facilitates constructing large networks easily using pre-
wired, commodity racks. We show that Small-World Dat-
acenters can achieve higher bandwidth and fault tolerance
compared to both conventional hierarchical datacenters as
well as the recently proposed CamCube topology. Coupled
with hardware acceleration for packet switching, small-world
datacenters can achieve an order of magnitude higher band-
width than a conventional datacenter, depending on the net-
work traffic.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Metrics—
Network topology

General Terms
Design, Management, Performance

Keywords
Datacenter network, Network topology, Small-world network

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOCC’11, October 27–28, 2011, Cascais, Portugal.
Copyright 2011 ACM 978-1-4503-0976-9/11/10 ...$10.00.

1. INTRODUCTION
Network topology is one of the key determinants of appli-

cation performance in datacenters. Traditional datacenters
are built around a hierarchical topology using multiple layers
of switches [8]. While such hierarchical topologies are mod-
ular, composable, and easy to set up, they suffer from per-
formance bottlenecks due to oversubscription at the higher
layers of the hierarchy. High-bandwidth connection tech-
nologies at the upper layers of the tree can mitigate over-
subscription, but often entail high costs.

Consequently, much recent research has focused on alter-
native datacenter topologies to achieve high bisection band-
width, improve failure resiliency, and provide low latency.
For instance, DCell [14], BCube [13], and CamCube [1] pro-
vide richer topologies with higher performance. In these
systems, costly network switches are replaced, and the rout-
ing functionality is shifted to the datacenter nodes, often
equipped with additional NICs. Such a shift in functional-
ity can improve bisection bandwidth and provide new func-
tionality, such as content addressing, that might be a better
fit for common datacenter applications such as key-value
stores. Yet these past approaches have their own shortcom-
ings; namely, they rely critically on a rigid connection pat-
tern that is not easy to set up, they incur high latencies,
and, while they provide higher bandwidth, they may still
fall short of what is practically achievable.

In this paper, we propose a novel, and unorthodox, topol-
ogy for datacenters. Like previous work, we eschew hier-
archical switches in favor of a rich topology in which the
datacenter nodes aid in routing. But unlike prior work, we
propose that the datacenter network be wired, essentially,
at random. Specifically, we propose networks based on a
locally-regular foundation that is easy to wire, such as a
ring, grid, cube or torus, and amend this regular structure
with a number of network links placed throughout the dat-
acenter. These links in the latter category follow a small-
world-inspired [39] pattern, such that nodes have a relatively
large number of links to the nearby nodes around them so
as to be authoritative in their region, and possess sufficient
links of the right lengths such that they can cover large dis-
tances when needed. The result is a datacenter topology
with low stretch and high bandwidth that is very easy to
provision.

This random topology can greatly simplify the construc-
tion of high performance datacenter networks. We envision
that a Small-World Datacenter (SWDC) can be constructed

simply by pre-cutting cabling ahead of time according to
the appropriate distribution. A larger number of short ca-
bles provide the regular grid structure, which ensures that
the network is not partitioned and that all nodes are reach-
able. The instructions for the provisioning team consist of
implementing a grid followed by establishing connections at
random.

Small-world networks lend themselves naturally to scal-
able construction from pre-wired rack components. We de-
scribe designs where each rack comes pre-wired with the reg-
ular links. It can be dropped into a network of any size, and
fully integrated into the fabric simply by connecting links at
random through a patch panel.

The random links in SWDCs have the potential to re-
duce network latency and improve bandwidth, especially in
comparison to previous work that limits all routes to a regu-
lar, rigid pattern. Furthermore, the combination of random
and regular links enables a simple greedy algorithm to ef-
fectively route packets within the datacenter. SWDCs also
enable content addressable networks, just as with the state
of the art datacenter topologies such as CamCube [1].

SWDCs rely on a collection of NICs in each node to pro-
vide the rich topology that achieves low latency and high
bandwidth. To fairly compare to past work, we investigate
topologies based on 6 NICs per node. In an ideal scenario,
the NICs would be integrated onto the same daughter board
or coupled with hardware accelerators such as GPUs and
NetFPGA [17, 27, 32] in order to avoid store-and-forward
delays when a node is routing from NIC to NIC. We inves-
tigate systems based both on unintegrated, commodity NIC
hardware, as well as systems with such optimizations.

Overall, this paper makes three contributions. First, we
propose a novel topology based on small-world networks,
and show that the judicious use of random wiring can yield
competitive datacenter networks. Second, we investigate dif-
ferent small-world network topologies based on a ring, 2-D
torus, and 3-D hexagonal torus and quantify their bene-
fits. Finally, we provide a detailed evaluation of SWDCs,
including comparisons with conventional datacenter topolo-
gies as well as CamCube. Our evaluation shows that SWDC
can outperform CamCube on both bandwidth and latency,
while providing the same functionality benefits stemming
from content addressing. In addition, SWDC can provide
up to 16 times higher bandwidth than conventional hierar-
chical datacenters, and can preserve over 90% of network
flows among live nodes even if up to 50% of nodes fail.

The remainder of this paper explores the design of SWDCs,
and evaluates and compares it with other datacenter designs.
Section 2 provides background information on small-world
networks. Section 3 presents the proposed SWDC designs,
including different small-world topologies and physical dat-
acenter packaging. Section 4 discusses suitable applications
for SWDC, and the evaluation of SWDC is presented in
Section 5. Related work is provided in Section 6 and finally,
Section 7 concludes our work.

2. SMALL-WORLD NETWORKS
Small-world networks were initially inspired by the phe-

nomena observed in Milgram’s experiments [30, 35] in hu-
man social networks. Watts and Strogatz proposed the name
and a mathematical simplification and formalization for such
networks [39]. Examples of small-world networks are shown
in Figure 1. In general, small-world networks exhibit an

average pairwise distance that is proportional to the log-
arithm of the nodes in the network. Kleinberg examined
small-world networks based on a d-dimensional lattice cou-
pled with additional random links at each node, and showed
that the network can route efficiently when the random links
are chosen with probability that is proportional to the dth
power of distance between two nodes, where d is the di-
mension of the lattice network [21, 22]. The lattice network
connects the nodes to their nearest neighbors, in effect ren-
dering them authoritative for hosts in their region, while the
random links provide short cut-through paths across the net-
work. Hereafter, we refer to links forming the lattice network
regular links, while the randomly assigned links are known
as random links.

For SWDCs, we adopt Kleinberg’s small-world model.
This network configuration guarantees that all nodes are
reachable, that the network scales well, and, with high prob-
ability, the path length between any two nodes is O(log n)
[24, 23].

3. SMALL-WORLD DATACENTER DESIGN
This section describes the topologies, address manage-

ment, routing methods, and packaging issues regarding the
design and implementation of SWDCs.

3.1 Network Topologies
The SWDC network topology admits many different in-

stantiations. The dimension of the underlying lattice, the
number of random links, degree of each node and so on can
vary depending on the configuration. In this paper, for pur-
poses of realistic deployment, low-cost, and fair comparison
to past work, we limit the degree of each node to 6 and
construct the following small-world networks for SWDCs:

• Small-World Ring (SW-Ring): 2 links form a ring
topology and 4 links connect each node to 4 random
nodes.

• Small-World 2-D Tours (SW-2DTorus): 4 links
form a 2-D torus topology and 2 links connect each
node to 2 random nodes.

• Small-World 3-D Hexagonal Torus (SW-3DHex-
Torus): 5 links form a 3-D hexagon torus and 1 link
connects each node to a random node.

Figure 1 illustrates the topology of each of these networks.
For clarity, the figure shows only one of the random links
per node and omits links in the third dimension for the SW
3-D hexagonal torus.

The split between the number of regular versus random
links has the potential to yield significantly different proper-
ties for these topologies. A topology such as SW-Ring, with
a relatively high number of random links and a smaller num-
ber of regular ones, can render the topology better suited
for data-center-wide search, while the opposite weighting,
as in the case of SW-3DHexTorus, can yield better perfor-
mance when searching local nodes. In essence, this break-
down represents the tradeoff between local expertise versus
better global knowledge. We show in Section 5 that hav-
ing strong local connections yields better results when using
greedy routing, while shortest path routing algorithm works
well with a larger number of random links.

(a) SW Ring (b) SW 2-D Torus (c) SW 3-D Hexagonal Torus

Figure 1: Small-world datacenter topologies. Solid lines indicate regular links while dotted lines represent random links. Only
one random link per node is drawn and links in the 3rd dimension in SW-3DHexTorus are omitted for simplicity.

Port # SW-Ring SW-2DTorus SW-3DHexTorus

1 right (2) east (2) top (2)
2 left (1) west (1) bottom (1)
3 random (3) north (4) east (4)
4 random (4) south (3) west (3)
5 random (5) random (5) north or south (5)
6 random (6) random (6) random (6)

Table 1: Examples of port assignments for SWDC topolo-
gies. Table entries describe the relative server location and
the destination port for each source port.

3.2 Physical Structure
Since routing in SWDCs is performed by the server nodes

that comprise the network, there is no need for any addi-
tional expensive switch hardware. The functionality of top-
of-rack, access, aggregation and core switches, which often
require expensive interconnect technologies and/or pose bot-
tlenecks due to oversubscription, are effectively distributed
throughout the servers. Because of this redistribution of
costs, SWDCs require every node to possess multiple net-
work cards.

To provide a direct comparison to past work, this paper
focuses on SWDC topologies with degree 6. We name ports
from 1 to 6 in each server and consistently use the port with
same number to connect servers in the same relative direc-
tion in the network. Since connections are bidirectional,
both ends of a link always connect the predefined ports. For
example, link from port 1 of a server always connects to port
2 of the adjacent server on the right in the lattice network of
SW-Ring and vice versa. Table 1 describes examples of port
assignments for each SWDC topology. This static assign-
ment of ports simplifies the assignment of logical addresses,
which we explain in the next subsection.

3.3 Geographical Identity and Address Assign-
ment

Because small-world networks are built on top of a lattice,
the network lends itself easily to address assignment based
on topology. We call this new address gk of a server k its
geographical identity. For a SW-Ring, a single index corre-
sponds to the position of the server on a ring; for a SW-
2DTorus, two indexes corresponding to x and y coordinates
of a server in 2-D torus; and for a SW-3DHexTorus, three
indexes corresponding to x, y, and z coordinates of a server

in the 3-D hexagonal torus network form the geographical
identity.

When the network port connections on all servers con-
sistently conform to the wiring configuration described in
Table 1, the servers can autonomously determine their geo-
graphical identities with minimal human intervention. The
network administrator needs to only define the geograph-
ical identity of a single landmark server. The rest of the
servers can determine their geographical identities through
the regular links, by simply determining which, if any, of
their neighbors have an address assigned, and over which
regular link they are connected to the neighbor with the as-
signed address. This process can also discover and identify
wiring errors through simple sanity checks. Once all the ge-
ographical identities are set in a wave over the regular links,
the servers can easily figure out which servers they can di-
rectly reach through the random links.

The regular lattice structure that underlies SWDC lends
itself naturally to efficient automated tools for monitoring
the network and detecting failures. Miswirings are easy
to detect through a simple lattice consistency checker at
construction time, and efficient failure detectors can be em-
ployed on the lattice throughout production use.

Note that it is not strictly necessary to use geographi-
cal identities in a small-world network; the topology pro-
vides benefits even if the address assignment is performed
using opaque, de facto MAC addresses. However, the regular
structure of the network, coupled with geographical identi-
ties, enables SWDCs to facilitate more efficient datacenter
applications. Specifically, geographical routing and address-
ing APIs, proposed in CamCube [1], can enable datacenter
applications, such as key-value stores, map/reduce opera-
tions and coordination protocols, to be implemented more
efficiently.

3.4 Routing Methods
Since the geographical identities assigned in the previous

phase identify the rack location of each of the servers, they
enable a range of efficient routing strategies to be used in
SWDCs. Two interesting choices for geographical routing
in a datacenter are to (1) find the optimal shortest paths
for all destinations, or (2) route the packets through a less-
expensive greedy approach. We discuss these design options
in turn and identify their benefits and inherent costs.

3.4.1 Optimal Shortest Path Routing
One possible choice of a routing scheme in a SWDC is

for all nodes to compute the shortest optimal path to every
destination. A node may use a well-established protocol,
such as OSPF [29], to discover the shortest path to all des-
tinations. Precomputing shortest paths will minimize the
path stretch that is possible with a given topology, reduce
congestion, and thus increase bandwidth.

There are a few potential downsides to computing the
optimal shortest routing table. First, every node needs to
maintain a routing table whose size is linear to the size of
the datacenter. Given the size of typical datacenters (in the
100,000s of machines, or fewer), and the amount of mem-
ory typically found on server nodes, these requirements (at
1MB for 10K servers) are quite modest. Second, running
OSPF may incur a bandwidth cost, but given the relatively
low rates of mobility and failure in the datacenter and the
high bandwidth interconnect, these overheads are miniscule.
Finally, the primary cost of precomputing an optimal rout-
ing table is the TCAM cost of storing that table on the
daughterboard that holds multiple NICs. While the regu-
lar structure of a SWDC can significantly reduce the size
and cost of the TCAM required, these costs can potentially
be high. For this reason, we investigate a simpler, greedy
alternative for the routing layer.

3.4.2 Greedy Geographical Routing
Greedy geographical routing determines the next hop for

a packet based solely on the packet’s current location and
its destination. Assume that a distance is the minimum
network hop count between the two server nodes, the des-
tination server node of a packet is dst, the server currently
holding the packet is curr, and the set of all next hop neigh-
bors of curr is N(curr). The regular network pattern in the
small-world network always enables the routing algorithm
to find a server n ∈ N(curr) that has smaller distance from
n to dst compared to that from curr to dst. This ensures
that the greedy routing in small-world network guarantees
packet delivery. The random links help reduce the distance
more dramatically in a single step.

This geographical routing method only requires each server
to keep track of the identities of its directly reachable servers.
The computation for the routing consists solely of numerical
address comparisons, which can be efficiently implemented
in hardware. However, to maximize the use of potential
shortcuts to the destination, we propose a slightly modified
approach wherein every node discovers the identities of its
neighbors up to k hops away. This enables every node to
make effective use of the random links of its neighbors to
degree k. Our experiments show that for k = 3, which re-
quires maintaining

∑
3

i=1
6i = 258 identities per server, this

scheme yields short routing path lengths. Because greedy
routing, when coupled with this enhancement, requires only
a small, fixed number of computation and comparisons, this
approach lends itself well to a hardware implementation.

3.4.3 Routing with Failures
The large scale of a modern datacenter guarantees that

there will be failed nodes somewhere in the network at all
times. Geographical routing in the presence of failures is
a well-studied topic, and due to space constraints, we do
not discuss potential remedies in detail except to note that
the regular structure of the underlying grid greatly simpli-

fies routing around failed nodes. Techniques such as face
routing [20] are well-established for routing around failures.
Compared to a conventional datacenter, the high intercon-
nectivity and in-degree make it far less likely for an SWDC
to be partitioned.

3.4.4 Interaction with Other Network Protocols
Throughout this paper, we assume that we use determin-

istic single-path routing to avoid packet reordering and to
provide compatibility with other network protocols such as
TCP. However, SWDCs have multiple paths with the same
length that connect the same node pairs. Therefore, a mul-
tipath routing protocol that takes advantage of the presence
of alternative paths can further improve the performance of
SWDC.

3.5 Composability and Scaling
Wiring up a datacenter is a costly undertaking. Intricate

topologies based on complex connection patterns can require
extensive human effort. In contrast, SWDCs are based on
relatively simple blueprints. The underlying grid topology
requires a very regular, mostly localized wiring pattern. We
focus this discussion on the wiring of the random links, which
are responsible for the unique properties of SWDCs.

Random point-to-point links are feasible even for rela-
tively large datacenters. Our discussion above alluded to
point-to-point wiring without repeaters. Such deployments
are feasible with commercial off-the-shelf technology. Giga-
bit ethernet links can be 100 meters long. Consider a data-
center with 10K servers in standard 42U Racks. Usually the
width, depth and height of the rack are 0.6, 1, and 2 me-
ters respectively [19]. Thus, even if we locate 10K server in
racks of 16 by 16 grid with 1.5 meters distance in-between,
a 100 meter link can connect any servers in the datacenter
through the ceiling or the floor. For installations above these
dimensions, one can employ repeaters on long paths.

The resilience of the small-world network tolerates many
kinds of errors in the construction of the datacenter. The
crew can simply be provided with wires of appropriate lengths
and instructions to extend the wires completely and pick a
random port. Small-scale, one-off errors will have negligi-
ble impact on the performance of the resulting network. If
wires cannot be precut, the construction crew can be sent
with spools and a handheld random number generator ap-
plication, in lieu of strict blueprints, to wire up a datacenter.

Adding new nodes in an SWDC requires some care to
ensure that the resulting random graph has good routing
properties. Establishing the new regular links is straightfor-
ward, as they simply need to be wired to establish a ring or
torus. Once the regular links are handled, we run the ran-
dom algorithm to determine the random link destinations
for the new nodes. To connect the random links while pre-
serving the small-world characteristics, a pair of new nodes
should work together in each step. First, we unplug the ex-
isting random links from the destination pairs and connect
the random links from the new node pairs to the unplugged
ports. Now there are two nodes that were connected to the
destination pairs and have unconnected random ports. We
simply connect the ports of these two nodes. Algorithm 1
describes the process of connecting the random links.

The self-similarity of small-world networks provides many
opportunities for scaling datacenters easily. A compelling
scenario is to construct datacenters from pre-fabricated small-

Algorithm 1 Random link construction when adding new
node pairs to SWDC.

Require:
Functions

Port(S, n): returns nth port of server S.
EPort(S, n): returns other end of the link connected to
Port(S, n).
Disconnect(P): disconnects wires from all port p ∈ P .
Connect(p1, p2): connects wires between ports p1 and p2.
RandSel(S): returns random server which is selected with de-
caying probability in the dth power of distance from server S,
where d is the dimension of the lattice network.
Variables
NewPairs: set of new server node pairs to add to SWDC.
RandPortNum: set of port numbers connecting random nodes.

Ensure: Add random links to new nodes in small-world data-
center
for all p ∈ NewPairs do

S1 = p.first
S2 = p.second
for all r ∈ RandPortNum do

D1 = RandSel(S1)
D2 = RandSel(S2)
sp1 = Port(S1, r)
sp2 = Port(S2, r)
dp1 = Port(D1, r)
dp2 = Port(D2, r)
ep1 = EPort(D1, r)
ep2 = EPort(D2, r)
Disconnect({dp1, dp2, ep1, ep2})
Connect(sp1, dp1)
Connect(sp2, dp2)
Connect(ep1, ep2)

end for

end for

world racks. In such a scenario, each rack would have the
regular lattice framework pre-wired. One way to perform
this wiring easily, without the need to resort to long wires
that span across the full length of the datacenter, is to con-
nect each host not to the physically adjacent host, but to
alternate and double back at the edge of the network. Thus,
instead of wiring five nodes in a 1-2-3-4-5-1 pattern, where
the 5-1 connection would have to be very long, the nodes can
be wired in a 1-3-5-4-2-1 pattern, where every wire that is
part of the regular lattice is approximately the same length,
and no wires cross the datacenter. It is possible to create
highly scalable, reusable, componentized racks with the aid
of patch panels placed in each rack. One edge of the regular
lattice would connect to the patch panel, enabling multiple
racks to be easily patched into a string, and the random links
emanating from each rack to other racks would be routed to
the patch panel as well. Random and regular links can use
different patch panels for ease of maintenance. Once racks
are internally wired, datacenter administrators can wire the
back ports of patch panels among racks to complete the con-
struction of the network. Figure 2 illustrates a simplified
example based on the SW-Ring structure.

Connecting a SWDC to the outside world can be per-
formed with the aid of switches. The full connectivity pro-
vided by the SWDC enable any number of switches to be
connected to any location within the datacenter. However,
in the rest of this paper, we focus exclusively on the network
connection and traffic inside datacenters, since the traffic in-
ternal to datacenters accounts for more than 80% of the total
traffic even in client-facing web clouds [12].

(a) Wiring within a rack

(b) Wiring among racks

Figure 2: Wiring SW-Ring using patch panels.

4. CONTENT ROUTING IN THE SMALL-
WORLD

One of the strengths of SWDC is that the physical net-
work structure can correspond to the logical network struc-
tures of the applications. This enables efficient content ad-
dressing, and enables applications such as distributed hash
tables (DHTs) [16, 11], multicast, aggregation and many
others. Conventional hierarchical networks are not a good
substrate for content addressing. Consider the case of de-
ploying CAN [34] in the datacenter. Every communication
would be subject to layers of processing through the stan-
dard communication stack. All packets would have to go
through multiple layers of switches to get to their destina-
tion because the physical location and connection of nodes
would not correspond to the logical structure of the sys-
tem. Thus, adjacent nodes in the virtual space can require
packets to travel through the whole hierarchy of switches for
data exchange. Although the switches provide fast forward-
ing of packets to far nodes, the top level switches can pose
bottlenecks to the overall bandwidth.

In contrast, the physical topology of SWDCs can mirror
the logical structure of a multidimensional space, simplify-
ing naming and routing. Nodes can be addressed not by an
opaque IP address, but by an assigned geographical iden-

Topology # Nodes Switching Delay Links per server Note

SW-Ring 10.24K 64B Pkt: 4.3 (15.8) µs 1 GigE × 6 NetFPGAs are used as default.
SW-2DTorus 1KB Pkt: 11.7 (150.0) µs Numbers in parentheses are

SW-3DHexTorus for cases without NetFPGA
CamCube (3D Torus) support.

CDC (2,5,1) 10.24K TOR: 6 µs, AS: 3.2 µs, CS: 5 µs 1 GigE × 1 Delays are independent of
CDC (1,7,1) packet sizes. 10 GigE links
CDC (1,5,1) are used among switches.

Table 2: Base configurations for SWDC, CamCube, and CDC. SWDCs and CamCube have 6 1GigE ports on each server and
NetFPGA accelerates the switching performance. 3 level switches with different oversubscription rates connect CDC nodes.

tity or other customized addressing scheme that captures
their location. Since this location corresponds to the node’s
logical position, this enables data-addressing: a key-value
pair can be routed to the responsible home node by key, for
example. Content routing in the datacenter was proposed
and examined in depth by CamCube, from which we derive
our motivation and the API for content addressing. Unlike
CamCube, which relies solely on a rigid torus structure for
its routing, the additional random links in a SWDC provide
significant shortcuts that can greatly improve performance
and distribute load.

5. EVALUATION
In this section, we further explore and evaluate the char-

acteristics of SWDCs including network hop counts, latency
and bandwidth, load distribution, and fault tolerance in
comparison to CamCube and conventional hierarchical dat-
acenter (CDC) models.

5.1 Test Environment
We evaluate the performance characteristics of SWDCs

through simulations of realistically-sized datacenters. We
use a fine-grained packet-level simulator that considers de-
lays in links, servers, and switches, reflects link and buffer
capacities, and models topology and routing protocols. The
simulator can measure evaluation metrics such as packet de-
livery latency, network bandwidth, and network hop count.

We compare SWDCs to conventional datacenters (CDCs)
as well as CamCube, targeting datacenters with 10,240 servers.
CDCs may have different oversubscription rates in each level
of switches. The oversubscription rate x represents the band-
width ratio x : 1 between the lower and upper level switches.
We consider three levels of switches that connect 10,240
servers, and we use three numbers to indicate the oversub-
scription rate in each level: top of rack switch, aggregation
switch, and core switch. For example CDC (2,5,1) indicates
that the oversubscription rates in top of rack, aggregation,
and core switches are 2, 5, and 1, respectively.

Table 2 summarizes the base configurations we use for
each topology. For SWDCs and CamCube, we use NetFP-
GAs to accelerate the switching performance. SWDCs and
CamCube servers have limited parallelism to serve multiple
ports, but switches in CDCs are capable of serving all ports
simultaneously as long as there is no contention within the
internal switching logic. The delays in the table are based on
[9, 2, 6, 5, 7]. Unless otherwise stated, we use greedy rout-
ing in SWDCs. We briefly compare the performance with
other combinations of hardware settings and routing meth-
ods in a later subsection. We do not tackle cost issues in this
paper because semiconductor costs are highly dependent on

economies of scale and tend to fall rapidly, sometimes expo-
nentially, over time. A hypothetical cost discussion would
necessitate market analysis, a topic beyond our expertise,
though we do note that the cost of the central component,
the NetFPGA, went down four-fold during the period that
this paper was under review.

In keeping with prior work in the area, we use three syn-
thetic benchmarks and employ different packet sizes for eval-
uation:

• Uniform random: Source nodes select random des-
tination nodes in datacenters with uniform random
probability. This resembles the shuffle phase of a MapRe-
duce task with uniform distribution.

• Local random: Source nodes select random destina-
tion nodes within a cluster with uniform random prob-
ability. A cluster in SWDCs and CamCube consists of
640 server nodes that are neighbors in the lattice net-
work. For CDCs, a cluster is the server nodes under
same aggregation switches (2nd level). In comparison
to the uniform random workload, this workload bet-
ter characterizes a real datacenter application because
most of the applications generate traffic that travels
short distance from the source [3, 25]

• MapReduce: (1) A source node sends messages to
the nodes in the same row of its rack. (2) The nodes
that receive the messages send messages to the nodes in
the same columns of their racks. (3) All the nodes that
receive the messages exchange data with the servers
in the same cluster and outside the cluster with 50%
probability each. This benchmark resembles the MapRe-
duce application used in Octant [38], where server nodes
compute and exchange information with other nodes
during the reduce phase.

5.2 Path Length Analysis
Before evaluating the performance of running applications

in SWDCs, we first evaluate the network path length, a key
factor that influences network latency and bandwidth.

5.2.1 Dijkstra Path Length
To characterize shortest possible path lengths under dif-

ferent datacenter topologies, we first determine the shortest
paths from each node to the others using Dijkstra’s algo-
rithm [10], and take the average of this metric across all
nodes. Since CDCs only have paths of length 2, 4, and 6,
where the paths involve climbing up and down up to three
levels of switching hierarchy, the discussion below focuses on
SWDCs and CamCube.

 0

 5

 10

 15

 20

 25

SW Ring SW 2DTor SW 3DHexTor CamCube

P
at

h
Le

ng
th

Data Center Topology

Average of Optimum Shortest Path Length

Figure 3: Dijkstra path length. Topologies with larger num-
ber of random links have shorter path length.

Figure 3 compares the Dijkstra path lengths achieved by
small-world networks to CamCube. The Dijkstra path lengths
in SWDCs are 2 to 3 times shorter, on average, than Cam-
Cube. Among SWDCs, the topologies with larger number
of random links achieve shorter path lengths. Surprisingly,
path lengths in SWDCs are comparable to conventional dat-
acenters. This implies that, depending on the performance
of the switching logic, SWDC can provide comparable or
better network service than CDCs.

5.2.2 Greedy Path Length
To evaluate the realistic path lengths that SWDCs would

achieve when employing the cheaper greedy routing tech-
nique, we measure the path length between all nodes when
using greedy routing with uniform random traffic on each
topology. Each node using the greedy routing method is
aware of the geographical identities of its three hop neigh-
bors.

Figure 4 shows the resulting greedy path length. Cam-
Cube achieves almost identical results as the Dijkstra path
length experiment since greedy routing leads to the shortest
path in a 3D torus. However, all SWDCs topologies achieve
shorter greedy path lengths than CamCube.

Since each SWDC nodes use a small amount of informa-
tion for routing, the path length increases compared to the
optimal Dijkstra path lengths which are determined using
global information. Whereas topologies with larger num-
ber of random links achieve shorter Dijkstra path lengths,
this trend is reversed for greedy paths. SW-Ring’s greedy
path length is significantly higher than its Dijkstra path
length, because greedy routing is unable to fully take advan-
tage of random links with limited local information. On the
other hand, SW-3DHexTorus’s greedy path lengths are only
moderately longer than its Dijkstra path length because the
higher dimension lattice network provides relatively shorter
paths when random links are unavailable.

5.3 Packet Delivery Latency
Because the average path lengths of SWDCs exceed that

of CDCs, one can expect the latency of a SWDC to be larger
than CDCs. Figure 5 shows the average packet delivery la-
tencies for comparable SWDC, CDC and CamCube configu-
rations. Each server in this evaluation generates 300 packets

 0

 5

 10

 15

 20

 25

SW Ring SW 2DTor SW 3DHexTor CamCube

P
at

h
Le

ng
th

Data Center Topology

Average of Path Length When Using Greedy Routing

Figure 4: Greedy path length. SWDC topologies based on
lattices of larger dimensions achieve shorter path lengths.

per second and MapReduce traffic launches multiple jobs si-
multaneously to fulfill the packet rate.

The measured packet delivery latencies reflect the trends
of the path lengths discussed in the previous subsection.
The path length partially accounts for the higher latency
of SWDCs, but the performance of the switching logic also
plays a significant role.

While the packet switching latency in SWDC varies de-
pending on the packet sizes, datacenter switches in CDCs
have short constant latencies due to cut-through routing and
can process multiple packets at the same time. Therefore,
the latency gap between SWDCs and CDCs becomes larger
when using 1KB packets compared to using 64B packets.
When using uniform random 1KB packets in SW-3DHex-
Torus, the average latency is 5.3 times greater than the la-
tency of CDC(1,5,1).

Interestingly, SWDCs achieve lower latencies than CDCs
for certain benchmarks. In the MapReduce benchmark with
64B packets, the benchmark generates packets for each phase
of MapReduce in a short time interval and these packets are
subject to queuing. CDC servers have one network port per
server whereas SWDC servers have six ports. Therefore,
the wide bisection bandwidth helps SWDC to minimize the
queuing delays and outperform conventional datacenters for
this benchmark.

SWDCs generally exhibit lower latencies than CamCube.
The only cases that CamCube outperforms SWDCs – only
for SW-Ring and SW-2DTorus – are when using local ran-
dom benchmark. This is because the packets from the bench-
mark travels short distance and SW-Ring and SW-2DTorus
have lower dimension lattice than CamCube.

To summarize, SWDC outperforms CamCube for most
cases. Due to longer path lengths and increased switching
delays, SWDCs typically show larger latencies than CDCs.

5.4 Maximum Aggregate Bandwidth
To measure the maximum aggregate bandwidth, we mea-

sure the aggregate bandwidth of the network when every
node pair is sending a burst of 500 packets. The results for
the different benchmarks are collated in Figure 6.

Although the packet latencies of SWDCs were larger than
CDCs for most cases, SWDCs achieve higher or comparable
maximum aggregate bandwidth than CDCs. For the 64B
packet workloads (Figure 6(a)), SWDC outperforms CDC

 0

 20

 40

 60

 80

 100

 120

 140

La
te

nc
y

(u
s)

Uniform Random (64B Packet)

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

Local Random (64B Packet)

 0

 50

 100

 150

 200

 250

 300

MapReduce (64B Packet)

(a) Using 64B packets. SW-3DHexTorus always outperforms CamCube and CDCs suffers from queuing delay for MapReduce.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

La
te

nc
y

(u
s)

Uniform Random (1KB Packet)

 0

 100

 200

 300

 400

 500

 600

Local Random (1KB Packet)

SW Ring
SW 2DTor

SW 3DHexTor
CamCube

CDC(2,5,1)
CDC(1,7,1)
CDC(1,5,1)

 0

 100

 200

 300

 400

 500

 600

MapReduce (1KB Packet)

(b) Using 1KB packets. Absence of physical switches in SWDCs makes larger latency gaps between SWDC and CDCs.

Figure 5: Average packet delivery latency. While relatively longer path lengths and larger switching delays pose problems for
SWDCs compared to conventional datacenters, they achieve comparable delays for the MapReduce benchmark.

 0

 50

 100

 150

 200

 250

 300

 350

 400

B
an

dw
id

th
 (

G
bp

s)

Uniform Random (64B Packet)

SW Ring
SW 2DTor

SW 3DHexTor
CamCube

CDC(2,5,1)
CDC(1,7,1)
CDC(1,5,1)

 60
 80

 100
 120
 140
 160
 180
 200
 220
 240
 260

Local Random (64B Packet)

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

MapReduce (64B Packet)

(a) Using 64B packets. SW-2DTorus and SW 3DHexTorus outperforms CamCube and CDCs for all cases.

 0

 500

 1000

 1500

 2000

 2500

B
an

dw
id

th
 (

G
bp

s)

Uniform Random (1KB Packet)

 600

 700

 800

 900

 1000

 1100

 1200

 1300

 1400

 1500

Local Random (1KB Packet)

 400

 500

 600

 700

 800

 900

 1000

 1100

 1200

MapReduce (1KB Packet)

(b) Using 1KB packets. SW-3DHexTorus shows 1.5% less bandwidth for MapReduce than CDC, but outperforms for all cases.

Figure 6: Maximum aggregate bandwidth. SWDCs achieve high bandwidth due to the additional, mostly-disjoint paths
provided by the random links.

for almost all configurations. There are several reasons for
this: the SWDC overhead for switching small packets is
small; the number of network ports per server in SWDC is
greater than CDC; and the bandwidth of CDC is bounded by
the top level switches. The bandwidth of SW-3DHexTorus
is, at its maximum, 1600% greater than CDC(1,5,1) for the
uniform random benchmark. The more the benchmark lim-
its the packet travel distance, the smaller the bandwidth gap
between SWDC and CDC becomes. This is because SWDC
is effective at transferring packets to far away nodes and
CDC is suitable for sending packets locally without going
up and down the oversubscribed network hierarchy.

SW-2DTorus and SW-3DHexTorus outperform CamCube
for all cases due to their shorter path length. The band-
width of 3DHexTorus is 312% larger than that of CamCube
for the uniform random benchmark while SW-Ring achieves
comparable performance.

For large packet workloads (Figure 6(b)), CDCs provides
comparable bandwidth to SWDCs for local random and
MapReduce benchmarks. This is due to the minimal uti-
lization of random shortcuts in SWDCs and limited usage
of the top level switches in CDC. However, SW-3DHex-
Torus demonstrates bandwidth that is higher than or com-
parable to CDCs for both benchmarks and higher band-
width for uniform random benchmarks: SW-3DHexTorus
shows 1.5% lower bandwidth for MapReduce benchmark,
but 637% higher bandwidth for uniform random benchmark
than CDC(1,5,1). CamCube generally shows lower band-
width than SW-2DTorus and SW-3DHexTorus: SW-3DHex-
Torus operates at maximum 314% greater bandwidth than
CamCube. CDC(2,5,1) performs the worst for all cases due
to oversubscription in two levels of switches, namely, top of
rack and aggregation switches.

Overall, SWDCs generally provide higher bandwidth than
CamCube. They also provide bandwidth that is higher than
or comparable to CDCs. Similar to the latency results, high
dimension lattice networks such as SW-3DHexTorus lead to
higher bandwidth. Although the packet latencies are greater
than CDCs, SWDC is appealing to applications where com-
munication across datacenter is frequent and requires high
bandwidth.

5.5 Hardware Acceleration
In this subsection, we briefly compare the performance of

SWDCs and CamCube with different hardware and rout-
ing configurations. We compare the latency and bandwidth
of our base case using NetFPGA and greedy routing with
the cases of using shortest path routing with and without
NetFPGAs. Although we only show the cases for the uni-
form random benchmark with 1KB packets in this paper,
the performance of other SWDC configurations shows qual-
itatively similar results.

Figure 7 illustrates the latency of SWDCs with and with-
out hardware assistance for inter-NIC routing. The forward-
ing latencies are at least three times larger without hardware
acceleration. In CamCube, the effect of switching delay is
more obvious since the packets travel through larger number
of hops. Routing purely in software effectively transforms
the node into a store-and-forward platform, where the for-
warding can take effect only when the packet has been re-
ceived in full, and thus the switching delay is highly depen-

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500

SW Ring

SW 2DTor

SW 3DHexTor

CamCube

La
te

nc
y

(u
s)

Packet Delivery Latency
(uniform random 1KB packets)

Greedy NetFPGA
Short

Short NetFPGA

Figure 7: Latency of SWDC and CamCube with different
hardware and routing configurations.

 0

 1000

 2000

 3000

 4000

 5000

 6000

SW Ring

SW 2DTor

SW 3DHexTor

CamCube

B
an

dw
id

th
 (

G
bp

s)

Maximum Aggregate Bandwidth
(uniform random 1KB packets)

Greedy NetFPGA
Short

Short NetFPGA

Figure 8: Aggregate bandwidth of SWDC and CamCube
with different hardware and routing configurations.

dent on the packet size [2]. Hardware accelerators such as
NetFPGAs or GPUs provide a performance boost by miti-
gating this effect. If shortest path routing is used in SWDCs
in conjunction with NetFPGA assistance, we can achieve
significantly lower latencies.

Figure 8 shows that bandwidth measurements show simi-
lar trends. Our base case with hardware acceleration enables
SWDC to achieve 1.9 to 6.5 time higher bandwidth than
shortest path routing without NetFPGAs. Again, shortest
path routing and NetFPGA combinations yield the best re-
sults. SW-Ring performs the best for this case since the
Dijkstra path length is the shortest as shown in Figure 3.

Both the latency and bandwidth comparisons demonstrate
the need for hardware acceleration. Further, in environ-
ments with abundant CPU resources, the use of shortest
path routing will lead to further latency and bandwidth im-
provements.

5.6 Load Distribution
Compared to CamCube and CDC, SWDC utilizes ran-

dom links as shortcuts. Thus, packets may overload certain
links or servers. Thus, we analyze the traffic load on each
server under different benchmarks for SWDC and CamCube
to measure the amount of average packet load per server
and the load distribution. Figure 9 illustrates the average

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

P
ac

ke
t l

oa
d

pe
r

se
rv

er
 n

or
m

al
iz

ed
 to

 C
am

C
ub

e
of

 u
ni

fo
rm

 r
an

do
m

Uniform Random

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

Local Random

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

MapReduce

SW Ring greedy
SW 2DTor greedy

SW 3DHexTor greedy
SW Ring short

SW 2DTor short
SW 3DHexTor short

CamCube greedy/short

Figure 9: Packet load distribution. SWDC with greedy routing imposes less overall load than CamCube.

and the standard deviations of the numbers of packets each
server processes. We normalize the bars to CamCube with
the uniform random benchmark. We also include the results
of using shortest path routing for comparison.

The average number of packets processed per server fol-
lows the trends of path length. The longer the path that
a packet travels, the larger the number of servers that pro-
cesses the packet. Therefore, for all benchmarks, SW-3DHex-
Torus processes the same job with the least amount of work
among all others – excluding the shortest path routing cases
– and CamCube shows better performance than SW-Ring
for local random benchmarks.

However, greedy routing in SWDCs can lead to load im-
balance under certain circumstances. Because greedy rout-
ing maintains no global state and picks only locally opti-
mal routes, it may end up favoring small number of random
links. On the contrary, an optimal routing algorithm will
select the random links with the balanced random distribu-
tion, similar to how random links were built, based on the
global information of the network. This explains the rela-
tively high standard deviation bars in Figure 9. This im-
balance represents a tradeoff between performance and the
simplicity of the routing algorithm. SWDCs still complete
the benchmarks with less total overhead than CamCube in
most cases.

The experiment also shows how much a better routing
algorithm can improve the load balance and performance
of a small-world network. As shown in the second set of
bars, both the amount of load and its distribution are all
better when shortest-path routing is employed. There are
other techniques, such as pseudo-randomization when mak-
ing greedy decisions and routing packets adaptively based
on link load counters, that can be employed to improve the
performance of greedy routing.

5.7 Fault Tolerance
The failure characteristics of SWDC and CamCube are

different from CDCs. Switch failures can disconnect many
nodes in CDCs, while SWDC and CamCube, which are not
dependent on a switch fabric, exhibit tremendous failure re-
silience. Since each server node acts as a switch in SWDC
and CamCube, node and link failures can cause path disrup-
tion, but the abundance of alternative paths often provide
alternative paths for flows. To evaluate the fault tolerance
characteristics, we simulate random node failures and mea-
sure the path lengths and connectivity among live nodes.

 0

 10

 20

 30

 40

 50

0 10 20 30 40 50 60 70

P
at

h
Le

ng
th

Percentage of Failed Node

Optimum Shortest Path Length Under Random Node Failure

SW Ring
SW 2DTor

SW 3DHexTor
CamCube

Figure 10: Path length under failure. The increase in path
length under failure is moderate.

 0

 20

 40

 60

 80

 100

0 10 20 30 40 50 60 70 80 90

P
er

ce
nt

ag
e

of
 P

re
se

rv
ed

 P
at

h

Percentage of Failed Node

Percentage of Preserved Path between Live Nodes Under Random Failure

SW Ring
SW 2DTor

SW 3DHexTor
CamCube

Figure 11: Connectivity under failure. SWDCs can maintain
strong connectivity in the presence of many failures.

Figure 10 shows the average path length to connect all live
node pairs. For both SWDC topologies and CamCube, the
path stretch increases gradually as the percentage of failed
node increases. Because SWDC and CamCube topologies
are degree 6 graphs, where servers can easily forward pack-
ets through alternative routes, random node failure does not
greatly affect network performance. The amount of increase

in path stretch is greater for the topologies with fewer num-
ber of random links.

The percentage of preserved connections under failure also
shows similar trends (Figure 11). All topologies maintain
over 90% of connections until 50% of nodes fail. SWDCs
maintain more connections than CamCube, while SW-Ring,
which has the largest number of random links, keeps the
greatest number of connections under equivalent failure con-
ditions.

5.8 Summary
The summaries of the findings throughout this section are

as follows:

• Path length: Average path lengths in SWDCs can
be less than half of CamCube. The random links in
the topology contribute to the reduction of the shortest
path lengths, while the regular links impact the greedy
path lengths.

• Latency: Average packet delivery latencies of SWDCs
is less than CamCube but greater than CDC. Depend-
ing on the benchmark, SWDCs can achieve smaller
latencies than CDC by taking advantage of multiple
network ports.

• Bandwidth: Depending on the application and packet
sizes, SWDCs’ maximum aggregate bandwidth can be
6 to 16 times greater than CDC and 3 times greater
than CamCube.

• Hardware support: Hardware acceleration is crit-
ical to providing low latency and high bandwidth in
SWDCs.

• Load distribution: Greedy routing can cause uneven
distribution of load in SWDC. The load to process the
same job on SWDCs is typically less than in CamCube.

• Fault tolerance: SWDCs can maintain over 90% of
connectivity among nodes until 50% of total nodes fail.
The random links contribute to stronger connectivity
and node failures degrades the path length between
node pairs very moderately.

The simulations in this paper use a fixed number and de-
gree of nodes, which reflect realistic hardware constraints.
Past work on mathematical models of small-world networks [18,
33, 26] provides insights on how SWDCs can scale and per-
form when these fixed parameters are changed.

6. RELATED WORK
Small-world phenomena and networks have been studied

since 1960s. Kleinberg provides extensive theoretical analy-
sis and a survey of past work on small-world networks [21,
22]. The theoretical aspects of SWDCs build on this work.

Small-world networks provide the foundation for certain
distributed hash tables and peer-to-peer systems. Freenet [40]
and Symphony [31] provide mechanisms to achieve small-
world properties in wide-area networks. Viceroy [28], a peer-
to-peer DHT, builds a butterfly network inspired by small-
world networks. The Meridian [37] and Cubit [36] systems
create lightweight overlays in wide-area networks where each
node is an expert for other nodes and data in its own region,
and possesses just the right number of outgoing links to far

regions to perform efficient routing. Our design differs from
this work in that we propose to use small-worlds for the ac-
tual physical topology of a datacenter, as opposed to the
structure of an overlay.

More recently, a large body of work has emerged on how
to improve bisection bandwidth, failure resilience, and la-
tency of datacenter networks through innovative topologies.
VL2 [12] uses flat addressing to separate names and loca-
tions of servers and performs load balancing and flexible
routing to provide each server with the illusion of a large
level 2 switch over the entire datacenter. This structure en-
ables VL2 to support efficient content-addressing. Unlike
SWDC, VL2 depends on an expensive switched fabric. Fur-
ther, since the physical location of addresses are hidden from
application programmers and the network is complex, the
costs of data access are nonuniform and opaque to applica-
tion programmers. BCube [13] and DCell [14] are similarly
novel datacenter topologies that are based on a hierarchi-
cal cell organization. Both approaches aim to reduce path
length while improving bisection bandwidth through a rich
inter-cell connection network. They require a complex reg-
ular network pattern, and depend on numerous commodity
switches. SWDC requires a relatively simple regular, switch-
free point-to-point network and random links can be wired
with some imprecision. Scafida [15] is another datacen-
ter network architecture inspired by scale-free networks [4].
Similar to SWDC, it uses randomness to connect nodes.
However, due to lack of regularity in the network, Scafida
cannot efficiently support content-based and greedy routing.
Perhaps the closest work to ours is CamCube [1], a content-
addressable network based on a 3D torus. Simple regular
connections and APIs that expose the topology enable ap-
plication programmers to program content-addressable ap-
plications. However, the torus topology suffers from large
network hop counts as we have shown in this paper. SWDC
can provide the same APIs as CamCube while improving
performance through its random links.

The software switching techniques used in SWDCs are
similar to those in RouteBricks [9] and the Linux software
router [2] in a small scale. PacketShader [17] and Server-
Switch [27] accelerate software switches and routers using
hardware such as GPUs and NetFPGAs. These techniques
are applicable to SWDCs as well.

7. CONCLUSIONS
In this paper, we introduced small-world datacenters, a

datacenter topology based on small-world networks com-
prised of a regular short-distance lattice amended with longer-
range random links. Such a topology is easy to wire, com-
poses and scales well to large datacenters, supports content
addressing, and achieves higher or comparable performance
compared to both conventional and recently proposed net-
work designs. SW-2DTorus and SW-3DHexTorus outper-
form CamCube for most of the evaluation metrics due to
random links that provide efficient cut-through routes across
the datacenter. Although SWDCs exhibit higher latencies
than conventional datacenters, they achieve roughly an or-
der of magnitude higher bandwidth. The latency gap be-
tween SWDCs and CDC stems from the packet process-
ing efficiency in servers versus in switches. As software
routing technology advances, we expect SWDC to become
more competitive on the latency front while providing higher

bandwidth, greater failure resiliency and a more flexible ad-
dressing framework.

Acknowledgments
We would like to thank the anonymous reviewers for their
feedback, and Anthony Rowstron for insightful discussions
on efficient wiring in datacenters. This material is based
upon work supported by the National Science Foundation
under Grant No. 0546568.

8. REFERENCES

[1] H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea,
and A. Donnelly. Symbiotic Routing in Future Data
Centers. In Proceedings of the ACM SIGCOMM

Conference on Data Communication, pages 51-62,
New Delhi, India, August 2010.

[2] R. Bolla and R. Bruschi. Linux Software Router: Data
Plane Optimization and Performance Evaluation. In
Journal of Networks, 2(3):6–17, June 2007.

[3] T. Benson, A. Akella, and D. A. Maltz. Network
Traffic Characteristics of Data Centers in the Wild. In
Proceedings of the Conference on Internet

Measurement, pages 267-280, Melbourne, Australia,
November 2010.

[4] A. L. Barabasi and R. Albert. Emergence of Scaling in
Random Networks. In Science, 286(5439):509–512,
October 1999.

[5] Cisco. Cisco Nexus 5000 Series Architecture: The
Building Blocks of the Unified Fabric.
http://www.cisco.com/en/US/prod/collateral/switches/
ps9441/ps9670/white paper c11-462176.pdf, 2009.

[6] Cisco. Cisco Catalyst 4948 Switch.
http://www.cisco.com/en/US/prod/collateral/switches/
ps5718/ps6021/product data sheet0900aecd8017a72e.pdf,
2010.

[7] Cisco. Cisco Nexus 7000 F-Series Modules.
http://www.cisco.com/en/US/prod/collateral/switches/
ps9441/ps9402/at a glance c25-612979.pdf, 2010.

[8] Cisco. Cisco Data Center Infrastructure 2.5 Design
Guide.
http://www.cisco.com/en/US/docs/solutions/Enterprise/
Data Center/DC Infra2 5/DCI SRND 2 5 book.html,
March 2010.

[9] M. Dobrescu, N. Egi, K. Argyraki, B.-G. Chun, K.
Fall, G. Iannaccone, A. Knies, M. Manesh, and S.
Ratnasamy. RouteBricks: Exploiting Parallelism to
Scale Software Routers. In Proceedings of the ACM

Symposium on Operating Systems Principles, pages
15–28, Big Sky, MT, USA, October 2009.

[10] E. W. Dijkstra. A Note on Two Problems in
Connexion with Graphs. In Numerische Mathematik,
1:269–271, 1959.

[11] B. Fitzpatrick. Distributed Caching with Memcached.
In Linux Journal, 124, August 2004.

[12] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C.
Kim, P. Lahiri, D. A. Maltz, P. Patel, and S.
Sengupta. VL2: A Scalable and Flexible Data Center
Network. In Proceedings of the ACM SIGCOMM

Conference on Data Communication, pages 51-62,
Barcelona, Spain, August 2009.

[13] C. Guo, G. Lu, D. Li, H. Wu, X. Zhang, Y. Shi, C.
Tian, Y. Zhang, and S. Lu. BCube: A High
Performance, Server-Centric Network Architecture for
Modular Data Centers. In Proceedings of the ACM

SIGCOMM Conference on Data Communication,
pages 63–74, Barcelona, Spain, August 2009.

[14] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu.
DCell: A Scalable and Fault-Tolerant Network
Structure for Data Centers. In Proceedings of the ACM

SIGCOMM Conference on Data Communication,
pages 75–86, Seattle, WA, USA, August 2008.

[15] L. Gyarmati and T. A. Trinh. Scafida: A Scale-Free
Network Inspired Data Center Architecture. In
SIGCOMM Compututer Communication Review,
40(5):5–12, October 2010.

[16] S. D. Gribble. A Design Framework and a Scalable
Storage Platform to Simplify Internet Service
Construction. In Ph.D. Thesis, U.C. Berkeley,
September 2000.

[17] S. Han, K. Jang, K. Park, and S. Moon.
PacketShader: A GPU-Accelerated Software Router.
In Proceedings of the ACM SIGCOMM Conference on

Data Communication, pages 195–206, New Delhi,
India, August 2010.

[18] M. D. Humphries and K. Gurney. Network
’Small-World-Ness’: A Quantitative Method for
Determining Canonical Network Equivalence. In PLoS

ONE, 3(4):1–10, April 2008.

[19] HP. HP Rack 10000 G2 Series Quick Spec, DA12402.
http://h18004.www1.hp.com/products/quickspecs/
12402i na/12402 na.pdf, 2011.

[20] E. Kranakis, H. Singh, and J. Urrutia. Compass
Routing on Geometric Networks. In Proceedings of the

Canadian Conference on Computational Geometry,
pages 51-54, Vancouver, British Columbia, Canada,
August 1999.

[21] J. Kleinberg. The Small-World Phenomenon: An
Algorithmic Perspective. In Proceedings of the ACM

Symposium on Theory of Computing, pages 163–170,
Portland, OR, USA, May 2000.

[22] J. Kleinberg. Small-World Phenomena and the
Dynamics of Information. In Proceedings of the

Conference on Neural Information Processing

Systems, pages 431–438, Vancouver, BC, Canada,
December 2001.

[23] J. Kleinberg. The Small-World Phenomenon and
Decentralized Search. In SIAM News, 37(3), April
2004.

[24] J. Kleinberg. Complex Networks and Decentralized
Search Algorithms. In Proceedings of the International

Congress of Mathematicians, pages 1019–1044,
Madrid, Spain, August 2006.

[25] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and
R. Chaiken. The Nature of Data Center Traffic:
Measurements & Analysis. In Proceedings of the

Conference on Internet Measurement, pages 202-208,
Chicago, IL, USA, November 2009.

[26] R. V. Kulkarni, E. Almaas, and D. Stroud. Exact
Results and Scaling Properties of Small-World
Networks. In Physical Review Letters,
61(4):4268–4271, April 2000.

[27] G. Lu, C. Guo, Y. Li, Z. Zhou, T. Yuan, H. Wu, Y.

Xiong, R. Gao, and Y. Zhang. ServerSwitch: A
Programmable and High Performance Platform for
Data Center Networks. In Proceedings of the

Symposium on Networked System Design and

Implementation, Boston, MA, USA, March 2011.

[28] D. Malkhi, M. Naor, and D. Ratajczak. Viceroy: A
Scalable and Dynamic Emulation of the Butterfly. In
Proceedings of the Symposium on PRinciples of

Distributed Computing, pages 183–192, Monterey, CA,
USA, July 2002.

[29] J. Moy. OSPF Version 2. RFC i2328. April 1998.

[30] S. Milgram. The Small World Problem. In Psychology

Today, 2:60–67, 1967.

[31] G. S. Manku, M. Bawa, and P. Raghavan. Symphony:
Distributed Hashing in a Small World. In Proceedings

of the USENIX Symposium on Internet Technologies

and Systems, pages 127–140, Seattle, WA, USA,
March 2003.

[32] J. Naous, G. Gibb, S. Bolouki, and N. McKeown.
NetFPGA: Reusable Router Architecture for
Experimental Research. In Proceedings of the ACM

workshop on Programmable Routers for Extensible

Services of Tomorrow, pages 1–7, Seattle, WA, USA,
August 2008.

[33] M.E.J. Newman, C. Moore, and D.J. Watts.
Mean-Field Solution of the Small-World Network
Model. In Physical Review Letters, 84(14):3201–3204,
April 2000.

[34] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network.
In Proceedings of the ACM SIGCOMM Conference on

Data Communication, pages 161–172, San Diego, CA,
USA, August 2001.

[35] J. Travers and S. Milgram. An Experimental Study of
the Small World Problem. In Sociometry,
32(4):425–443, 1969.

[36] B. Wong and E. G. Sirer. Approximate Matching for
Peer-to-Peer Overlays with Cubit. In Computing and

Information Science Technical Report, Cornell

University, December 2008.

[37] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A
Lightweight Network Location Service Without
Virtual Coordinates. In Proceedings of the ACM

SIGCOMM Conference on Data Communication,
pages 85–96, Philadelphia, PA, USA, August 2005.

[38] B. Wong, I. Stoyanov, and E. G. Sirer. Octant: A
Comprehensive Framework for the Geolocalization of
Internet Hosts. In Proceedings of the Symposium on

Networked System Design and Implementation, pages
313–326, Cambridge, MA, USA, April 2007.

[39] D. J. Watts and S. H. Strogatz. Collective Dynamics
of ‘Small-World’ Networks. In Nature, 393:440–442,
June 1998.

[40] H. Zhang, A. Goel, and R. Govindan. Using the
Small-World Model to Improve Freenet Performance.
In Proceedings of the IEEE International Conference

on Computer Communications, pages 1228–1237, New
York, NY, USA, June 2002.

