
Sift: Resource-Efficient Consensus with RDMA
Mikhail Kazhamiaka, Babar Memon, Chathura Kankanamge, Siddhartha Sahu, Sajjad Rizvi,

Bernard Wong, Khuzaima Daudjee
{mkazhami,bmemon,c2kankan,s3sahu,sm3rizvi,bernard,kdaudjee}@uwaterloo.ca

Cheriton School of Computer Science, University of Waterloo

ABSTRACT
Sift is a new consensus protocol for replicating state machines. It
disaggregates CPU and memory consumption by creating a novel
system architecture enabled by one-sided RDMA operations. We
show that this system architecture allows us to develop a consen-
sus protocol which centralizes the replication logic. The result is a
simplified protocol design with less complex interactions between
the participants of the consensus group compared to traditional
protocols. The dissaggregated design also enables Sift to reduce
deployment costs by sharing backup computational nodes across
consensus groups deployed within the same cloud environment.
The required storage resources can be further reduced by inte-
grating erasure codes without making significant changes to our
protocol. Evaluation results show that in a cloud environment with
100 groups where each group can support up to 2 simultaneous fail-
ures, Sift can reduce the cost by 56% compared to an RDMA-based
Raft deployment.

CCS CONCEPTS
• Computer systems organization → Reliability.

KEYWORDS
Consensus, Reliability, RDMA, Resource Disaggregation
ACM Reference Format:
Mikhail Kazhamiaka, Babar Memon, Chathura Kankanamge, Siddhartha
Sahu, Sajjad Rizvi, Bernard Wong, Khuzaima Daudjee. 2019. Sift: Resource-
Efficient Consensus with RDMA. In CoNEXT ’19: International Conference
On Emerging Networking Experiments And Technologies, December 9–12, 2019,
Orlando, FL, USA. ACM, New York, NY, USA, 12 pages. https://doi.org/10.
1145/3359989.3365437

1 INTRODUCTION
StateMachine Replication (SMR) enables the construction of reliable
services by ensuring events are recorded in the same order by a
majority of participants before they are applied to the state machine.
This allows services to remain available and maintain a consistent
state in the presence of failures. Paxos [13] is the most widely used
protocol for implementing SMR. It is efficient and has proven safety
and liveness properties. However, like all consensus protocols for
asynchronous systems, Paxos must replicate the application state

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6998-5/19/12. . . $15.00
https://doi.org/10.1145/3359989.3365437

to a large number of nodes, requiring 2F + 1 replicas to support F
simultaneous fail-stop errors, and has limited throughput due to
this requirement.

Although the performance of consensus protocols can pose a
problem for some applications, most that require high throughput,
such as databases and storage systems, have states that can be easily
partitioned, allowing horizontal scaling across consensus groups.
However, horizontal scaling does not address the monetary cost of
replicating state to 2F + 1 replicas. Each replica must also be provi-
sioned with enough compute and memory resources to serve as the
elected leader, resulting in significant resource under-utilization
on the non-leader nodes. As a result, the cost of providing SMR
can be prohibitive for applications that have large state machines
and must remain available in the event of multiple simultaneous
failures.

For applications running in the cloud, one approach to reduce
the costs of consensus is by using a shared consensus service of-
fered by the cloud provider. This allows resource sharing across
applications which can reduce the cost of running the service. How-
ever, providing performance isolation between applications can be
challenging. The failure of a single consensus group can also lead to
multiple application failures. Such failures are especially problem-
atic when requests from applications that should fail independently
are assigned to the same group. Furthermore, this approach does
not reduce the amount of state being replicated that is often the
dominant cost in providing a consensus service.

Previous work [22] has explored using erasure codes to reduce
the storage requirement of SMR. Instead of storing a full replica
at every node, each node only stores either a portion of the data
or parity information that can be used to reconstruct the data.
Adding erasure coding introduces significant complexity to an al-
ready complex system, making it more difficult to reason about
the correctness of an implementation. More importantly, to reduce
complexity, these systems cannot provide the same degree of fault
tolerance and require more than 2F + 1 nodes to tolerate F failures.

In this paper, we introduce Sift, a resource-disaggregated con-
sensus protocol in which request processing and state storage are
logically separated to simplify the protocol and reduce the cost of
deployment. To support this disaggregated design, a Sift deploy-
ment consists of two types of nodes: (i) CPU nodes that store only
soft (non-persistent) state; and (ii) passive memory nodes that store
the consensus log and the state machine. One of the CPU nodes is
elected as a coordinator, which handles all requests from clients by
both logging the requests and updating the state machine on the
memory nodes. Similar to other consensus protocols, Sift requires
2F + 1 memory nodes to handle F memory node failures. However,
only F + 1 CPU nodes are required. The required number of active
CPU nodes is even lower when compute resources are shared across
consensus groups.

260

https://doi.org/10.1145/3359989.3365437
https://doi.org/10.1145/3359989.3365437
https://doi.org/10.1145/3359989.3365437

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Kazhamiaka et al.

Type Resource Location Protocol Erasure Coding Replication Factor
Sift Disaggregated 1-sided RDMA Yes 2Fm + 1, Fc + 1
Raft Coupled TCP No 2F + 1
DARE Coupled 1-sided RDMA No 2F + 1

RS-Paxos Coupled TCP Yes QR +QW − X [22]
Disk Paxos Disaggregated* Unspecified No 2F + 1 disks + P + L

Table 1: Comparison of key consensus protocol characteristics. Sift’s compute replication factor can be reduced through the
sharing of backup CPU nodes, which we describe in Section 5.2. Note a difference in disaggregated architectures: in Sift, the
passivememory nodes store both the log andmaterialized state, whereas in Disk Paxos the passive nodes are only acceptors. A
Disk Paxos deployment requires 2F +1 acceptors (disks) and some number of proposers (P) and learners (L). RS-Paxos presents
its replication factor in terms of its read quorum size (QR), write quorum size (QW), and erasure coding factor (X).

Our design borrows ideas from Disk Paxos [7] to separate pro-
cessing from storage. However, unlike Disk Paxos, our passive
storage nodes store both the consensus log and a representation of
the state machine, allowing a failed coordinator to be replaced with
a different CPU node without requiring any state reconstruction.
One of the key enabling technologies for Sift’s design is one-sided
Remote Direct Memory Access (RDMA). One-sided RDMA enables
the coordinator to read and write to predefined memory regions
on the memory nodes without involving the CPUs of the memory
nodes. As a result, the memory nodes can be completely passive
and can be provisioned with minimal CPU resources. By allowing
the coordinator to directly access the memory of memory nodes
as though it was stored locally, we are able to greatly simplify the
design of the coordinator In addition, by centralizing the replication
logic, the system can easily support erasure codes, further reducing
its memory footprint without the complexities and reduced fault
tolerance that other systems would experience.

In Sift, time is divided into terms, and a coordinator is elected
when a candidate successfully acquires an exclusive lock on a ma-
jority of the memory nodes for the next term. Each candidate uses
an RDMA compare-and-swap operation to write their identifier
and their proposed term number on the memory nodes. As a result
of this design, we require only F + 1 CPU nodes to handle F CPU
node failures, since only one non-faulty CPU node is needed to
successfully acquire an exclusive lock on a majority of the memory
nodes. This coordinator election design is simpler to implement
than other election protocols as there is no direct communication
between candidates. By using the one-sided RDMA abstraction, the
protocol simply resembles acquiring and releasing local locks.

An additional benefit of CPU and memory disaggregation comes
from running in a shared environment, such as the cloud, in which
CPU and memory nodes are virtual instances. The amount of re-
sources provisioned to each instance can correspond to its required
function. Memory nodes can run on instances with minimal CPU
resources and CPU nodes can run on instances with minimal mem-
ory resources. Disaggregation also enables a single group of CPU
nodes to detect failures and replace failed coordinators across mul-
tiple consensus groups. The sharing of backup CPU nodes is made
practical by our architecture due to the stateless nature of CPU
nodes.

This paper makes three main contributions:

• We present the design of an RDMA-based resource disaggre-
gated consensus protocol.

• We leverage our replicated memory interface to implement
erasure coding with limited additional complexity.

• We reduce the cost of deploying SMR in the cloud by sharing
backup coordinators across consensus groups.

2 RELATEDWORK
In this section, we provide an overview of SMR protocols and Re-
mote Direct Memory Access (RDMA). We also discuss past work
on resource disaggregation. Table 1 highlights the key differences
between Sift and other relevant consensus protocols.

2.1 State Machine Replication
Most State Machine Replication (SMR) protocols such as Paxos [13],
Raft [23], and DARE [24] are leader based, where a single leader is
elected and the leader coordinates the operations of the protocol. In
these protocols, the followers receive event requests from the leader,
write the events to their local logs, update the log commit index, and
monitors the status of the leader. In the event of a leader failure, the
followers are responsible for detecting the failure and the followers
must collectively elect a new leader. Because a follower may later
become the leader, each follower must be provisioned the same
amount of resources as the leader node. Thus, the resources of the
followers may be heavily underutilized during normal operations.

EPaxos [21] and Mencius [19] are leaderless consensus protocols,
meaning that every single node can service requests from clients.
This means that every node must be provisioned with full mem-
ory and compute resources. Unlike leader-based protocols, these
resources are not under-utilized since every node acts as a leader.
However, these protocols introduce additional overhead such as
the need to include dependency information with each update in
EPaxos.

2.2 RDMA
Remote Direct Memory Access (RDMA) [5] is an interface that
allows servers to directly read and write the memory of a remote
server. One-sided RDMA can enable remote memory access with-
out any involvement from the remote CPU. The remote access is
performed entirely by the remote NIC without any interactions
with the OS of either servers. Sift utilizes RDMA Read, Write, and
Compare-and-Swap (CAS) operations in its protocol. Additionally,
Sift makes use of the reliable variant of RDMA that returns an
acknowledgement when an operation has succeeded.

261

Sift: Resource-Efficient Consensus with RDMA CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

DARE [24] and APUS [29] are RDMA based consensus proto-
cols. In DARE, the consensus leader directly reads and writes to
the logs of its followers. DARE’s leader election protocol closely
resembles traditional leader election protocols and requires direct
communication between election candidates. APUS transparently
optimizes the Multi-Paxos [14] approach to resolving consensus
by using RDMA primitives over LD_PRELOAD. However, unlike Sift,
followers in both systems are still active participants and track the
leader state using heartbeat messages.

2.3 Resource Disaggregation
Disk Paxos [7] proposes a consensus protocol where processes
communicate by reading and writing to predefined regions on disks
in a Storage Area Network environment. Similar to Paxos, 2F + 1
acceptors (disks) are required to handle F faults. A key argument in
Disk Paxos is that replacing computers with commodity disks for
redundancy offers a cheaper alternative to state machine replication.
Sift revisits this idea from a modern perspective, making use of
RDMA to achieve the same goals. Additionally, Sift extends Disk
Paxos by proposing a system that stores materialized state on the
passive participants of the protocol, resulting in different fault
tolerance properties.

Past work has proposed data center designs in which resources
are disaggregated to different nodes across racks in the same data
center and connected over a high-speed network [4, 11, 15, 16, 25].
This design allows for fine-grained resource provisioning [1, 28]
that is tailored to the resource requirements of a workload. Sift
follows a resource disaggregation design where the participants
are divided into CPU and memory nodes.

Several systems [3, 31] disaggregate a state machine replication
system into an agreement cluster and an execution cluster. However,
the execution cluster nodes are active participants in ensuring that
requests are executed in the agreed order, and provide no gains in
terms of simplification or resource minimization.

2.4 Consensus as a Service
Filo [20] proposes a cloud service which utilizes the same consen-
sus group across multiple tenants while providing service level
agreements. Filo aims to better utilize the provisioned resources
of a consensus group, which are often underutilized by a single
tenant. However, this approach relies on the leader node being
under-utilized, which results in reduced effectiveness when tenants
require higher throughput and cannot be co-located. Filo’s current
implementation also uses chain replication, which results in higher
latency that may not be acceptable for some applications.

In contrast, Sift focuses on improving utilization by limiting the
provisioning of resources in a consensus group which are typically
idle. Additionally, when Sift is used as a service in a shared environ-
ment, redundant compute resources can be shared across multiple
consensus groups.

3 REPLICATED MEMORY
Sift’s design is implemented as two independent layers: a replicated
memory layer and a key-value layer. The replicated memory layer
is accessible through logical addresses and the key-value layer,
described in detail in Section 4, uses this memory layer as though it

Coordinator

Timestamp

Replicated Memory

Write-ahead Log

Server ID
Term ID

Timestamp

Admin Region

Replicated Memory Region

Term ID

Server ID

Backup
Coordinator

Timestamp

Term ID

Server ID

Backup
Coordinator

Timestamp

Term ID

Server ID

CPU Nodes

Memory Nodes

RDMA

Replicated Memory

Write-ahead Log

Server ID
Term ID

Timestamp

Admin Region

Replicated Memory Region

Replicated Memory

Write-ahead Log

Server ID
Term ID

Timestamp

Admin Region

Replicated Memory Region

Figure 1: Sift architecture.

was its own local memory. In this section, we describe the structure
of CPU and memory nodes, how requests are processed, and the
failure detection and recovery mechanisms.

3.1 Architecture
Sift is a leader-based disaggregated consensus protocol that is de-
ployed on two types of nodes: CPU nodes and memory nodes. CPU
nodes are provisioned with minimal memory resources and mem-
ory nodes are provisioned with minimal CPU resources. CPU nodes
compete to become the coordinator of the Sift group, while memory
nodes are passive participants in the consensus protocol, serving
only to replicate state and facilitate communication between CPU
nodes. This is accomplished through the use of RDMA, where the
coordinator is allowed to directly access and modify predefined
memory regions of the memory nodes. Memory nodes need to be
actively involved only in establishing the initial connections to the
CPU nodes. For this reason, memory nodes need minimal CPU
regardless of the size or desired performance of the group. Figure 1
illustrates our system’s architecture.

Without direct communication between CPU nodes, only a single
non-faulty CPU node is required to make progress, as agreement is
achieved through writes to the memory nodes. Therefore, to handle
Fc CPU node failures, we need only Fc + 1 CPU nodes. Similarly
to other consensus protocols, state must be replicated to 2Fm + 1
memory nodes to handle Fm memory node failures. This is because
a majority of memory nodes must be present to reach consensus
and guarantee consistency. As a result of Sift’s stateless CPU nodes,
the number of CPU nodes active at any time is flexible. For example,
we can further reduce resource requirements by only instantiating
backup CPU nodes if multiple consecutive client requests to the

262

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Kazhamiaka et al.

coordinator fail, trading off recovery time. Further optimizations
are discussed in Section 5.2.

Similar to other consensus protocols, Sift divides time into terms
of arbitrary length, and each term has a single coordinator. A coor-
dinator is elected from the Fc + 1 CPU nodes and is responsible for
serving client requests and replicating the log and state machine.
The coordinator maintains only soft state information as shown
in Figure 1. The term_id, node_id, and timestamp fields are used
in the heartbeat and coordinator election mechanisms, which we
discuss further in Section 3.2. The term_id and node_id fields are
each 16 bits, while the timestamp field is 32 bits.

The internal structure of a memory node consists of two distinct
memory regions: the administrative region and the replicated mem-
ory region. The administrative region is a memory block which
holds term_id, node_id, and timestamp data, used by CPU nodes
to exchange heartbeat reads/writes. The replicated memory region
consists of a write-ahead log and the replicated memory. The write-
ahead log allows multiple writes to be committed in parallel using a
single RDMA operation, while updates are applied to the replicated
memory in the background. The log is also used to facilitate coordi-
nator recovery, described in Section 3.4.1. The replicated memory
is a contiguous block of memory that clients interact with through
logical addresses.

3.2 Coordinator Election
In traditional consensus protocols, the follower nodes rely on heart-
beats from the leader to detect server failures and initiate a new
leader election. In Sift, the memory nodes are completely passive
and backup CPU nodes do not directly communicate with each
other. Instead, the coordinator periodically sends a heartbeat to
the administrative memory region of each memory node using an
RDMA CAS operation. This heartbeat message contains the co-
ordinator’s server_id, term_id, and a monotonically increasing
timestamp. Backup CPU nodes in turn read the heartbeats from
this memory region. After reading a heartbeat, each follower com-
pares the value of the timestamp to the value it obtained previously.
In the event that the heartbeat has not been updated, the follower
becomes a candidate and triggers an election. The frequency of
heartbeat reads is based on an election timeout parameter. This
timeout directly determines coordinator failure detection time. The
frequency of heartbeat reads and writes can be configured to allow
multiple missed heartbeats before triggering an election.

This heartbeat system works similarly to leases [9] used by other
systems to increase read performance by avoiding the need to
achieve consensus on each read operation. In Sift, leases can be
viewed as follows: the length of a lease is determined by the num-
ber of allowed missed heartbeats, and a lease is renewed on each
heartbeat write.

Sift has a protocol similar to Raft [23] for electing a coordinator.
The primary difference is that Sift’s election does not involve any
direct communication between election participants — the election
is performed entirely through reads and writes to memory nodes.

The CPU nodes are initially in a follower state and a single node
is elected as the coordinator. Each follower performs periodic heart-
beat reads from the memory nodes. If a follower’s election timeout
period expires without a coordinator performing a heartbeat write,

Memory
NodesCoordinatorBackup

Coordinator
Backup

Coordinator

Heartbeat
Reads

Heartbeat
Timeout

Election
Attempt
(CAS)

Leader
Detected

Elected

Heartbeat
Writes

Heartbeat
Reads

Heartbeat
Reads

Election
Attempt
(CAS)

Heartbeat
Timeout

Heartbeat
Reads

Heartbeat
Reads

Heartbeat
Writes

Follower Candidate Coordinator

State

Failure
Detection
Phase

Election
Phase

Normal
Operation

Figure 2: Example of a coordinator election scenario. Two
backup CPU nodes compete to become the new coordinator
once a coordinator failure is detected.

it transitions to the candidate state and initiates a coordinator elec-
tion. It increments its local term_id by 1 and attempts an RDMA
CAS operation on all memory nodes using its node_id and term_id.
The follower has the previous node_id and term_id values for the
CAS operation stored from previous heartbeat reads.

Multiple candidate nodes compete to perform the CAS opera-
tion but only one node successfully sets the node_id and term_id
fields to its own values on any given memory node. This process
closely resembles the locking of spinlocks. If the CAS operation
succeeds on a majority of the memory nodes, the candidate be-
comes the coordinator. The remaining candidates see that another
node has successfully written to a majority from their CAS oper-
ation’s return value. In this case, the candidates fall back to the
follower state, restarting their election timeout timer. In the event of
an unsuccessful election where no coordinator is elected, each can-
didate executes a random back-off period before restarting the CAS
operation, using the value returned by their unsuccessful CAS oper-
ation in their next attempt. Candidates increment their term_id for
each round of elections. This restricts a candidate from acquiring a
memory node using CAS values from older rounds. Since another
candidate can acquire the same memory node in successive rounds,
we require that the CAS values from the most recent round are
used.

263

Sift: Resource-Efficient Consensus with RDMA CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

Coordinator Memory NodesClient
Submit
request Append

to log

Reply
committed

Apply to replicated
memory

RDMA write complete
on majority

Submit
request

RDMA read
completed

Return
value

Read Request

Write Request

Check cache
Remote read

on cache miss

Figure 3: Messages exchanged for reads and writes.

Figure 2 shows an example of the heartbeat mechanism where a
coordinator fails. The failure is detected because the coordinator
no longer updates the administrative regions of the memory nodes.
After a number of missed heartbeats (only one in this example to
conserve space), the backup coordinators reach a timeout and enter
the election phase. The first backup coordinator to have their CAS
operation succeed on a majority of memory nodes becomes the
new coordinator, and begins sending periodic heartbeat writes.

A coordinator detects that it has been replaced when it fails to
perform a heartbeat write on a majority of memory nodes. This oc-
curs when a candidate has overwritten the server_id and term_id
during an election, causing subsequent heartbeat writes (CAS) to
fail. In this case, the old coordinator reverts back to a follower state.
By configuring an election timeout that tolerates multiple missed
heartbeats and assuming bounded clock skew, a dethroned coordi-
nator will be aware of its status before a new coordinator is elected
and begins to process requests, thereby avoiding stale reads.

To maintain safety during network partitions where delayed
messages arrive after a new coordinator is elected, we implement
at-most-one-connection semantics to the replicated memory region
of the memory nodes. Only the most recently elected coordinator
nodes connect to the replicated memory region of a memory node.
If a new connection is made to this region, the memory node dis-
connects any previously held connections. This ensures that only
the most recently elected coordinator can modify the replicated
memory, while delayed messages from past coordinators will be
automatically dropped upon arrival by the hardware.

3.3 Normal Operation
In this section, we describe how client requests are processed and
how consistency is maintained. Figure 3 provides a visual example
of the messages exchanged during read and write operations.

3.3.1 Read Requests. Clients issue read requests to the coordinator
for a particular address and size in the replicated memory. The
coordinator acquires a local read lock for the corresponding blocks,
reads the value from a memory node using one-sided RDMA, and
returns the read value to the client. It is not necessary to reach
a quorum because all requests are processed by the coordinator,
which effectively maintains a read lease on the entire replicated
memory.

3.3.2 Write Requests. The coordinator performs write requests by
acquiring a local write lock for each affected block and appending
the update to the write-ahead log on the memory nodes using one-
sided RDMA. By using a reliable variant of the RDMA protocol, the
coordinator receives an acknowledgment for each write operation
to a memory node. Once the append is successful on a majority
of the memory nodes, the write has been safely committed and is
recoverable in case of failures, making it safe for the coordinator
to reply to the client. The coordinator then updates the replicated
memory on memory nodes in the background. We use RDMA’s or-
dering guarantees to maintain consistent state at all times; locks are
only released once a replicated memory update has been submitted,
to prevent stale reads.

To allow for more complex applications to be built on top of the
replicated memory, we expose an interface that accepts a list of
write requests to be committed together without interleaving with
other conflicting write requests. This operation ensures that all
included write operations have been logged before replying to the
client. We also allow for regions of replicated memory to be written
to directly, without being logged. This is useful for applications
that manage conflicts and fault tolerance of memory themselves,
as with our key-value store’s log described in Section 4.1.

3.4 Fault Recovery
Sift is designed to provide fault-tolerance for fail-stop failures. As
with all consensus protocols, it cannot guarantee liveness in an
asynchronous environment [6]. However, by using random back-
offs in its coordinator election algorithm, Sift ensures with high
probability that a single coordinator will eventually be elected if
there are at most Fc CPU node failures and Fm memory node fail-
ures. As a result, with high probability, writes will eventually be
committed at every non-faulty memory node when these failure
conditions are not exceeded.

3.4.1 Coordinator Failure. In the event of a coordinator failure, a
backup CPU node detects the failure through the heartbeat mecha-
nism and initiates a coordinator election. The newly elected coordi-
nator performs log recovery by reading the circular logs from all
memory nodes and constructing a consistent, up-to-date version
of the log. For memory nodes whose log differs from the majority,
the coordinator updates their logs with the missing entries. These
updates ensure that the logs on all memory nodes are consistent.
The coordinator then replays the log on all memory nodes. Each
log entry has its log index embedded within it; these indices are
used to determine the circular log order. After replaying the log, all
previously committed writes have been applied to the replicated
memory. At this point the new coordinator can begin processing
client requests.

264

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Kazhamiaka et al.

3.4.2 Memory Node Failures. The coordinator keeps track of the
live memory nodes in the system. If a memory node becomes un-
reachable, the coordinator removes it from the list of live memory
nodes. A background recovery thread periodically polls all failed
memory nodes. When a connection is reestablished, the recovery
process begins.

To bring a memory node into the system, the coordinator must
copy all of the data from the replicated memory region to the node.
This is achieved by incrementally read-locking regions of memory
and copying over the data in that region. By holding a read lock on a
region of memorywe ensure that no updates can be applied to it, but
allow reads to go through. This allows us to gradually degrade write
performance while leaving read performance unaffected. Once the
entire replicated memory region has been copied over, all locks are
released and the new memory node joins the system.

Unlike approaches taken by other systems, we do not rely on
snapshots for this recovery process as these approaches generally
require twice the amount of memory (see [24]). Our approach pri-
oritizes reducing memory requirements while still minimizing the
performance impact of recovery. In addition, memory nodes that
provide persistence (see Section 3.5) would rejoin the system with
an older version of the state machine. Recovery for persistent mem-
ory nodes can be expedited by performing partial recovery, which
can reduce the amount of data that needs to be transferred.

3.5 Persistence
By default, Sift does not provide persistence in the event of all
memory nodes failing, due to all data being stored in volatile mem-
ory. However, Sift’s architecture does not restrict which storage
medium is used by memory nodes, as long as remote access is per-
mitted. With current work on NVMe-over-Fabrics [10, 27], applying
new storage mediums such as flash storage to memory nodes is
an increasingly feasible approach. The introduction of persistent
memory also offers interesting configuration options, with various
persistence and cost effects. One example of this is a deployment
with a majority of memory nodes being provisioned with volatile
memory, while the remainder are given persistent memory. Such
a scenario could provide a lower-cost deployment with tunable
amounts of data loss.

Alternatively, the coordinator can persist logs onto a remotely
mounted Storage Area Network (SAN) device, such as EBS on
Amazon EC2, using a write-ahead logging strategy. If a SAN is not
available, committed writes can be persisted at just the coordinator.
We have implemented such a design using RocksDB, where all
updates are synchronously written to the persistent database by a
background thread. By limiting the number of outstanding writes
to be the size of the log, this design also allows for an alternative
to memory node recovery by using snapshots of the database to
repopulate the state machine of the new memory node.

4 KEY-VALUE STORE
We build a recoverable key-value store on top of the replicated
memory layer described in Section 3. We chose a key-value store
as it is a common representation of an application’s state machine.
Other state machine representations can be implemented on top of
our memory layer. In our implementation, the process that manages

the key-value store is co-located with the Sift coordinator process.
However, this is a design decision and not a requirement. The key-
value store interacts with the replicated memory layer as it would
with its local memory, without having to directly communicate
with memory nodes for replication or coordinator election.

4.1 Architecture
The key-value store is designed as a hash table that uses hashing
with chaining for simplicity. It consists of four key data structures:
an array of data blocks, an index table that holds pointers to data
blocks, a bitmap for available data blocks, and a circular write-ahead
log (separate from the log used by the replicated memory system).
The data blocks are all of a predefined size; this is a simplifying
design decision rather than a limitation of the replicated memory
layer.

All of these structures exist within the replicated memory at
predefined locations. The index table and bitmap are cached at the
coordinator to improve write performance by eliminating up to
two remote reads per write request

4.2 Put/Get Requests
Put requests are processed by first appending the update to the
key-value store’s write-ahead log. This write-ahead log lies in a
portion of replicated memory that supports direct writes (no log-
ging), which allows put requests to be committed in a single RDMA
roundtrip. Once the log write is complete, meaning the update has
been committed at the replicated memory, we reply to the client.
Logged put requests are then applied in the background. Since our
write-ahead log is circular, the number of outstanding (logged but
not applied) updates is bounded by the size of the log.

To apply an update, a lookup in the index table is performed
using a hash of the key. If there is no entry in the index table, a
new block is allocated using the bitmap and its pointer is inserted
into the index table. Otherwise, the chain at the index table entry’s
pointer is traversed using a next pointer located in each allocated
block. If a block with the same key is found, the value is updated
and written back to the replicated memory. If the chain does not
contain the key, a new block is allocated and added to the chain,
with its pointer being written to the previous block’s next pointer.
Updates to multiple keys can be applied concurrently through the
locking of the local index table and bitmap structures.

Get requests are processed by first checking the cache. If the key
does not exist in the cache, the value is retrieved from replicated
memory. To ensure consistency, our cache tracks whether entries
have been applied yet and does not evict entries which have pending
updates.

4.3 Failure Handling
The key-value layer needs to recover from only the failure of the
process that manages the key-value store. Memory node and coor-
dinator failures are dealt with by the replicated memory layer. To
recover from a failure, the new key-value process first loads the in-
dex table and bitmap from replicated memory.With these structures
in memory, it reads and replays the contents of the write-ahead
log. Once the log has been replayed, the process begins processing
client requests.

265

Sift: Resource-Efficient Consensus with RDMA CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

...

Generate
Redundant

Chunks
...

Address Value

Memory
Node

1

Memory
Node
Fm+ 1

Memory
Node
Fm+ 2

Memory
Node

2Fm+ 1

Write
Request

... ...

Prioritize for reads

Figure 4: Replication process with erasure codes.

5 RESOURCE REDUCTION
5.1 Erasure Codes
Erasure coding has been used in other consensus protocols [22] to
reduce their storage requirements. However, these protocols are
more complex and provide weaker fault tolerance guarantees than
standard consensus protocols. RS-Paxos, for example, requires more
nodes to maintain fault tolerance guarantees; this has implications
for cost as well as communication overhead. In Sift, erasure coding
fits the architecture naturally, requiring minimal changes to the
protocol while maintaining the same level of fault tolerance.

To support erasure coding in Sift, we modify our replicated mem-
ory structure by splitting each block of size B into Fm + 1 chunks
of size C and use a variant of Cauchy Reed-Solomon codes [26] to
generate Fm redundant chunks of sizeC . Figure 4 shows an example
of this process on an incoming write request. Using this encoding,
the original block can be rebuilt using any subset of size Fm + 1 of
these chunks. This allows us to tolerate Fm failures while storing
only (2Fm + 1) ×C bytes compared to storing (2Fm + 1) × B bytes
with traditional replication – a reduction in memory usage by a
factor of Fm + 1.

The coordinator is responsible for generating the 2Fm +1 chunks
before distributing them across the memory nodes. This incurs a
computational cost, but also results in fewer bytes being sent across
the network compared to standard replication. While a write can
still be committed using a quorum of Fm + 1 nodes, there is a
potential for data loss if we experience a coordinator failure along
with the failure of a memory node that was part of the quorum. If
none of the other Fm memory nodes received their block before
the coordinator failed, the original value would be unrecoverable.
To deal with this scenario, we modify our protocol by storing the
write-ahead log in non-encoded form. This modification allows
Sift to handle failures and tolerate slow memory nodes without
impacting common case performance. The write-ahead log provides
us with the original data for recovery and generally uses only a
small fraction of the total memory.

When processing a read request, the coordinator reads from a
majority of nodes to rebuild a block, but still transfers only B bytes
across the network. Note that any coupled architecture would also
be subject to this, since reads could no longer be served from local
memory. We can prioritize reading frommemory nodes which store
non-parity data to avoid the decoding cost. For memory node recov-
ery, since nodes do not store a full copy of the data, the coordinator
rebuilds each block and encodes it to generate the missing chunks.

5.2 Shared Backup Nodes
One of the key benefits of decoupling compute and storage is the
ability to scale these resources independently. Provisioning mem-
ory for 2F + 1 replicas is unavoidable in any fail-stop consensus
system, but Sift’s stateless CPU nodes give us flexibility in how
many compute resources are provisioned. By storing only soft state,
CPU nodes are not necessarily tied to any given Sift group. This
observation leads to a concept that is rarely feasible in consensus
systems with coupled resources: shared backup nodes across multi-
ple Sift groups. By allocating only a single CPU node per Sift group
to act as the coordinator, we can provision a pool of CPU nodes
that monitor failures across, and can become coordinators for, all
groups. Instead of requiring (F + 1) ×G CPU nodes for G groups,
we pool resources to maintain only (G + B) CPU nodes, where B is
the size of the backup pool. Note that for sufficiently largeG , it will
often be the case that B << (F ×G) (see Section 6.4.2 for relevant
analysis). This backup pool allows us to significantly reduce the
F + 1 CPU node requirement of a single Sift group, which greatly
reduces the cost of deployment. This idea is especially attractive in
a cloud environment, where consensus can be offered as a service
by a cloud provider and backup nodes can be shared across multiple
tenants.

The communication overhead of a backup CPU node being re-
sponsible for multiple groups is negligible since heartbeats are
reads that rarely occur more frequently than every few millisec-
onds. However, there is a trade-off between recovery time and cost
savings when choosing the number of backup nodes to provision;
a Sift group waiting for a new CPU node to be provisioned is un-
able to make progress. We investigate the relationship between the
number of backup nodes and recovery time using a Google cluster
trace, and evaluate the cost effects of this approach, in Section 6.4.2.

6 EVALUATION
We compare the performance of Sift’s key-value store with a custom,
RDMA-based implementation of Raft [23] as well as EPaxos [21].
Sift is evaluated in two configurations: with and without erasure
codes, the former of which is named Sift EC.

Our evaluation shows that despite marginally lower performance
while running on the same hardware, at normalized performance
levels, Sift provides substantial cost savings of over 35% when
F = 1 and 50% when F = 2. These savings are made possible
by utilizing erasure codes and shared backup CPU nodes. These
optimizations cannot be fully utilized by other consensus systems
due to their coupling of compute and storage resources, and the
resulting complexity.

6.1 Implementation
Our implementation consists of the core features of the Sift protocol
such as replication on memory nodes, maintaining coordinator
liveness, coordinator election, as well as recovery from coordinator,
memory node, and key-value server failures. The RocksDB and
erasure coding configurations discussed in Sections 3.5 and 5.1
respectively, have also been implemented. The system was written
in C++ and consists of approximately 9,000 lines of code. We have
open-sourced our implementation [12].

266

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Kazhamiaka et al.

Write-only Mixed Read-heavy Read-only
Workload Type

0

100000

200000

300000

400000

500000

600000

700000

T
h
ro

u
g
h
p
u
t

(o
p
s
/s

e
c
)

EPaxos

Sift EC

Sift

Raft-R

Figure 5: Performance comparison with Sift’s key-value
store and an RDMA-based Raft implementation.

Raft-R Sift Sift EC Raft-R Sift Sift EC Raft-R Sift Sift EC Raft-R Sift Sift EC
0

100

200

300

400

500

600

700

L
a
te

n
c
y
 (

s
e
c
)

Read (90% load)Read (1 client) Write (1 client) Write (90% load)

Figure 6: Latencies at low load (1 client) and 90% of peak
throughput.

6.2 Experimental Setup
All experiments are run on a cluster where each machine contains
one Mellanox 10GbE SFP port, 64GB of RAM, and two Intel E5-
2620v2 CPUs.

Sift’s replicated memory system is configured to have a write-
ahead log that holds 32k entries. The key-value store is configured
to hold 1 million keys, with a maximum key size of 32 bytes and
a maximum value size of 992 bytes. The cache is set to hold up to
50% of the key-value pairs and the index table has a maximum load
factor of 12.5%. The key-value store’s circular write-ahead log can
hold up to 64k entries.

All systems we implemented use the same custom select-based
RPC over TCP library for communication between clients and
servers.

Experiments run with a fault tolerance level of F = 1 correspond
to a Sift deployment consisting of threememory nodes and twoCPU
nodes, and a three-node Raft/Paxos group. Likewise, experiments
with F = 2 correspond to a Sift deployment with five memory
nodes and three CPU nodes, and a five-node Raft/Paxos group.
Our experiments use four workload types: write-only, mixed, read-
heavy, and read-only. A mixed workload consists of 50% reads and

writes, while a read-heavy workload consists of 90% reads and 10%
writes. We utilize a Zipfian distribution with a parameter of 0.99 to
generate a skewed workload unless otherwise noted.

Each system is pre-populated with all of the keys at the start of
each experiment, followed by a 10 second warm-up period. Each
experiment lasts for 50 seconds and is repeated 5-8 times. 95%
confidence intervals are included when they exceed 5% of the mean.

6.3 Key-Value Store
We evaluate our key-value store that uses Sift and compare it to
other consensus-backed key-value stores. All systems in this eval-
uation store their state machine in memory and are run on the
same hardware. In Section 6.4 we analyze the more realistic setting
where the systems are running on different hardware in order to
meet a fixed performance target, which gives a clearer comparison
of the deployment costs of each system.

6.3.1 Other Systems. We were unable to find a popular Raft im-
plementation that allows for an in-memory state machine out-of-
the-box, and running popular systems such as LogCabin [17] on
a RAM disk introduced bottlenecks in other parts of the systems
resulting in an unfair comparison. We instead built a basic Raft-like
system using RDMA send/recv verbs, which additionally allows us
to compare both protocols using RDMA.

This Raft-like key-value store, which we call Raft-R, maintains a
complete replica on the leader. Write requests are replicated to a
majority of nodes (including the leader) before they are committed.
Read requests are serviced locally from the leader’s replica. It uses
a partitioned map with 1000 partitions to reduce contention and
read/write locks to provide strong consistency.

We also include performance results for EPaxos [21], a Paxos
variant that uses a leaderless approach to consensus to achieve
higher throughput. To make it more suitable for a LAN deployment,
we have changed the batching parameter from 5ms to 100µs or 100
requests, whichever comes first.

Although DARE [24] implements an RDMA-based consensus
protocol, our hardware does not support RDMA multicast opera-
tions which are required to run the system. As a result, we omit
performance results for DARE but note that its architecture is sim-
ilar to that of Raft-R, with the main differences being its use of
one-sided RDMA, RDMA multicast, and the addition of several
low-level optimizations. Thus the performance of Raft-R serves as
a performance lower bound for DARE. Similar to Raft-R, DARE is
unable to benefit from Sift’s resource-saving optimizations due to
its coupled architecture.

Lastly, while Disk Paxos provides a resource-disaggregated pro-
tocol, it has different fault recovery properties compared to Sift,
making a direct comparison unfair.

6.3.2 Throughput. Figure 5 shows the performance of Sift com-
pared to Raft-R and EPaxos when F = 1. Sift’s write throughput
is lower than a Raft-R due to the larger amount of work being
performed in the background to apply writes to the state machine.
Similarly, due to stateless CPU nodes, a portion of read requests
result in remote reads. The effect of remote reads is magnified in
Sift EC because of the higher number of RDMA reads that need

267

Sift: Resource-Efficient Consensus with RDMA CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

6789101112
Number of Cores

0

100000

200000

300000

400000

500000

T
h
ro

u
g
h
p
u
t

(o
p
s
/s

e
c
)

Raft-R (F=1)

Sift (F=1)

Sift EC (F=1)

Raft-R (F=2)

Sift (F=2)

Sift EC (F=2)

Figure 7: Performance of Sift and Raft-R with a varied num-
ber of cores for F = 1 and 2. These results show us how Raft
nodes and Sift CPU nodes should be provisioned to achieve
equivalent performance.

0 5 10 15 20
Number of Backup Nodes

0

1

2

3

4

5

6

7

8

R
e
c
o
v
e
ry

 T
im

e
 P

e
r

F
a
u
lt

 (
s
)

10 groups

100 groups

500 groups

1000 groups

2000 groups

3000 groups

Figure 8: Results of a simulation over a Google cluster
trace [30] of machine failures. Estimates how many backup
nodes are needed to prevent additional recovery time due to
VM provisioning.

to be performed. We limit the effect of remote reads through the
cache, resulting in read throughput similar to Raft-R.

The performance of EPaxos is independent of the workload type.
This is primarily because both reads and writes require network
operations. Because of the need for network operations for reads,
the read throughput for EPaxos is significantly lower than the other
systems. The write-only performance is better than both Raft-R
and Sift. This is likely due to the leaderless design; clients were
configured to be evenly distributed across the EPaxos nodes.

In summary, the performance of both Sift and Raft-R is far higher
than a state-of-the-art, non-RDMA consensus protocol for read
operations. Both Sift and Raft-R perform fewer remote operations
with more read-heavy workloads. With a write-only workload,
EPaxos performs better than the leader and RDMA-based systems.

F=1 F=2
CPU MEM CPU MEM

Raft-R Node 8 64 8 64
Sift CPU Node 10 32 10 32
Sift Memory Node 1 64 1 64
Sift EC CPU Node 12 32 12 32
Sift EC Memory Node 1 32 1 22

Table 2: Machine configurations for each system normal-
ized for performance. CPU resources are measured in cores,
memory resources are measured in GB.

6.3.3 Latency. Figure 6 compares Sift and Raft-R latencies at differ-
ent load levels: at low load, with at most one request in the system
at a time, and at 90% of peak throughput.

EPaxos achieves a median latency of 94µs and a 95th percentile
latency of 140µs for both reads and writes at low load. Latencies
for reads and writes at low load are equivalent because there are
no conflicts between requests, resulting in the same number of
roundtrips to commit a request. At 90% load, read and write laten-
cies exceed 1.3ms and 95th percentile latencies approach 2ms. To
improve the clarity of Figure 6, we omit EPaxos latency results.

At low load, the cost of writes is similar for all systems since
they wait for one RDMA roundtrip to replicate the state update.
Sift EC experiences a slightly higher latency due to the encoding
process. At higher load, the increased load from background threads
applyingwrites results inmore contention and consequently, higher
latencies for Sift and Sift EC.

Read latencies at low loads are also similar for all RDMA-based
systems. This is mainly due to the cache being able to service the
majority of requests in Sift and Sift EC. At higher loads, while the
median stays relatively similar, Sift experiences higher variance due
to an increase in the number of remote reads. Sift EC is especially
sensitive to this as it requires sending multiple RDMA reads to
decode the data for each cache miss.

For both Sift and Raft-R, approximately 50µs of latency is attrib-
uted to the RPC layer used for communication between clients and
the coordinator.

6.4 Cost Analysis
Our performance results from previous sections show how each
system performs given the same hardware. However, each system
has varied resource requirements: a Sift deployment requires fewer
compute resources because of passive followers, while a Raft de-
ployment uses less memory overall due to leaders storing a replica
of the state machine. Thus, to analyze the real-world cost of deploy-
ing each system, this section evaluates the cost needed to achieve a
given throughput level. We use our experimental results and pricing
information from cloud providers to determine these costs.

6.4.1 Normalized Performance. We extend the performance eval-
uation in Section 6.3.2 and consider deployments with varying
CPU resources, shown in Figure 7. These results are used to deter-
mine how each system’s machines should be provisioned to fairly
evaluate costs.

268

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Kazhamiaka et al.

AWS GCP
Cloud Provider

−60

−40

−20

0

20

40

60

80

R
e
la

ti
v
e
 C

o
s
t

(%
)

Sift

Sift + Shared Backups

Sift EC

Sift EC + Shared Backups

Figure 9: Costs of deploying Sift relative to the cost of Raft-
R in AWS and GCP. Machines provisioned for equal perfor-
mance with F=1.

6.4.2 Shared Backup Nodes. To better understand how backup
nodes influence recovery time, we use a Google cluster trace [30]
which provides a 29 day trace of cluster information, including fail-
ure events. The cluster consists of approximately 12500 machines.
This trace is used to run simulations over several numbers of Sift
groups to determine the average recovery time per fault with varied
numbers of backup nodes. Each simulation was run by randomly
assigning machines to Sift groups and observing the additional
recovery time incurred by a lack of backup nodes. When a node
experienced a failure, it was assumed that it would take 100 seconds
to provision a replacement – the average time to start up a Linux
VM in EC2 [18].

For every combination of group size and number of backup
nodes, the simulation was repeated 50 times. Each group was con-
figured for F = 1, resulting in 3 memory nodes and 1 CPU node per
group. Figure 8 shows the average recovery time per fault of these
simulations. We are only interested in the additional recovery time
due to VM startup, so Sift coordinator recovery time is not included,
leading to a best-case recovery time of 0. These results show that
even for a relatively large number of groups (1000), maintaining a
pool of 6 backup nodes is enough to ensure, with high probability,
no additional recovery time. For a much larger number of groups
(3000), 20 backup nodes were needed. By contrast, a deployment
without shared backup nodes would require 1 extra CPU node per
group.

6.4.3 Costs. We compare the projected costs of deploying Sift (in
various configurations) and Raft-R in a cloud environment. While
RDMA has increasingly many use-cases, there are currently limited
options for RDMA-capable instances available from cloud providers.
Instead, we use prices for non-RDMA instances. Given that there is
no price premium for RDMA-capable hardware, we believe RDMA
will come standard with most instances as the demand continues to
increase. Our use of non-RDMA instance prices does not influence
our results because we only compare RDMA-based protocols.

For our experiments, we use the currently available machine
pricing from Amazon Web Services (AWS) [2] and Google Cloud

AWS GCP
Cloud Provider

−80

−60

−40

−20

0

20

40

60

80

R
e
la

ti
v
e
 C

o
s
t

(%
)

Sift

Sift + Shared Backups

Sift EC

Sift EC + Shared Backups

Figure 10: Costs of deploying Sift relative to the cost of Raft-
R in AWS and GCP. Machines provisioned for equal perfor-
mance with F=2.

Platform (GCP) [8]. While GCP provides the capability to provi-
sion machines with custom resources, we calculate the marginal
costs of CPU and memory in AWS by comparing compute and
memory-optimized instances. These pricing models give us a price
of $0.033/core/hr and $0.00275/GB/hr for memory for AWS, and
$0.033/core/hr and $0.00445/GB/hr for memory for GCP, which we
use to provision custom machines for each system.

We use Sift and Raft-R deployments that achieve the same fault
tolerance guarantees and performance. Using the results from Fig-
ure 7 to determine resource requirements, we set a target through-
put for a read-heavy workload of 380k ops/sec for F = 1 and 350k
ops/sec for F = 2. The machine configurations used are shown in
Table 2. The memory requirement for CPU nodes is calculated from
the soft state needed in our key-value store, using the configuration
from Section 6.2. A Sift EC memory node uses a factor of F + 1 less
memory.

Note that for Sift configurations with shared backup nodes, we
assumed 100 Sift groups with a backup pool consisting of 2 CPU
nodes. This backup pool size was taken from the results of the
failure simulation in Section 6.4.2.

Figures 9 and 10 show the costs of these deployments. For F = 1,
a single Sift and Sift EC group requires marginally higher costs
than a Raft-R group. This is due to the performance differences be-
tween the systems, which require Sift and Sift EC to be provisioned
with more compute resources. However, once we introduce shared
backup nodes and erasure codes, we see a cost reduction of up to
35%. This decrease in cost is the result of removing the redundant
CPU node from each group and maintaining only a small group of
backup nodes. The backup pool sizes are selected by analyzing the
results of the simulation over the Google cluster trace (Figure 8)
and finding sizes that result in no additional recovery time for each
number of groups.

Sift costs decrease relatively across all configurations when F is
increased to 2. These reductions in cost are due to the increased
number of replicas in each group, resulting in higher memory usage
which begins to dominate the costs. Sift EC receives an additional
benefit from erasure codes due to the F + 1 reduction factor in state
replication. A single Sift EC group now costs about 13% less than a

269

Sift: Resource-Efficient Consensus with RDMA CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA

Raft-R group. When both erasure codes and shared backup nodes
are used, a cost reduction of up to 56% is achieved.

We used the most common F values in our experiments, but note
that the performance and cost trends would be similar as F grows.
Sift’s communication overhead would grow as it sends roughly
twice the number of messages as a protocol such as Raft, but the
reduction in compute resources being relative to F would likely
overshadow this overhead when analyzing overall cost.

In summary, we see larger cost reductions using erasure codes
than with standard Sift. These cost reductions are significantly
increased when shared backup nodes are used. While not all appli-
cations can tolerate longer recovery times with erasure codes, or
potential delays in coordinator recovery if too few backup nodes
are provisioned, we believe the trade-offs are outweighed by the
cost savings for many use-cases. Additionally, with increasing val-
ues of F , all Sift configurations improve relative to Raft-R despite
Sift maintaining a large cache. This improvement is due to Sift’s
disaggregated architecture which enables independent scaling of
compute and memory resources. This allows applications to use
larger consensus groups for increased fault tolerance levels at a
significantly reduced cost.

6.5 Failure Recovery
Wemeasure the effects of failures in Sift by killing a node in the sys-
tem and recording the throughput. We use a read-heavy throughput
with a skewed workload and measure in 100ms intervals.

Figure 11 shows how a memory node failure affects throughput.
Throughput drops as regions of memory are copied over for mem-
ory node recovery. Our experimental setup has the most popular
keys stored at lower memory addresses, so we see nearly worst-
case effects instantly. If the workload was uniformly distributed,
the throughput would drop more gradually. Similarly, if the popular
keys were stored at higher addresses, the system would sustain
a higher throughput for the majority of the recovery period. In
this experiment, the recovery lasts approximately 6 seconds, after
which the system returns to its pre-failure throughput level.

The currentmemory node recovery approach aggressively copies
data to the new memory node to bring it back into the system as
quickly as possible. This approach is flexible as it is possible to
prolong the recovery time to maintain a steadier degradation of
throughput. The coordinator can also wait for a period of reduced
load to begin the recovery process. A more efficient recovery ap-
proach could identify the most popular memory blocks and copy
them in order of increasing popularity to reduce the effective per-
formance impact.

A coordinator failure causes the system to pause processing
client requests until the system has been brought to a consistent
state, as shown in Figure 12. The recovery time consists of three
parts: detecting a failed coordinator through heartbeats, recovering
and replaying the replicated memory log, caching key-value struc-
tures, and replaying the key-value log. Recovery time is largely
determined by the size of the write-ahead log in both the key-value
and replicated memory layers. In general, smaller log sizes reduce
recovery time but can potentially degrade system performance un-
der high load by reducing the number of in-flight (committed but
not applied) write requests.

0 10 20 30 40 50 60 70

Time (s)

2

4

6

8

10

12

14

16

18

20

T
h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

10
4

Memory node

joins the

system

Memory node

restarted

Memory

node killed

Figure 11: Read-heavy workload throughput during a mem-
ory node failure.

0 20 40 60 80 100 120

Time (s)

0

2

4

6

8

10

12

14

16
T

h
ro

u
g
h
p
u
t
(o

p
s
/s

e
c
)

10
4

Coordinator

killed

New coordinator

completes log

recovery

Figure 12: Read-heavy workload throughput during a coor-
dinator failure.

In the experiment shown by Figure 12, recovery took approx-
imately 6 seconds. With a heartbeat read interval of 7ms and a
tolerance of three missed heartbeats, failure detection took ap-
proximately 21ms. Recovering the replicated memory state took
approximately 1s. The remaining 5s were spent loading the index
table and bitmap into memory and replaying the key-value log.
Note that while the log is being replayed, the cache is populated
in parallel, which allows our system to process requests at a faster
rate when it resumes than with a cold start. Similarly, a burst in
throughput is experienced following recovery due to buffers being
empty.

At a high level, Sift’s leader election mechanism is very similar to
Raft’s; the same number of messages are exchanged during an elec-
tion. For the same experiment, Raft would require approximately

270

CoNEXT ’19, December 9–12, 2019, Orlando, FL, USA Kazhamiaka et al.

the same amount of time to bring up a new coordinator as Sift. The
majority of the recovery time in Figure 12 was spent recovering
the key-value store’s structures, which is largely independent of
the consensus layer.

7 CONCLUSION
In this paper, we introduce Sift, a consensus protocol that uses one-
sided RDMA to disaggregate compute and memory resources. Our
evaluation shows that even when accounting for slight throughput
and latency overhead from our disaggregated design, the introduc-
tion of erasure codes and shared backup nodes can significantly
reduce deployment cost. For F = 1 and 100 consensus groups, Sift
is able to achieve up to a 35% cost savings compared to an RDMA-
based Raft implementation. Cost savings improve with higher val-
ues of F . When F = 2, Sift increases its cost savings from 35% to
56%.

These results indicate that while erasure codes alone can pro-
vide cost savings over a Raft-like protocol, especially with higher F
values, the ability to share backup nodes across groups is where Sift
sees the greatest benefit. For applications that make use of several
consensus groups, or cloud providers looking to provide consensus-
as-a-service, Sift significantly reduces resource consumption and
ultimately provides a lower-cost solution for deploying consensus.

Acknowledgements:We would like to thank the anonymous re-
viewers for their feedback and Gianni Antichi for shepherding the
paper. This work was supported by the Natural Sciences and Engi-
neering Research Council of Canada (NSERC), Canada Foundation
for Innovation and Ontario Research Fund.

REFERENCES
[1] Orna Agmon Ben-Yehuda, Muli Ben-Yehuda, Assaf Schuster, and Dan Tsafrir.

2012. The resource-as-a-service (RaaS) cloud. In USENIX conference on Hot Topics
in Cloud Ccomputing. 12–12.

[2] aws 2019. Amazon AWS Pricing. https://aws.amazon.com/ec2/spot/pricing.
Accessed October 2019.

[3] Allen Clement, Manos Kapritsos, Sangmin Lee, Yang Wang, Lorenzo Alvisi, Mike
Dahlin, and Taylor Riche. 2009. Upright Cluster Services. In ACM Symposium
on Operating Systems Principles. 277–290. http://doi.acm.org/10.1145/1629575.
1629602

[4] Paolo Costa, Hitesh Ballani, Kaveh Razavi, and Ian Kash. 2015. R2C2: A Network
Stack for Rack-scale Computers. ACM SIGCOMM Computer Communication
Review 45, 4 (2015), 551–564. http://doi.acm.org/10.1145/2829988.2787492

[5] Aleksandar Dragojević, Dushyanth Narayanan, Orion Hodson, andMiguel Castro.
2014. FaRM: Fast Remote Memory. In USENIX Conference on Networked Systems
Design and Implementation. 401–414. http://dl.acm.org/citation.cfm?id=2616448.
2616486

[6] Michael J. Fischer, Nancy A. Lynch, and Michael S. Paterson. 1985. Impossibility
of Distributed Consensus with One Faulty Process. J. ACM 32, 2 (1985), 374–382.
http://doi.acm.org/10.1145/3149.214121

[7] Eli Gafni and Leslie Lamport. 2003. Disk paxos. Distributed Computing 16, 1
(2003), 1–20.

[8] gcp 2019. Google Cloud Platform Pricing. https://cloud.google.com/compute/vm-
instance-pricing. Accessed October 2019.

[9] C. Gray and D. Cheriton. 1989. Leases: An Efficient Fault-tolerant Mechanism
for Distributed File Cache Consistency. SIGOPS Oper. Syst. Rev. 23, 5 (Nov. 1989),
202–210. https://doi.org/10.1145/74851.74870

[10] Zvika Guz, Harry Huan Li, Anahita Shayesteh, and Vijay Balakrishnan. 2017.
NVMe-over-fabrics performance characterization and the path to low-overhead
flash disaggregation. In Proceedings of the 10th ACM International Systems and
Storage Conference. ACM, 16.

[11] Sangjin Han, Norbert Egi, Aurojit Panda, Sylvia Ratnasamy, Guangyu Shi, and
Scott Shenker. 2013. Network Support for Resource Disaggregation in Next-
generation Datacenters. In ACM Workshop on Hot Topics in Networks. Article 10,
7 pages. http://doi.acm.org/10.1145/2535771.2535778

[12] Mikhail Kazhamiaka. 2019. Sift. https://github.com/mkazhami/Sift. https:
//github.com/mkazhami/Sift

[13] Leslie Lamport. 1998. The Part-time Parliament. ACM Transactions on Computer
Systems 16, 2 (1998), 133–169. https://doi.org/10.1145/279227.279229

[14] Leslie Lamport. 2001. Paxos made simple. ACM Sigact News 32, 4 (2001), 51–58.
[15] Kevin Lim, Jichuan Chang, Trevor Mudge, Parthasarathy Ranganathan, Steven K.

Reinhardt, and Thomas F. Wenisch. 2009. Disaggregated Memory for Expan-
sion and Sharing in Blade Servers. In International Symposium on Computer
Architecture. 267–278. http://doi.acm.org/10.1145/1555754.1555789

[16] Kevin Lim, Yoshio Turner, Jose Renato Santos, Alvin AuYoung, Jichuan Chang,
Parthasarathy Ranganathan, and Thomas F. Wenisch. 2012. System-level Implica-
tions of Disaggregated Memory. In International Symposium on High-Performance
Computer Architecture. 1–12. http://dx.doi.org/10.1109/HPCA.2012.6168955

[17] logCabin 2017. LogCabin. https://github.com/logcabin/logcabin.
[18] Ming Mao and Marty Humphrey. 2012. A performance study on the vm startup

time in the cloud. In 2012 IEEE Fifth International Conference on Cloud Computing.
IEEE, 423–430.

[19] Yanhua Mao, Flavio P. Junqueira, and Keith Marzullo. 2008. Mencius: Building
Efficient Replicated State Machines for WANs. In Proceedings of the 8th USENIX
Conference on Operating Systems Design and Implementation (OSDI’08). USENIX
Association, Berkeley, CA, USA, 369–384. http://dl.acm.org/citation.cfm?id=
1855741.1855767

[20] Parisa Jalili Marandi, Christos Gkantsidis, Flavio Junqueira, and Dushyanth
Narayanan. 2016. Filo: Consolidated Consensus as a Cloud Service. In 2016
USENIX Annual Technical Conference (USENIX ATC 16). USENIX Association,
Denver, CO, 237–249. https://www.usenix.org/conference/atc16/technical-
sessions/presentation/marandi

[21] Iulian Moraru, David G. Andersen, and Michael Kaminsky. 2013. There is More
Consensus in Egalitarian Parliaments. In Proceedings of the Twenty-Fourth ACM
Symposium on Operating Systems Principles (SOSP ’13). ACM, New York, NY, USA,
358–372. https://doi.org/10.1145/2517349.2517350

[22] Shuai Mu, Kang Chen, YongweiWu, andWeimin Zheng. 2014. When paxos meets
erasure code: Reduce network and storage cost in state machine replication. In
Proceedings of the 23rd international symposium on High-performance parallel and
distributed computing. ACM, 61–72.

[23] Diego Ongaro and John Ousterhout. 2014. In Search of an Understandable
Consensus Algorithm. In USENIX Annual Technical Conference. 305–320. http:
//dl.acm.org/citation.cfm?id=2643634.2643666

[24] Marius Poke and Torsten Hoefler. 2015. DARE: High-Performance State Machine
Replication on RDMANetworks. In International Symposium onHigh-Performance
Parallel and Distributed Computing. 107–118. http://doi.acm.org/10.1145/2749246.
2749267

[25] Kshitij Sudan, Saisanthosh Balakrishnan, Sean Lie, Min Xu, Dhiraj Mallick, Gary
Lauterbach, and Rajeev Balasubramonian. 2013. A Novel System Architecture
for Web Scale Applications Using Lightweight CPUs and Virtualized I/O. In
International Symposium on High Performance Computer Architecture. 167–178.
http://dx.doi.org/10.1109/HPCA.2013.6522316

[26] Christopher Taylor. 2015. cm256. https://github.com/catid/cm256. https://github.
com/catid/cm256

[27] Benjamin Walker. 2016. SPDK: Building blocks for scalable, high performance
storage applications. In Storage Developer Conference. SNIA.

[28] C. Wang, A. Gupta, and B. Urgaonkar. 2016. Fine-Grained Resource Scaling in a
Public Cloud: A Tenant’s Perspective. In IEEE International Conference on Cloud
Computing. 124–131. https://doi.org/10.1109/CLOUD.2016.0026

[29] ChengWang, Jianyu Jiang, Xusheng Chen, Ning Yi, and Heming Cui. 2017. APUS:
Fast and Scalable Paxos on RDMA. In Symposium on Cloud Computing. 94–107.
http://doi.acm.org/10.1145/3127479.3128609

[30] John Wilkes. 2011. More Google Cluster Data. https://ai.googleblog.com/2011/
11/more-google-cluster-data.html.

[31] Jian Yin, Jean-Philippe Martin, Arun Venkataramani, Lorenzo Alvisi, and Mike
Dahlin. 2003. Separating Agreement from Execution for Byzantine Fault Tolerant
Services. In ACM Symposium on Operating Systems Principles. 253–267. http:
//doi.acm.org/10.1145/945445.945470

271

http://doi.acm.org/10.1145/1629575.1629602
http://doi.acm.org/10.1145/1629575.1629602
http://doi.acm.org/10.1145/2829988.2787492
http://dl.acm.org/citation.cfm?id=2616448.2616486
http://dl.acm.org/citation.cfm?id=2616448.2616486
http://doi.acm.org/10.1145/3149.214121
https://doi.org/10.1145/74851.74870
http://doi.acm.org/10.1145/2535771.2535778
https://github.com/mkazhami/Sift
https://github.com/mkazhami/Sift
https://doi.org/10.1145/279227.279229
http://doi.acm.org/10.1145/1555754.1555789
http://dx.doi.org/10.1109/HPCA.2012.6168955
http://dl.acm.org/citation.cfm?id=1855741.1855767
http://dl.acm.org/citation.cfm?id=1855741.1855767
https://www.usenix.org/conference/atc16/technical-sessions/presentation/marandi
https://www.usenix.org/conference/atc16/technical-sessions/presentation/marandi
https://doi.org/10.1145/2517349.2517350
http://dl.acm.org/citation.cfm?id=2643634.2643666
http://dl.acm.org/citation.cfm?id=2643634.2643666
http://doi.acm.org/10.1145/2749246.2749267
http://doi.acm.org/10.1145/2749246.2749267
http://dx.doi.org/10.1109/HPCA.2013.6522316
https://github.com/catid/cm256
https://github.com/catid/cm256
https://doi.org/10.1109/CLOUD.2016.0026
http://doi.acm.org/10.1145/3127479.3128609
https://ai.googleblog.com/2011/11/more-google-cluster-data.html
https://ai.googleblog.com/2011/11/more-google-cluster-data.html
http://doi.acm.org/10.1145/945445.945470
http://doi.acm.org/10.1145/945445.945470

	Abstract
	1 Introduction
	2 Related Work
	2.1 State Machine Replication
	2.2 RDMA
	2.3 Resource Disaggregation
	2.4 Consensus as a Service

	3 Replicated Memory
	3.1 Architecture
	3.2 Coordinator Election
	3.3 Normal Operation
	3.4 Fault Recovery
	3.5 Persistence

	4 Key-value Store
	4.1 Architecture
	4.2 Put/Get Requests
	4.3 Failure Handling

	5 Resource Reduction
	5.1 Erasure Codes
	5.2 Shared Backup Nodes

	6 Evaluation
	6.1 Implementation
	6.2 Experimental Setup
	6.3 Key-Value Store
	6.4 Cost Analysis
	6.5 Failure Recovery

	7 Conclusion
	References

