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ABSTRACT

Efficient content distribution in large networks comprising data-
centers, end hosts, and distributed in-network caches is a diffi-
cult problem. Existing systems rely on mechanisms and metrics
that fail to effectively utilize all available sources of bandwidth in
the network. This paper presents a novel metric, called the Con-
tent Propagation Metric (CPM), for quantitatively evaluating the
marginal benefit of available bandwidth to competing consumers,
enabling efficient utilization of the bandwidth resource. The metric
is simple to implement, imposes only a modest overhead, and can
be retrofitted easily into existing content distribution systems. We
have designed and implemented a high-performance content distri-
bution system, called V-Formation, based on the CPM. The CPM
guides V-Formation toward a global allocation of bandwidth that
maximizes the aggregate download bandwidth of consumers. Re-
sults from a PlanetLab deployment and extensive simulations show
that V-Formation achieves high aggregate bandwidth and that the
CPM enables hosts to converge quickly on a stable allocation of
resources in a wide range of deployment scenarios.

Categories and Subject Descriptors

C.2.4 [Computer-Communication Networks]: Distributed Sys-
tems

General Terms

Design, Performance

Keywords
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1. INTRODUCTION

Multimedia content distribution is a critical problem that accounts
for a majority of all Internet traffic [3]. Delivering content at large
scale with low cost requires taking advantage of all resources avail-
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able. Yet existing approaches to content distribution have architec-
tural and protocol limitations that fail to utilize available resources
effectively.

Content distribution systems have three sources of bandwidth:
content distributors’ origin servers, in-network cache servers, and
clients. Content distribution systems based on a client-server ar-
chitecture, such as YouTube, place the entire resource burden on
the first two sources of bandwidth, and thus necessitate a large
initial investment and incur high running costs [16]. In contrast,
peer-to-peer protocols, such as BitTorrent [1] and others [7,31,35],
rely primarily on bandwidth contributed by clients. While these
protocols permit the utilization of bandwidth from origin servers
and in-network caches [4, 5], they lack mechanisms for managing
such bandwidth to achieve commercial objectives and service level
guarantees a content distributor might seek. Finally, a new class
of emerging content distribution systems based on a hybrid, peer-
assisted architecture [32] manage the bandwidth from a single cen-
tralized server using a global optimization. Yet the optimization
mechanism in such systems does not support in-network caches or
distributed datacenters that house only a partial subset of the man-
aged content. As a result, hybrid systems cannot provide perfor-
mance guarantees for a deployment that comprises origin servers
in datacenters, cache servers, and clients.

Achieving a performance objective of any kind requires a metric
that can measure the performance of the system and thus help ad-
just its behavior to progress toward the performance goal. But the
design of a suitable metric is non-trivial. For instance, BitTorrent
hosts use a ranking derived from continuous block auctions [19] to
determine which peers to unchoke in order to maximize their re-
ciprocal bandwidth. This ranking is of limited use in other systems
because it is intertwined with the BitTorrent block transfer mech-
anisms, is vulnerable to attack [21,27], and can lead to undesir-
able global behaviors such as swarm starvation [32]. An ideal met-
ric would be effective at achieving globally-desirable performance
objectives, easy to implement, able to handle network churn, and
backwards compatible with existing systems.

This paper presents a unifying metric, called the Content Propa-
gation Metric (CPM), that enables a content distribution system to
efficiently manage the resources of origin servers, in-network cache
servers, and clients. The key insight behind this metric is to cap-
ture how quickly a host’s uploaded content propagates transitively
throughout a set of peers downloading that content (a swarm). To
this end, the CPM is calculated by computing the average size
of recent block propagation trees rooted at a particular host for a
given swarm. The CPM handles changing swarm dynamics, such
as changes in swarm size, changes in link capacities, churn, block
availability, and content uploads from other hosts, which can all



affect the rate of content propagation. The CPM offers a consis-
tent way for hosts to measure their marginal utility to a particu-
lar swarm, and to make informed decisions with their bandwidth
among swarms competing for content.'

This paper makes three contributions. First, it introduces and
defines the content propagation metric, discusses how it can be re-
alized in practice, and examines its effectiveness in dynamic set-
tings. Second, it outlines the design and implementation of a con-
tent distribution system, called V-Formation, that uses the CPM to
guide hosts toward an efficient allocation of bandwidth that maxi-
mizes global aggregate bandwidth. The CPM enables V-Formation
to converge on an efficient system-wide allocation of bandwidth in
a broad range of deployment scenarios that include origin servers,
cache servers, and clients in multiple swarms. Finally, it evaluates
the performance impact of using the CPM to existing content distri-
bution systems through a deployment and simulations. PlanetLab
experiments show that V-Formation can improve aggregate band-
width by approximately 60% and 30% over BitTorrent and Ant-
farm, respectively.

The rest of this paper is structured as follows. Section 2 gives
background on allocating bandwidth in the presence of multiple
swarms. Section 3 states the general content distribution problem
that this paper addresses, incorporating in-network caches. Sec-
tion 4 describes the CPM in detail and the core approach for al-
locating bandwidth based on measurements from individual hosts.
Section 5 describes our implementation of V-Formation, which we
use to evaluate the CPM in Section 6. Section 7 places our ap-
proach to content distribution in the context of related work, and
Section 8 concludes.

2. BACKGROUND

Existing swarming protocols, such as BitTorrent (Figure 1), use

mechanisms that allocate bandwidth efficiently within a single swarm,

but their policies do not make efficient use of bandwidth from mul-
tiple origin servers and in-network cache servers.

To address content distribution in deployments where multiple
swarms compete for bandwidth from a server, Antfarm [32] intro-
duced a peer-assisted protocol that offers coordination among peers
using a logically centralized coordinator. Antfarm uses active mea-
surements to compute the optimal allocation of bandwidth from
a single origin server, called the seeder (Figure 2). Every swarm
exhibits a response to bandwidth that it receives from peers: every-
thing else remaining constant, increasing the bandwidth that a peer
contributes to a swarm increases the aggregate bandwidth within
the swarm. Antfarm represents this relationship with a response
curve, which captures a swarm’s aggregate bandwidth as a function
of the seeder’s bandwidth allocated to that swarm. The seeder can
use response curves collected for every swarm to determine which
swarms benefit most from its bandwidth: the steeper the slope of
a response curve, the more aggregate bandwidth the corresponding
swarm achieves from additional seeder bandwidth.

Response curves are costly to obtain in practice, which renders
them impractical for highly dynamic swarms. Measuring a single
data point in a response curve requires a seeder to operate at a par-
ticular bandwidth for sufficiently long that the swarm’s aggregate
bandwidth stabilizes. While it is clearly unnecessary to measure a
swarm’s entire response curve in order to derive meaningful infor-
mation, a response curve must contain sufficient data near the point
of operation to obtain the curve’s slope and calculate the expected
benefit of an increase in seeder bandwidth. Furthermore, the opti-

"The word “metric” is used in the networking, not mathematical,
context. http://en.wikipedia.org/wiki/Metrics_(networking).
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swarm

Figure 1: BitTorrent architecture. BitTorrent swarms are logi-
cally isolated; peers make bandwidth allocation decisions indepen-
dently for each swarm.

swarm

Figure 2: Antfarm architecture. Antfarm introduces a logically
centralized coordinator to optimize bandwidth from a single ori-
gin server across multiple swarms, but neglects other inter-swarm
bandwidth in its allocations.

mal point of operation can change rapidly as swarm memberships,
network conditions, and block availability change.

Response curves provide an efficient allocation of bandwidth
from a single seeder, but deployments where peers belong to mul-
tiple swarms add a level of complexity that response curves do not
address. In a measurement study of over 6000 torrents and 960,000
users, we found that more than 20% of users simultaneously par-
ticipated in more than one monitored torrent. Such peers are faced
with choosing which swarms should receive their bandwidth, and
their decisions can have dramatic effects on the performance of the
system.

We discuss two approaches for adapting response curves to al-
locate bandwidth from multiple hosts, both of which result in sub-
optimal performance. In the first approach, the coordinator mea-
sures a set of response curves for each peer that belongs to multiple
swarms, where each curve represents a swarm’s response to band-
width from a particular peer. Obtaining accurate measurements
is difficult because peers’ response curves are dependent on each
other. The problem is exacerbated by the large time interval that
a peer must wait for the swarm to stabilize at an aggregate band-
width before taking a measurement; another peer’s shift in point of
operation during the time interval will perturb the measured value.

In an alternative approach, the coordinator instead maintains a
single response curve per swarm, which captures the swarms’ re-
sponses to bandwidth, independent of which particular hosts supply
the bandwidth. The coordinator performs Antfarm’s optimization
on the response curves to calculate the optimal amount of band-
width that each swarm should receive. Then, the coordinator as-
signs hosts to upload to particular swarms in order to realize the
optimal bandwidth allocation based on the computed target swarm
bandwidths and swarm memberships and upload capacities of in-
dividual peers. There are two problems with this approach. First,
the assignment problem of assigning peers to swarms is difficult
to solve at large scales, and greedy algorithms for assigning peer
bandwidth to swarms can result in poor use of peers’ resources.
Second, using a single response curve for each swarm neglects vari-



ations among peers, such as which blocks they possess and network
conditions to members of each of their swarms.

Overall, response curves offer an intuitive model for swarms
that enables a logically centralized seeder to allocate bandwidth
optimally among competing swarms. However, real-world issues
render them less useful for highly dynamic swarms, and infeasi-
ble when swarms compete for bandwidth from multiple hosts dis-
tributed throughout the network or peers that belong to multiple
swarms.

3. PROBLEM STATEMENT

To formalize bandwidth allocation among multiple swarms, we
introduce the general multi-swarm content distribution problem.
This defines a global performance goal over a class of realistic con-
tent distribution scenarios comprising origin servers, in-network
caches, and end hosts organized into swarms (Figure 3).

Formally, given a set of peers P, a set of swarms .S, and a set
of memberships M C P x S, the general multi-swarm content
distribution problem is to determine the upload bandwidth U, , that
peer p should allocate to swarm s for all (p,s) € M in order to
maximize global aggregate bandwidth Zp cp Dp, where Dy, is the
download bandwidth of peer p.

This general formalization removes restrictions on the location
of content and membership of peers in swarms. The CPM ad-
dresses the general multi-swarm content distribution problem by
guiding hosts to an efficient allocation of bandwidth in these de-
ployment scenarios.

4. APPROACH

The Content Propagation Metric provides an accurate measure of
hosts’ contributions, offering a practical approach for addressing
the general multi-swarm content distribution problem. This sec-
tion describes the CPM in detail. It then explores how peers use
measured CPM values to compute an efficient allocation of band-
width. The section concludes with discussions of how the CPM
remains effective in the presence of highly dynamic swarms. We
leave implementation details, including how to obtain and process
CPM measurements, to Section 5.

4.1 Block Propagation Bandwidth

Peers that simply aim to saturate their upstream bandwidth with-
out regard to the selection of the download recipients are not nec-
essarily acting in the best interest of the global ecosystem. A recip-
ient that fails to forward blocks to other peers provides little benefit
to the swarm. The propagation of a block is hindered if a peer
that receives it is unwilling to contribute its upstream bandwidth,
or if the receiving peer’s neighbors already possess the block. It is
more beneficial to upload blocks to peers that are willing to con-
tribute their bandwidth but lack desirable blocks that enable them
to saturate their own upload capacities. As a result, blocks of equal
rarity can have vastly different values to a swarm depending on
which particular peers have those blocks and what other blocks
those peers possess.

Block propagation bandwidth is a metric that captures these com-
plex multi-peer interactions by encompassing the global demand
for blocks, block availability, network conditions and topologies,
and peer behavior. Block propagation bandwidth is defined for a
particular block transfer between two peers, called a tracked trans-
fer. Informally, the metric is the system-wide bandwidth during a
specified time interval resulting from block transfers that occurred
as a direct consequence of the tracked transfer. This metric provides
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swarm

Figure 3: General multi-swarm content distribution. Peers,
which includes all hosts that upload or download content, belong
to arbitrary sets of potentially overlapping swarms.

Figure 4: Propagation of a block. The dashed box indicates the
propagation tree that results from peer p’s tracked transfer of block
b to peer r. The block propagates exponentially during the mea-
surement time interval 7 = ¢ — to, resulting in propagation band-
width vt“ tb = 14 - 256 KBytes/30 s ~ 120 KBytes/s, assuming
256- KByte blocks and 7 = 30 seconds.

~
~

an estimate of the benefit that results from a single block transfer
from one peer to another.

Formally, for the upload of block b from peer p to peer r, where
the transfer completes at time to, we define a block propagation
tree T;?Tffb rooted at r with a directed edge from p; to p2 if r is an
ancestor of p1, and p; finishes uploading b to p2 at time ¢’ such that
to < t' < t. Thus, T 0.t b is essentially an implicit multicast tree
rooted at peer r for block b during the time interval 7 = ¢ —to. The
block propagation bandwidth, then, is

|Tt°'b| size(b)/(t — to),

ploot
p,r b
the download bandwidth enabled by p’s tracked transfer to r over
the time interval 7. Figure 4 shows an example propagation of
a block and the resulting propagation tree. Assuming 256-KByte
blocks and a 7 of 30 seconds, the example block propagation band-
width is approximately 120 KBytes/s.
Block propagation bandwidth enables peers to compare the rel-
ative benefits of their block uploads to competing swarms over a
common time interval 7. To illustrate the metric and its relation to
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Figure 5: Block propagations in two competing swarms. Solid
edges indicate the propagation of a particular block uploaded by
peer p. Dashed edges indicate transfers of other blocks that com-
pete with p’s block for peers’ upload bandwidth. p’s block propa-
gates more widely in swarm s; than in s».

the value of a block upload, consider the block propagations shown
in Figure 5. Peer p is a member of swarms s; and s2, to which
p uploads tracked blocks. On average, peers in s; distribute their
blocks more widely than peers in s2, as indicated by solid edges.
Dashed edges indicate peer-to-peer transfers of other blocks, which
compete for peers’ upload bandwidth. The higher average block
propagation in s; can be due to several factors, including swarm
size, competing uploads, peer behavior, and network conditions.

4.2 Content Propagation Metric

Block propagation bandwidth captures the utility of a given block
upload, which may suffer from a high rate of fluctuation depend-
ing on that block’s relative rarity and peer r, the peer that receives
the block in the tracked transfer. To compensate for such fluctua-
tions, the CPM is based on a statistical sample of blocks that are
disseminated by each peer.

The CPM captures the utility of a peer to a given swarm based
on its recent uploads. A peer’s CPM value for a particular swarm
is computed from block propagation bandwidths obtained within a
recent time interval 7 = ¢’ — ¢. Formally, let

tt! g tith ta,th
Vols = A\ Vp b s Voo b - -
p, P,7T1,017 "p,T2,02

be the set of all block propagation measurements where blocks

b1,ba, ... are from swarm s and t < t; < ¢ for all 5. Then,
’ !
opMyl = (30 )/vied
vevpt;ﬁl

the average of the measurements. We define

CPM,, . = CPM! [ ™%

P,S )

with the times omitted, to be p’s current value for swarm s dur-
ing the most recent time interval 7, where ¢* is the current time.
Each value CPM,, s is implemented as a rolling average that is
continually updated as new block propagation bandwidths become
available and old measurements become stale.

The CPM distills the salient properties of response curves for de-
ciding to which swarms peers should upload their blocks in order to
yield high aggregate bandwidth. A peer’s CPM value for a particu-
lar swarm approximates the instantaneous slope of the swarm’s re-
sponse curve at its point of operation. Whereas Antfarm measures
a response curve and uses its slope to predict a swarm’s bandwidth
yield for any amount of seeder bandwidth, the CPM directly mea-
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Figure 6: Three competing swarms. Peer p; in swarms s; and
s2 and peer p2 in swarms s; and s3 converge on the allocation
of bandwidth indicated by the gray arrows. p2’s CPM value for
s3 is smaller than for s; due to the swarms’ sizes; p; allocates
its bandwidth to sz, where its blocks do not compete with p2’s
uploads.

sures the slope of the response curve without the need to explicitly
generate the curve.

To illustrate the CPM, consider the bandwidth allocation of two
peers originating content for three new swarms with identical net-
work conditions and no competition from other uploaders, as de-
picted in Figure 6. Swarms s1 and s distribute popular content,
with new downloaders joining at a higher rate than swarm s3. Peer
p1 possesses content for s; and s2, and peer p2 possesses content
for s1 and s3. After uploading a few blocks and measuring CPM
values, p2 identifies s as the swarm that benefits more from its
bandwidth due to, in this example, its larger size. p; likewise mea-
sures a high CPM value for s1, but blocks uploaded by p- interfere
with p1’s uploads, causing both peers’ CPM values for s; to dimin-
ish. Consequently, p; allocates its bandwidth to s2, which lacks the
competition of p>’s uploads.

As swarm dynamics change, CPM values shift to adjust peers’
bandwidth allocations. Continuing the above example, after s; has
received sufficiently many blocks, its peers may be able to sustain
high aggregate bandwidth without support from p». In this case,
p2’s block uploads to the swarm would compete with a large num-
ber of uploads from the peers themselves, causing p2’s blocks to
propagate less. In turn, p2’s CPM value for s3 may exceed its CPM
value for s1, causing p» to allocate its bandwidth to s3 instead.

The CPM provides peers information to allocate bandwidth based
on current swarm dynamics. It might be tempting to instead use a
global rarest policy, where peers request rare blocks from neigh-
bors regardless of swarm, and peers in multiple swarms preferen-
tially satisfy requests for blocks that are rarest within their respec-
tive swarms. However, such a policy operates solely based on the
number of replicas of each block, and disregards swarm dynamics
and peer behavior.

A peer’s CPM value provides an accurate estimate of the peer’s
value to a swarm relative to competing swarms. The CPM captures
the average benefit that peers’ recent block uploads had on their
swarms, providing a useful prediction of the value of future block
uploads.

4.3 Robustness of the CPM

The CPM handles changes in swarm membership and highly dy-
namic swarms, and achieves high performance in deployments with
swarms of vastly different sizes. The CPM naturally dampens oscil-
lations to converge on a stable allocation of bandwidth. We discuss
these issues in turn.
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Figure 7: Measurement time interval. Edges indicate the prop-
agation of blocks originating at peer p in swarms s; and s2. Solid
edges show the propagations within a time interval 7 that is too
small for p to differentiate its benefit to the competing swarms. Us-
ing a larger 7, indicated by dashed edges, makes it clear that so
receives more benefit from p’s blocks.

4.3.1 Probing Swarms

Highly dynamic swarms pose two challenges for determining ef-
ficient bandwidth allocations. First, when peers join swarms for
which they have no block propagation data, they are unable to
compute the marginal benefit to the system from uploading blocks
to the new swarm versus uploading blocks to a competing swarm.
Second, swarms with high peer churn can respond very differently
to a peer’s contributions from one moment to the next. Conse-
quently, such swarms can regularly invalidate many peers’ CPM
values, causing them to operate suboptimally.

Probing swarms enables calculation of CPM values for these
problematic swarms with minimal overhead. To probe a swarm, a
peer temporarily prioritizes requests for blocks in that swarm above
other block requests until it has uploaded a small, constant number
of blocks to the swarm. Data blocks are typically 128-256 KBytes,
and we have found two block uploads to be sufficient for computing
provisional CPM values to adapt to highly dynamic swarms.

4.3.2 Measurement Time Interval

The CPM measures the initial surge of block exchanges that oc-
curs when a peer injects blocks into a swarm. The growth of a
block’s propagation tree reflects the swarm’s demand for the block
with respect to block availability, peer behavior, and network condi-
tions within the vicinity of its tracked uploader. The wide range of
swarm behavior means that using a globally constant time interval
7 for measuring block propagations from all peers is insufficient.

Figure 7 gives an intuition of how the choice of measurement
time interval affects a peer’s ability to differentiate among com-
peting swarms. Swarm s, is significantly smaller than s», but, as-
suming comparable network conditions and competition for blocks,
using a small 7 prevents p from recognizing that s, receives more
benefit from each block. The propagation trees for small 7, rep-
resented by solid edges, are nearly identical in the two swarms,
causing p to allocate its bandwidth equally between them. Increas-
ing 7 enables p to discover s2’s ability to achieve higher aggregate
bandwidth than s; for each block.

Measuring block propagation with a 7 that is unnecessarily large
likewise decreases performance. A large measurement time inter-
val increases the delay between the time p finishes uploading a
block and the time p has an updated CPM value that incorporates
the newly measured block propagations. Thus, choosing a suitable
T is a tradeoff between system performance, measured as aggre-
gate bandwidth, and system adaptability, or the time required for
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the system to converge on a new allocation of bandwidth in highly
dynamic deployments.

Our implementation of V-Formation addresses the CPM’s sensi-
tivity to the measurement time interval by choosing an interval for
each peer that teases apart the peer’s highest-valued swarms. The
system maintains a measurement time interval 7, specific to each
peer p. Based on recent block propagation data, the system adjusts
Tp in order to account for changes in size of p’s swarms. To do this,
the system periodically uses its record of p’s recent block uploads
to measure block propagation bandwidths for three different values
of i Tp, Tp"" = 1/2-7,, and 7’8" = 2.7, It then updates 7, with
the smallest of the three time intervals for which p achieves differ-
ent CPM values for its two swarms with the largest CPM values,
corresponding to the swarms for which p has the greatest impact.
Thus, the system continuously and iteratively computes 7,, adjust-
ing its value over time.

4.3.3 Stabilization

The CPM mitigates oscillations in bandwidth allocations despite
complex interactions among peers that influence multiple swarms.
First, changes in CPM values only affect the bandwidth allocations
of peers that belong to multiple swarms. The remaining major-
ity of peers propagate blocks within their respective swarms re-
gardless of CPM values, dampening the effects of shifting band-
width allocations on a swarm’s aggregate bandwidth. Second, a
peer’s CPM values for competing swarms regulate the peer’s band-
width allocation among the swarms. A peer’s CPM value for a
swarm naturally decreases as the peer uploads to the swarm be-
cause the uploads increase competition for downloading peers’ up-
load bandwidth. Once the CPM value drops below the CPM value
of a competing swarm, the uploading peer allocates its bandwidth
elsewhere, leaving the swarm with sufficient content to temporarily
maintain a steady aggregate bandwidth. In Section 6, we show that
system aggregate bandwidth converges stably when there are mul-
tiple swarms vying for bandwidth from cache servers with limited
upload capacity.

S. IMPLEMENTATION

We have implemented our approach to content distribution based
on the CPM in a system called V-Formation. V-Formation adopts
a hybrid architecture that combines peer-to-peer exchanges with
bandwidth from optional cache servers managed by a logically cen-
tralized coordinator. The coordinator tracks block exchanges in
swarms based on the transfer of tokens and uses its measurements
to compute CPM values. Tokens are unforgeable credits minted by
the coordinator that function as a virtual currency; peers exchange
tokens with each other for content blocks and reveal spent tokens
to the coordinator as proof of contribution. Each token can only be
spent once, and the coordinator verifies that each token is spent for
a block within the swarm for which it was minted. V-Formation
augments Antfarm’s token protocol to include an identifier for the
specific block for which a token was exchanged.

This section first discusses the operation of the coordinator, then
the operation of peers based on the coordinator’s guidance. For
simplicity, the discussion assumes compliant peers that follow the
protocol as proscribed; we address incentive compatibility in Sec-
tion 5.4.

5.1 Coordinator

V-Formation’s logically centralized coordinator consists of three
components: web servers, processors, and a shared state layer (Fig-
ure 8). First, web servers process requests from peers to dispense
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Figure 8: The V-Formation coordinator. Web servers communi-
cate with peers (including cache servers) to gather information on
swarm dynamics. Processors use swarm dynamics to compute peer
bandwidth allocations. Web servers and processors communicate
via a distributed state layer.

fresh tokens, collect spent tokens, and notify peers of computed
bandwidth allocations. Second, processors use token exchanges
aggregated by the web servers to calculate peer bandwidth alloca-
tions. Third, a distributed state layer grants web servers and pro-
cessors read and write access for consolidating block exchange in-
formation and bandwidth allocations. The web servers, processors,
and state can be distributed across multiple physical machines, or
they can run on a single physical host for smaller deployments. We
describe the operations of web servers and processors in turn, fol-
lowed by a summary of all information stored in the distributed
state layer.

5.1.1 Web Servers

V-Formation’s peer-facing web servers function as an augmented
tracker for facilitating swarms, similar a BitTorrent tracker. Web
servers accept three types of requests asynchronously from peers:
announce, get_tokens, and deposit_tokens. Peers issue periodic
announce requests for each of their swarms to obtain addresses of
other peers and to discover how to allocate bandwidth to swarms.
An announce request contains the requesting peer’s identifier and
a swarm’s identifier, represented as a 20-byte hash. A web server
responds to an announce request with addresses of a random set
of peers and the requesting peer’s most recent CPM value for the
swarm. Announce intervals are dynamically adjusted to achieve a
constant CPU utilization of the web servers.

The get_tokens and deposit_tokens requests facilitate the exchange

of fresh and spent tokens between peers and the coordinator, re-
spectively. The coordinator maintains a credit balance for each
peer that represents the total number of tokens that the peer can
obtain across all swarms. A get_tokens request deducts from the
issuer’s credit balance in exchange for fresh tokens for a particular
swarm, to be exchanged for blocks within a specific time interval.
When a peer receives a token from another peer in exchange for a
block, the peer sends it to the coordinator in a deposit_tokens re-
quest. The web server verifies the token’s authenticity, increases
the peer’s balance accordingly, and, if the coordinator is tracking
the block referenced in the token, records the block exchange in
the state layer.

Web servers record block exchanges in block exchange forests
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for use by processors. A block exchange forest contains a set of
peer identifiers as vertices and recent block exchanges as time-
stamped, directed edges. Each forest is specific to a particular block
in a particular swarm; web servers build a separate forest for each
block that the coordinator is tracking. To add a block exchange to
a forest, a web server simply adds an edge from the block’s sender
to its recipient, timestamped using the coordinator’s clock upon re-
ceiving the token.

5.1.2 Processors

Processors continuously iterate over block exchange forests to
extract block propagation bandwidths. A single forest contains a
propagation bandwidth for each edge timestamped prior to the cur-
rent time minus 7, the time interval over which block propagations
are measured. A processor extracts a propagation bandwidth for
each such edge, prunes those edges from the forest, and records the
new propagation bandwidths in the state layer.

Before extracting propagation bandwidths, the processor adjusts
the timestamps on the forest’s edges such that no edge is time-
stamped later than any edge in its subtree. Such an inconsistency
occurs if a peer deposits its spent tokens before an ancestor in a
block propagation tree deposits its own tokens for the same block.
To make the adjustment, the processor recurses on each of the for-
est’s roots, setting each timestamp to the minimum of its own time-
stamp and the earliest timestamp in its subtree. This makes the
forest reflect the constraint that a peer can only upload a block after
it has received that block.

To extract block propagation bandwidths, the processor recurses
on each vertex in a forest, summing up the number of edges in
each subtree. The processor only calculates and reports propaga-
tion bandwidths for edges older than the measurement time interval
7. It removes the corresponding edges from the forest and appends
each new propagation bandwidth to a list in the state layer of prop-
agation bandwidths for the tracked uploader’s contribution to the
forest’s swarm. Each new propagation bandwidth is timestamped
with the time on the forest’s tracked transfer edge, equal to the time
that the tracked transfer completed.

Web servers compute CPM values for a peer’s swarms by aver-
aging the propagation bandwidths in the list that are timestamped
within a recent time interval 7, a global constant set to five min-
utes in our implementation. In an announce response, web servers
report the most recent CPM value, or, if there are no recent prop-
agation bandwidths, instruct the requester to upload blocks to the
swarm to obtain fresh measurements.

Operating on block exchange forests is a highly parallel task.
Each forest represents exchanges of a single block for a single
swarm, enabling processors to operate on block exchange forests
in isolation. Multiple processors coordinate their behavior through
the state by atomically reading and incrementing the swarm and
block identifiers for the next forest to process. Thus, increasing
the number of processor machines linearly increases the supported
processing workload of the coordinator.

If high load renders the coordinator unable to process all block
propagation forests, the coordinator sheds load by decreasing the
fraction of blocks that it tracks. The coordinator maintains a dy-
namically adjusted parameter that dictates the fraction of blocks to
track, enabling web servers and processors to independently deter-
mine whether a particular block should be tracked. Web servers do
not insert forest edges for untracked blocks, and processors do not
iterate over forests of untracked blocks. The coordinator adjusts the
parameter such that for each swarm, some block is processed with
a target frequency.



5.1.3 Distributed State Layer

V-Formation uses memcached to implement a distributed, shared
state layer for web servers and processors. The coordinator’s state
is linear in the number of swarms it supports and in the number of
peers.

The coordinator maintains data structures for each of the swarms
it supports as well as for each peer in the system. Since this state
is stored in memcached, it is distributed across multiple servers.
Atomic compare and swap operations supported by memcached en-
able nodes to update this state quickly and concurrently. Since all
such state is soft and can be recreated through remeasurement, if
necessary, it need not be stored on disk. All lookups are performed
with a specific key, so the memcached key-value store suffices, and
an expensive relational database insertion is unnecessary.

For each peer, the state layer maintains its address, port, identi-
fier, credit balance, and the set of swarms to which it belongs. For
each swarm, the state layer keeps a swarm identifier and the set
of peers in the swarm. To make bandwidth allocations, for each
peer the state layer records its current 7 for computing block prop-
agation bandwidths, its current CPM value for each swarm, and a
history of block propagation bandwidths for each measured block
over the past time interval 7. Recent block transfers for measured
blocks are stored as block propagation forests linear in size to the
number of peers and edges that they contain. Forests are pruned as
block propagation bandwidths are extracted, based on peers’ values
of 7. Lastly, the state layer maintains a single value representing
the next block that a processor should analyze, which processors
advance each time they read it.

5.2 Peers

Peers interact with the coordinator by issuing announce requests
periodically for each swarm, get_token requests when their fresh
tokens are nearly depleted, and deposit_token requests when they
possess spent tokens from other peers. They interact with other
peers through block requests for the rarest blocks among directly
connected neighbors, and they satisfy block requests according to
their CPM values for competing swarms. Upon receiving a block,
a peer responds with a fresh token embedded with the block’s iden-
tifier.

To allocate bandwidth among competing swarms, peers priori-
tize their swarms based on the CPM values contained in announce
responses. Upon receiving a CPM value, a peer updates a local
prioritized list of its swarms. When a peer has received multiple
outstanding block requests from peers in different swarms, it satis-
fies the request from the swarm with the largest CPM value.

If the coordinator lacks current information on recent block ex-
changes for any swarm to which a peer belongs, the coordinator
reports that the peer should probe the swarm. The special probe
flag instructs a peer to upload a small, constant number of blocks
to the swarm for the coordinator to track.

5.3

In some cases, it may be desirable to guarantee a minimum band-
width for particular swarms in order to meet service-level agree-

QoS Guarantees

ments or to provide a certain quality of service to designated swarms.

V-Formation enables system administrators to specify lower bounds
for swarms where necessary, sacrificing overall system performance
in favor of control. V-Formation satisfies such requests by diverting
upload bandwidth from members of the swarm whose CPM values
suggest that they should upload to other competing swarms instead.
In order to minimize impact on overall system performance, the co-
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ordinator iteratively reassigns bandwidth from peers with low CPM
values for competing swarms until the target service level has been
achieved.

5.4 Security

Securing a peer-assisted content distribution system from ma-
licious users or free-loaders is significantly more tractable than
securing pure peer-to-peer systems. The coordinator in a peer-
assisted systems serves as a trusted entity in the system that can
detect attacks and enforce access control when coupled with a se-
cure wire protocol.

The V-Formation wire protocol is an extension of the Antfarm
wire protocol [32] and shares the same security guarantees. It
makes standard cryptographic assumptions on the infeasibility of
reversing a one-way cryptographic hash function. It also assumes
that packets cannot be read or modified by untrusted third parties at
the IP level. Such an attack is difficult without collusion from ISPs,
and a successful attack only influences peers whose packets can be
snooped and spoofed. We support SSL on peer-to-peer and peer-
to-coordinator exchanges, respectively. While a formal treatment
of the security properties of the protocol is beyond the scope of this
paper, prior work [35] has established the feasibility of a secure,
cryptographic wire protocol using a trusted, logically centralized
server.

V-Formation’s token protocol incentivizes peers to report accu-
rate and timely information about block exchanges to the coordi-
nator. Fresh tokens contain unforgeable identifiers known only to
the coordinator and the peers for which they are minted. When
a peer receives a token in exchange for a block, the token’s re-
cipient embeds the identifier of its original owner and verifies the
block identifier embedded in the token before depositing the token
at the coordinator. The coordinator verifies that the token’s spender
and depositor are members of the swarm for which the token was
minted, according to its records. In addition, the coordinator checks
that the token was deposited before its expiration time, ensuring
that it represents a recent block exchange. If a check fails, at least
one of the two peers known to have touched the token are at fault,
and the coordinator marks both peers possible culprits.

Peers are incentivized to deposit tokens soon after receiving them
in exchange for blocks, resulting in accurate block propagation
forests at the coordinator. All tokens must be deposited at the coor-
dinator before they expire, placing an upper bound on the deviance
of a block exchange’s timestamp. Peers with small credit balances
are incentivized to deposit tokens earlier than their expiration times
in order to receive fresh tokens to spend. Consequently, when the
coordinator adjusts timestamps on forest edges before extracting
propagation bandwidths, promptly deposited tokens result in early
timestamps that percolate up the forest trees, replacing timestamps
of exchanges whose tokens were deposited significantly after the
block exchanges actually occurred.

6. EVALUATION

We have implemented the full V-Formation protocol described
in this paper, both in a deployed system that is actively running
on FlixQ [2], and in a simulator for fine-grain analysis of its per-
formance. Through a deployment on PlanetLab [6] and extensive
simulations, we compare V-Formation’s performance to Antfarm,
BitTorrent, and a BitTorrent-like global rarest policy where peers
request the rarest blocks for which they are interested across all
swarms. We also evaluate secondary features of the CPM, such as
convergence time to a stable allocation and sensitivity to changing
swarm dynamics.
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Figure 9: Performance on PlanetLab. 380 nodes in 200 swarms
download movies from FlixQ using the V-Formation protocol and
the same movies using the Antfarm and BitTorrent protocols.
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Figure 10: Scalability. Both memory consumption and bandwidth
at the coordinator scale linearly with the size of the system.

6.1 Live Deployment

We evaluated our live deployment of V-Formation against Ant-
farm and version 5.0.9 of the official BitTorrent implementation.
Our V-Formation deployment uses a distributed coordinator de-
ployed in the Amazon EC2 cloud. In this experiment, 380 Plan-
etLab nodes each download one or more of 200 simulated movies,
where a random 20% of the downloading nodes join two or more
swarms to reflect the results of our BitTorrent trace. Two cache
servers running on PlanetLab nodes seed the swarms. We scaled
down the upload capacities of the cache servers to 50 KBytes/s
each to reflect our relatively small deployment size. Peer upload
capacities are drawn from the distribution of BitTorrent peer band-
width collected by Pouwelse et al. [25]. This distribution speci-
fies a median and 90th percentile peer upload capacity of 30 and
250 KBytes/s, respectively. The peers’ download capacities are
set 50% higher than their upload capacities to simulate asymmetric
links.

The results of the experiment (Figure 9) show the three systems’
aggregate bandwidths over time. V-Formation exhibits similar ini-
tial behavior as Antfarm, with lower aggregate bandwidth than Bit-
Torrent in the first six minutes as peers probe swarms to determine
an efficient allocation of bandwidth. V-Formation transitions to its
steady state more quickly than Antfarm as a result of its lightweight
probes, and it maintains a significantly higher steady state aggre-
gate bandwidth than Antfarm and BitTorrent.

V-Formation’s logically centralized coordinator is a potential per-
formance bottleneck, and a poor implementation could limit the
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Figure 11: Comparison of protocols. Peers download movies
with lengths and popularities randomly drawn from the Internet
Movie Database. Peers have link capacities drawn from a distri-
bution determined by a BitTorrent measurement study. Error bars
indicate 95% confidence.

system’s scalability. The next experiment examines how our imple-
mentation of the coordinator scales as a function of the size of the
deployment; we found that the coordinator’s bandwidth and mem-
ory requirements scale linearly with the total number of peers (Fig-
ure 10). In this experiment, peers are simulated across hosts in a
computer cluster. Each peer is assigned a random bandwidth drawn
from the same measured BitTorrent distribution as in the PlanetLab
deployment. A peer’s bandwidth is proportional to the rate at which
the peer simulates receiving blocks from random participants in its
swarm. Hosts in the cluster issue realistic deposit_token requests
to the coordinator according to these simulated block transfers, as
well as periodic announce requests. We made minor modifications
to the coordinator to accept deposited tokens as if they were com-
ing from legitimate peers with different IP addresses. In the ex-
periment, three new peers enter the system every second and join
a swarm for a 1-GByte file with 256-KByte blocks. The coordina-
tor is distributed over two Amazon EC2 instances, each running a
web server, a processor, and a slice of the memcached shared state
layer. The reported memory usage includes all CPM, swarm, and
peer metadata stored in the state layer, as discussed in Section 5.1.3.
Coordinator bandwidth includes all outgoing tokens, CPM values,
and responses to announce requests.

6.2 Simulations

Simulation experiments provide an in-depth examination of the
CPM and how it affects hosts’ bandwidth allocations in V-Formation.
We first show the system-wide aggregate bandwidth of V-Formation,
Antfarm, BitTorrent, and a global rarest policy for a realistic sim-
ulation based on movies in the Internet Movie Database (IMDb).
The experiment is based on the number of votes and lengths of
425,000 movies, scaled down to 500 peers and 300 swarms to make
simulations feasible. Each swarm facilitates the download of a sin-
gle movie file, and each swarm’s popularity is proportional to the
number of votes that its movie has received on IMDb, resulting in a
power-law distribution of swarm sizes. Each file’s size is based on
the movie’s length and 1 Mbit/s video compression, common for
480p video. Swarm memberships are assigned iteratively, each of
approximately 670 movie downloads randomly assigned either to a
peer that has already been assigned one or more downloads, or to a
fresh peer with no assigned downloads, the probability of each case
calibrated so that 20% of peers belong to multiple swarms to reflect
our BitTorrent trace. As in the PlanetLab deployment, nodes draw
their bandwidth distribution from the measured BitTorrent band-
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Figure 12: Cache bandwidth to a pair of swarms. Two swarms
of similar size achieve comparable aggregate bandwidth even
though cache B does not possess content for swarm s2. Cache A
gives more bandwidth to s2 (medium gray area) than to s; (dark
gray area) to compensate.

width distribution. Content originates from two cache servers, sim-
ulating a distributed cache of movie files. Cache server A contains
a copy of every movie; cache server B has only a random 50% of
the library’s files to mitigate load on cache server A. Both servers
upload content at 50 KBytes/s, scaled down from a realistic data-
center bandwidth due to the number of simulated downloaders. We
show the system-wide aggregate bandwidth of each protocol over
a one-hour run (Figure 11).

Both BitTorrent and the global rarest policy ignore swarm- and
system-wide performance. The result is that singleton swarms and
small swarms from the long tail receive a high proportion of the
servers’ bandwidth. Such peers are unable to forward blocks as
rapidly as members of larger swarms, resulting in low aggregate
bandwidth for pure peer-to-peer approaches. V-Formation achieves
66% higher aggregate bandwidth than BitTorrent.

V-Formation differs from Antfarm in both the time to converge
on an allocation of bandwidth and the aggregate bandwidth itself
after convergence. Since V-Formation uses lightweight probes to
determine bandwidth allocations, it reaches a stable allocation of
bandwidth four times faster than Antfarm. Antfarm instead relies
on response curves to assess swarms, which requires the Antfarm
coordinator to remain at a particular bandwidth allocation for a
longer time before it becomes apparent which swarms benefit most
from bandwidth.

Further, after the protocols converge, V-Formation and Antfarm
achieve different aggregate bandwidths due to constraints imposed
by individual peers’ bandwidths and swarm memberships. From
the experiment shown in Figure 11, consider two swarms s; and
s2 for which peers measure comparable CPM values, where s1’s
movie is cached on both servers and s2’s movie is only cached
on server B. In this scenario, the Antfarm coordinator measures
a response curve for each of the two swarms and determines that
both swarms should receive approximately equal bandwidth from
the servers. However, Antfarm is unable to realize this allocation
due to the constraints of peers’ upload capacities and their swarm
memberships. The coordinator’s greedy solution to the assignment
problem results in suboptimal performance.

In contrast, the V-Formation coordinator uses each individual
peer’s benefit to arrive at a more efficient allocation of bandwidth.
A representative run of the experiment shows that both swarms re-
ceive comparable bandwidth from the cache servers despite the im-
balance in the cache servers’ content (Figure 12). Cache server B
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can only upload to swarm s; because it only contains one of the
movies, as depicted by the light gray area. Cache server A, on the
other hand, possesses both movies, so it can upload blocks to ei-
ther swarm. The dark gray and medium gray areas indicate that
swarm so receives more bandwidth from cache server A than s;.
Fluctuations in the caches’ bandwidth is due to allocating band-
width to other swarms in the system as measured CPM values vary
over time. Averaged over eight runs of the experiment, cache server A
uploads a majority of its bandwidth to the swarm with only one
source (with an average of 124 peers) and only 12.6 KBytes/s to
the swarm also sourced by cache server B (with an average of
120 peers) in order to offset cache server B’s asymmetric contri-
bution of 42.1 KBytes/s to the swarm sourced by both servers. In-
teractions among swarms similar to the two swarms we have ex-
amined account for V-Formation’s 30% higher system-wide band-
width over Antfarm.

To provide further insight into V-Formation’s bandwidth allo-
cation algorithm, we empirically show how V-Formation allocates
bandwidth to competing swarms. We set up a scenario where peer
p1 possesses content for two swarms s and se with 25 download-
ers each, and peer p2 possesses content for s; and a small swarm
s3 with only three downloaders (Figure 6). All peers have upload
and download capacities of 50 KBytes/s. The two peers p1 and p2
converge on an efficient, stable allocation (Figure 13). The left-
hand graph shows p;’s CPM values for its swarms over time; the
right-hand graph shows the same for p>. When the simulation be-
gins, p1 and ps probe their respective swarms to obtain initial CPM
values. They both measure comparable CPM values for s1, which
are similar to p1’s initial measurement of s2. p2 quickly discov-
ers that s3 receives little benefit from its block uploads, so it allo-
cates its bandwidth to s1. The competition that p>’s uploads create
diminishes p;’s CPM value for s1, causing it to dedicate its band-
width to s2. This sequence of events matches the expected behavior
of the V-Formation protocol, with peer p; preferentially providing
bandwidth to s2 as s1 can be sourced by both p; and p». The peri-
odic fluctuations of measured CPM values are the result of probing;
CPM values go stale after five minutes of no activity, at which time
peers probe swarms for new block propagation bandwidths.

In order to differentiate peers’ effects on competing swarms, the
coordinator adjusts the block propagation measurement time inter-
val 7 for each peer. We measure a single peer p’s block propagation
bandwidths for three competing swarms s1, Sz, and s3, as well as
the aggregate bandwidth that results from using each value. Swarm
s1 has 30 downloaders, and s2 and s3 each have 20 download-
ers. Swarm s3 has an additional source of content whose uploads
compete with p’s uploads. All peers have upload and download ca-
pacities of 50 KBytes/s. The coordinator chooses a value for 7 that
enables it to differentiate among swarms (Figure 14). The left-hand
graph shows the resulting CPM values as a function of the coordi-
nator’s choice of 7. All three swarms exhibit comparable CPM
values for small 7, but with sufficiently large 7, the swarms’ dif-
ferent behaviors become prominent. The right-hand graph shows
the system-wide aggregate bandwidth that results from each value
of 7, with values 30 seconds and above providing approximately
equal aggregate bandwidth. The vertical dashed line in the graph
indicates the coordinator’s dynamic choice of 7 for determining p’s
bandwidth allocation. The coordinator chooses the smallest 7 such
that it is able to distinguish p’s contribution to the swarms that re-
ceive the most benefit from p’s blocks. The selected 7 is safely
above 30 seconds, enabling the system to operate at a high aggre-
gate bandwidth.

The next two experiments evaluate how the CPM enables V-
Formation to converge on a stable allocation of bandwidth in the
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Figure 15: Convergence and stability. Three cache servers con-
currently upload to two, five, and three identical swarms, indicated
by shaded areas. The protocol adapts quickly to the changes in-
troduced at the dotted lines, achieving equal aggregate bandwidth
across swarms in each interval.

presence of churn. In both experiments, three cache servers ini-
tially provide content to two identical swarms s; and sz, each with
50 peers. Again, peers have asymmetric upload and download
links drawn from the same measured BitTorrent distribution. Due
to symmetry, both swarms receive an even split of the servers’
bandwidth and achieve equal aggregate bandwidth (Figure 15). At
3000 seconds, identical swarms s3, s4, and s5 simultaneously join.
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The cache servers adjust their allocations to maintain proportional
swarm aggregate bandwidths by slightly sacrificing the aggregate
bandwidths of s1 and s2 to bootstrap the new swarms. The caches’
bandwidth is too small to saturate peers’ upload capacities across
the five swarms, but V-Formation manages to converge on equal ag-
gregate bandwidths despite limited cache bandwidth. At 6000 sec-
onds, all peers in s; and sz leave simultaneously; the remaining
swarms each achieve an equal increase in aggregate bandwidth. V-
Formation adapts within five minutes to dramatic changes in swarm
memberships by choosing an appropriate block propagation time
measurement interval 7 that enables hosts to efficiently detect the
swarms that benefit most from their bandwidth (Figure 16). Cache
servers continuously shift their allocations based on changing CPM
values, and swarms dampen the effect that the fluctuating alloca-
tions have on the swarms’ aggregate bandwidths.

7. RELATED WORK

Past work on content distribution falls into two categories: con-
tent distribution networks in general and peer-to-peer swarming
systems in particular.

Content distribution networks leverage distributed hosts to al-
leviate load at content origin servers and to improve latency and
bandwidth performance for clients. Akamai [18] is an infrastructure-
based CDN that many content providers use to distribute their con-
tent. ECHOS [20] proposes introducing infrastructure at the Inter-
net’s periphery to cache content near clients. Choffnes et al. [11]
reduce cross-ISP traffic in peer-to-peer systems by harvesting data
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Figure 16: Time measurement interval and churn. Swarm
memberships change drastically at the two vertical dashed lines.
A measurement time interval 7 that is too large or too small results
in suboptimal performance. V-Formation chooses 7 to maximize
aggregate bandwidth.

from existing CDNs for locality information. Numerous CDNs
rely on consistent hashing within distributed hash tables to repli-
cate content for faster downloads and higher availability [14, 38];
in general, cooperative web caching dissipates load at servers [8,15,
17,37]. CoBlitz [26] uses proxies to disseminate content in pieces
and assemble it near downloaders. V-Formation uses the CPM to
make efficient use of bandwidth from all hosts, including server-
class machines that cache content in the network.

Swarming systems leverage bandwidth contributed by peers in a
mesh network for increased scalability and resiliency. BitTorrent [9],
a swarming protocol that contributes to much of the Internet’s traf-
fic [25, 36], encourages peers to contribute their bandwidth us-
ing a bilateral tit-for-tat mechanism. Much prior work has mea-
sured and modeled BitTorrent’s performance and tit-for-tat strat-
egy, showing that it is susceptible to Sybil attacks [12] and is easily
gamed [21,27,34]. New protocols have responded to BitTorrent’s
incentive mechanism that emphasize fairness using cryptographic-
or auction-based mechanisms [24,33,35]. Such protocols encour-
age peers to contribute bandwidth in order to be rewarded with a
proportional or equal number of content blocks. Fairness is not
a primary concern of V-Formation; while some protocols rely on
fairness for incentive compatibility, V-Formation enforces behavior
with its coordinator, freeing it to maximizing system-wide perfor-
mance instead.

Many swarming protocols rely on cryptographic virtual curren-
cies to incentivize peers to contribute bandwidth. Dandelion [35]
and BAR Gossip [22] employ tamper-resistant protocols that en-
sure that peers are honest. Similarly, microcurrencies [10,23,30,39]
rely on cryptographic tokens exchanged between parties to enforce
correct behavior. V-Formation extends the lightweight token proto-
col introduced by Antfarm [32] to incentivize peers to follow the
prescribed protocol and risk being discovered and blacklisted if
they deviate.

One-Hop Reputations [28] and Contracts [29] use propagation
trees of depth one to increase peer accountability in bulk download
and live streaming systems, respectively. The protocols introduce
peer incentivization strategies that outperform BitTorrent’s bilateral
tit-for-tat approach. The CPM is defined by content propagation
trees that measure the benefit of a host to particular swarms.

Freedman et al. [13] propose a protocol that manages downloads
in a multi-file system. Peers use a distributed algorithm to deter-
mine the relative values of content files and the market-based sup-
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ply and demand for content blocks at each peer according to avail-
able network resources. The protocol enables ISPs to set a cost on
transferring data over specific network links. It enables peers to
adjust block prices based on local content demand; V-Formation,
on the other hand, takes a holistic view of the relative contributions
that peers bring to their swarms.

The work most similar to V-Formation is Antfarm [32], a con-
tent distribution system that measures swarms’ responses to seeder
bandwidth in order to optimize its uploads among competing swarms.
Antfarm does not efficiently allocate bandwidth from multiple ori-
gin servers or from in-networking cache servers, which belong to
multiple, overlapping swarms. In contrast, V-Formation accounts
for bandwidth from all hosts based on real-time measurements us-
ing the CPM.

8. CONCLUSIONS

This paper introduced the Content Propagation Metric, which
enables content distribution systems to make efficient use of band-
width from all sources, including content distributors’ origin servers,
in-network caches, and clients. The CPM captures how quickly
content propagates throughout swarms, providing hosts a basis of
comparison that they can use to preferentially upload content to
swarms that exhibit high marginal utility. A new content distribu-
tion system called V-Formation, based on a hybrid, peer-assisted
architecture, uses the CPM to allocate hosts’ bandwidth among
competing swarms. V-Formation achieves a global performance
goal of maximizing system-wide aggregate bandwidth by using the
CPM to guide hosts toward an efficient use of resources. The CPM
naturally handles dynamic swarm and peer behavior, and enables
V-Formation to stabilize quickly on an efficient allocation of band-
width. The flexibility of the CPM makes V-Formation efficient and
scalable, rendering it well-suited to address the increasing demand
for online media content.
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