
Towards an Efficient Online
Causal-Event-Pattern-Matching Framework

Sukanta Pramanik David Taylor Bernard Wong
David R. Cheriton School of Computer Science

University of Waterloo, Waterloo, Canada

Email: {spramanik, dtaylor, bernard}@uwaterloo.ca

Abstract—Event monitoring and logging, that is, recording the
communication events between processes, is a critical component
in many highly reliable distributed systems. The event logs enable
the identification of certain safety-condition violations, such as
race conditions and mutual-exclusion violations, as safety is
generally contingent on processes communicating in a specific
causally ordered pattern. Previous efforts at finding such patterns
have often focused on offline techniques, which are unable to
identify operational problems as they occur. Online monitoring
tools exist but they are often restricted to identifying a specific
violation condition, such as a deadlock or a race condition, using
dedicated data structures. We address the more general problem
of detecting causally related event patterns that can be used to
identify various undesired behaviours in the system.

The main challenge for online pattern matching is the need to
store the partial matches to the pattern, as they may combine with
future events to form a complete match. Unlike pattern matching
in most other domains, causally ordered patterns can span a
potentially unbounded number of events and efficiently searching
through this large collection poses a significant challenge.

In this paper, we introduce OCEP, an efficient online causal-
event-pattern-matching framework that bounds the number of
partial matches it stores by reporting only a representative
subset of pattern matches. We define a subset of matches as
representative if it has at least one occurrence of each event in
the pattern on each process, which is applicable for a large class of
distributed applications. With this definition, OCEP introduces a
backtracking algorithm to efficiently find a representative subset
from the history of events. An evaluation of the framework shows
that OCEP is capable of handling several frequently occurring
violation patterns at the event rates of some representative
distributed applications.

Index Terms—Causal Ordering, Event-Based System, Dis-
tributed System, Distributed System Monitoring.

I. Introduction

Distributed application development has, in the past few

years, seen a significant resurgence due to the popularity of

large-scale Web services that rely on distributed application

backends. These distributed backends are designed to scale

horizontally to utilize the vast quantity of resources available

in modern datacenters. Supporting such large-scale deploy-

ments, however, introduces additional uncertainty and com-

plexity to these distributed applications, which already have

complicated communication patterns to support sophisticated

and demanding Web services. These factors make it incredibly

difficult to reason about the correctness of a modern distributed

application.

One common approach to help with understanding the

runtime behaviour of a distributed application is to track

its execution over time in order to capture its runtime-state

information. The collected information is then used to detect

whether a property is satisfied or violated in the global state.

This approach of global-predicate detection is a well studied

problem and is based on building a lattice of global states [12],

which is known to be NP-complete [29].

The semantics intended by the programmer for an ap-

plication is also closely related to a linearized history of

the system [18]. A linearized history is a finite sequence

of events that consists of either invocation of operations

or responses to operations. Software behaviour can then be

analyzed by monitoring for a pattern of events that represent

some undesired behaviour, such as bugs, misuse, or intrusions.

For example, in a traffic-light system, a correctness condition

is that lights in only one direction may be green in the

global state. Alternatively, this problem can be modeled as

a sequence of events between the lights. An event-matching-

based approach monitors the events ei that denote light i has

turned green and then searches for a pattern that represents

two events ei and e j happening concurrently. A match to

this pattern signifies that the system is in an unsafe state.

Similar patterns can also be used to identify mutual-exclusion

violations in a distributed application even if the actual global

state observed by the system is correct [36].

In this paper, we introduce OCEP, an efficient online frame-

work for matching causal event-patterns. We define an event

as a state transition in the system, often a result of receiving or

sending a message, and a causal event-pattern as a distributed

sequence of causally ordered events representing a complex

interaction in the system. Matching a causal event-pattern

allows us to reason about the correctness of many distributed

systems without requiring the global state.

Although the use of causal event-pattern matching is sig-

nificantly less expensive than tracking the global state, it still

requires storing a substantial amount of intermediate informa-

tion, representing partial pattern matches, to match arbitrary

causal relationships. This affects the runtime performance in

two different ways. Firstly, when monitoring a set of arbitrarily

long-running processes, the amount of memory required to

store the partial matches may also become arbitrarily large.

Secondly, the monitoring algorithm needs to traverse this

large collection of partial matches on each event in order

to extend them to a total match. For these reasons, previous

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.66

568

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.66

481

2013 IEEE 33rd International Conference on Distributed Computing Systems

1063-6927/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDCS.2013.66

481

attempts [31, 41] at causal event-pattern matching are targeted

at post-mortem analysis. Although post-mortem analysis is a

valuable tool in identifying system problems, it does not help

service providers resolve operational problems as they occur.

The ability to diagnose problems in a distributed application

in realtime can significantly help in reducing the impact of

problems on the service providers.

One possible approach to providing online causal event-

matching is to maintain a time-based sliding window and

discard the partial matches that lie outside the window [3, 15].

While this is a simple and effective solution in some cases,

there are applications, such as intrusion and anomaly detection,

that require event-patterns that span a long interval.

An alternative approach is to restrict the pattern-matching

queries to limit the search space. For example, there are exist-

ing tools that focus on Select-Project-Join (SPJ) queries, also

known as conjunctive queries with arithmetic comparisons [5],

which are sufficient for applications that only require reporting

the existence of matches. These queries are not sufficiently

expressive to determine the participating processes in the

query results. Therefore, for applications, such as intrusion-

detection systems, that require such information, an additional

post-mortem tool is necessary to determine the participating

processes.

In contrast, OCEP does not restrict the matching time

interval or event-pattern, but instead provides a representa-
tive subset of matches for a given causal event-pattern. A

representative subset includes each event in the pattern that

has occurred anywhere in the system, if such an event exists,

and is part of an event-pattern match. By limiting the number

of matches, OCEP can perform online event-pattern matching

while retaining only a bounded number of partial matches.

More importantly, finding a representative subset is sufficient

for a large class of applications. We illustrate this using some

of the key concurrency-bug patterns in distributed systems

such as deadlock, race condition, atomicity violation, and

ordering bug. We show through simulations that OCEP can

efficiently perform causal event-pattern matching on these

sample patterns; OCEP requires less than 1 ms to detect a

safety violation in most of the test cases.

The rest of this paper is organized as follows. We begin

in Section II by reviewing related work. Section III provides

our framework for causality in partial-order event data in

distributed systems. Section IV details our causal-pattern-

matching algorithm. Section V reports our experimental results

and we conclude in Section VI.

II. RelatedWork

A distributed application can be modeled as a set of

unbounded data streams that are constantly generating new

events. While a typical database query searches for a set of

correlated data that have equivalence between values in one or

more columns, in event-based pattern search the correlation is

based on precedence relationships between events or sets of

events. The conventional wisdom for stream query processing

has been to restrict the pattern-matching queries so as to handle

only conjunctive queries with arithmetic comparisons [5].

Another approach is to constrain the search space by using

a sliding window and report only the matches that fall within

it [3]. We address the problem of finding the constituent events

that match a pattern limiting only the number of matches that

are reported.

Dynamic analysis of program behaviour through instru-

mentation is also a well studied field. Often it is focused

on identifying specific concurrency errors, e.g., to detect

deadlocks [2], data races [35], message races [32], or atomicity

violations [40]. We address the problem of detecting causally

related event patterns that are more generic in nature and can

be used to match various undesired behaviours in a system.

There is a large collection of literature that focuses on

post-mortem analysis by parsing the logs of instrumented

events [7, 31, 34, 41] or passively monitored communica-

tion [4]. We see our work as a complementary tool that can

be used alongside post-mortem analysis tools like log-based

or replay-based analysis. A user may identify a runtime safety

violation using our tool and then restrict offline analysis, for

in-depth checking, to particular traces that are involved.

There also exist replay-based tools for checking runtime

properties by replaying the instances of a distributed sys-

tem [17, 24]. The benefit of these approaches is their ability to

deterministically replay the previous execution and reproduce

a bug. Unfortunately, saving and replaying an entire execution

of a large system is prohibitively expensive. Also replay-based

debuggers are not constrained to react in a timely manner, as

an online monitor needs to.

D3S [25] and P2 [37] allow developers to specify predicates

on distributed properties of a deployed system. Both of them

use temporal causality which may sometimes indicate a po-

tential ordering relationship when none is present. Our work

is built using vector clocks that accurately encode potential

causality between events [10].

III. Event-BasedMonitoring

We model our distributed system as a finite set of n
sequential processes P1, P2, . . . , Pn communicating only by

message passing. The processes do not share memory and

furthermore there is no global clock or perfectly synchronized

local clocks. Each process executes a local algorithm that

controls its behaviour by changing its local state and sending

messages to the other processes. The occurrences of these

actions performed by the local algorithm are called events.

The coordinated execution of all these local algorithms running

concurrently is what we call a distributed computation.

An online monitoring system is a set of processes that

dynamically collects information about an application and an-

alyzes it in some meaningful way as that application executes.

For a proper understanding of the application, it is essential

to determine the causal relationship between the events that

occur during its execution.

Monitoring a distributed computation often involves check-

ing whether a certain property holds at a certain instant. This

requires detecting the global state of the system which is

569482482

defined as a collection of the local states of all processes

at that particular instant. As each process Pi is sequential,

the events that occur on a single process are totally ordered.

Since there is no shared clock, we can only observe a partial

order between events that occur on different processes [22].

Distributed systems thus have an inherent nondeterminism,

because a set of concurrent or causally independent events

may occur in any order, possibly yielding different results

in each case [36]. Detecting a global predicate thus involves

maintaining an n-dimensional state lattice [12] or progressively

tracking for consistent global checkpoints [6].

In contrast, we focus on the events which represent transi-

tion of states. If the correct order in which the events should

occur within a system can be specified by a predicate, then

detecting the violation of this relative causal order would also

signify that the resulting system state is incorrect. Our work

focuses on developing an online search facility that, given a

causal pattern of events, returns information to the user when

an interaction is found that matches the specified pattern.

A. Specifying an Event

An event is an activity of interest in the target application.

It is the smallest building block and as such is also called a

primitive event. We specify a class of events in our pattern

language as a 3-tuple:

class–id := [process, type, text]

Classes are assigned ids which are later used to form

compound events. The attributes can be specified by providing

the process on which the event occurs, the type of the event,

and a text field. These attributes can be specified for an exact

match, left empty as a wild-card or used as a variable to

enforce equality comparison in an operator.

Our algorithm is built on top of an existing tool, POET

(Section V-A), which monitors instrumented events from a

target system and can send them to a client as a linearization

of the partial order. POET stores the events grouped by

trace, where a trace is equivalent to any relevant entity with

sequential behaviour, such as a process or a thread, but may

include passive entities such as an object or a communication

channel.

In order to determine the causal relationship between two

events we use vector timestamps [14, 28]. Given two events

a (on Pi) and b (on Pj) and their timestamps Va and Vb, we

can check whether a happens before b or b happens before a
with at most two integer comparisons.

a → b ⇐⇒ Va[i] < Vb[i]

If neither a → b nor b → a holds, two more integer

comparisons between process numbers and event numbers are

needed to distinguish between equality and concurrency.

B. Specifying a Pattern

Event classes are used with operators and connectors to

build a pattern representing a compound event, which is a

non-empty set of causally related primitive events. In the rest

of the paper we have used uppercase letters for classes of

events specified in the pattern and lowercase letters for specific

occurrences of matches to an event class. A compound event

is represented by uppercase letters in boldface. For example, a

compound event M can be written as a pattern A → B and can

be used to find pairs a, b where a matches the specification

of event class A, b matches the specification of event class

B, and a → b. Figure 1 lists all the operators in our pattern

language. In the figure, a and a′ match event class A and b
matches event class B.

Operator Meaning

A → B Event a happens before event b
A‖B Event a is concurrent with event b
A.B a and b are partner events in a

point-to-point communication

A
lim−−→ B a happens before b and �a′ : a → a′ ∧ a′ → b

Fig. 1: Causality Operators for Patterns.

The causality relationship between compound events is

defined by the causal relations between their constituent

primitive events. This leads to the definition of strong and

weak precedence of compound events, first defined by Lamport

[23]. For any compound events A and B, strong precedence

is defined as,

A � B ⇐⇒ ∀a ∈ A,∀b ∈ B : a → b

A causality framework with strong precedence and concur-

rency leaves out a large number of pairs of compound events

which have some primitive events in one preceding some

primitive events in the other [8]. This observation inspires

another definition of causality among compound events. For

any compound events A and B, weak precedence is defined

as,

A → B ⇐⇒ ∃a ∈ A,∃b ∈ B : a → b

Weak precedence allows the natural definition of concur-

rency: two compound events are concurrent if and only if

they are unrelated by precedence. Unfortunately, weak prece-

dence contradicts the partial-order properties because it is

possible that, when it is used, a compound event happens

simultaneously before and after another primitive or compound

event. Nichols argued that the causality framework needs to

be extended to fully classify all possible pairs of compound

events [31]. For any compound events A and B,

A overlaps B ⇐⇒ A ∩ B � φ
A is disjoint from B ⇐⇒ A ∩ B = φ

A crosses B ⇐⇒ (∃a0, a1 ∈ A,∃b0, b1 ∈ B : a0 → b0

∧ b1 → a1) ∧ (A is disjoint from B)

These three definitions can be used to define a new operator

(↔) to recognize entanglement of two compound events and

to modify the definitions of precedence and concurrence.

570483483

A ↔ B ⇐⇒ A crosses B ∨ A overlaps B (1)

A → B ⇐⇒ (∃a ∈ A,∃b ∈ B : a → b) ∧ A � B (2)

A‖B ⇐⇒ ∀a ∈ A,∀b ∈ B : a‖b (3)

With the inclusion of entanglement (↔), given any two event

sets, A and B, their relationships can be described by exactly

one of the four relationships: A → B, B → A, A‖B or A ↔ B.

We use the framework proposed by Nichols and in this work

precedence and concurrence are defined by (2) and (3) above.

C. Variable Binding

If we build a pattern such as A → B ∧ A → C, the pattern

does not specify that the two occurrences of event-class A
need to match the same event a. Thus it can happen that the

matcher returns two events a1 and a2 that separately match

the two constraints. We can use variables in the pattern to

specify that once a matched event is bound to a variable, the

same matched event must match at all the occurrences of that

variable in the pattern.

class-A $A;
pattern := $A → B ∧ $A → C;

For the above pattern, $A defines a variable of class–A and

once bound to a matching event a, it remains the same for the

rest of the pattern.

D. Motivating example

Ordering bug refers to the situation where the desired

ordering between groups of events is violated. This violation

of order is known to be the one common concurrency bug

that is not addressed by existing debuggers [27]. One example

of this type of bug is bug#962 [1] of ZooKeeper [19].

Zookeeper is a coordination service for distributed processes

that achieves high availability through replication. It uses an

active-replication technique where a follower sends synchro-

nization requests to the leader for a snapshot of the system.

When a restarting follower sent a synch request to the leader,

the leader was not blocked from making an update after it

took a snapshot of the system. Thus a restarting follower could

occasionally receive inconsistent service-data from the leader.

A pattern definition consists of class definitions, declaration

of variables (if any), and then the pattern itself.

Synch := [$1, Synch_Leader, $2];
Snapshot := [$2, Take_Snapshot, ‘’];
Update := [$2, Make_Update, ‘’];
Forward := [$2, Take_Snapshot, $1];
Snapshot $Diff;
Update $Write;
pattern := (Synch → $Diff) ∧ ($Diff → $Write)

∧ ($Write → Forward);

The pattern above tries to detect a situation when a snapshot

taken on a synch request is followed by an update before it gets

forwarded to the follower. The variable-binding for the events

ensures the proper causal order. It also shows how variables

can be used inside the class definition for better precision. The

text field can be used for various purpose and this particular

pattern is using it to encode the corresponding trace for a

particular Synch/Forward pair.

IV. Online Event-PatternMonitoring

We use a tree-based mechanism because a tree closely

matches the causality structure specified in a pattern.

A. Pattern Tree

The specified pattern is first parsed to create a pattern tree
as shown in Figure 2. The leaf nodes represent the primitive

events in the pattern and the internal nodes represent the

compound-event expressions.

P := (A → B) ‖ (C → D)

Pattern Tree

‖

→ →

A B C D

Event Attributes

Type

Order

History

Event History

Fig. 2: The Structure of the Pattern Tree

Each leaf node has three main attributes:

• Type specifies the event class for the primitive event.

• Order defines the order of evaluation.

• History is the list of matched primitive events grouped

by traces.

Every time POET reports an event that matches a leaf node

of the pattern tree, it is added to the corresponding leaf node’s

history of events. This history is grouped by traces and is

totally ordered for each individual trace. The OCEP algorithm

is then triggered, which tries to build a complete match at

the root in a bottom-up fashion. It uses backtracking and the

iterative stages for each leaf node are stored in order. Thus

the runtime of the matching algorithm is only affected by the

events that are actually in the pattern, not by all the events

that are being monitored.

B. Specifying a Representative Subset

Event-pattern search executes on a set of potentially un-

bounded processes and thus the amount of memory required

to report all possible matches may also grow without bound.

We also have to report these matches in a timely manner to

provide an effective online monitor.

In Section II we discussed existing approaches to tackle this

by limiting the pattern’s expressiveness or its event-domain.

A restricted pattern with aggregate operators (e.g. average,

count, maximum, etc.) can provide valuable information but it

only provides a summarized view of the system. If a system

requirement can be specified as a pattern of events, finding the

specific set of events that violates this pattern and where they

occur provides further insight into the behaviour of the system.

On the other hand, the sliding-window-based approaches that

571484484

restrict the event-domain are susceptible to omission problems

as when no matches are found it can also be because a match

spans multiple windows.

Our approach is to report a representative subset of all

matches that spans the entire execution time. A good repre-

sentative subset should provide the most information about

the matches to the pattern. Each event in a pattern is an

instrumented activity of interest occurring on a process. So

it is plausible to assume that it is important for the user to

know if such an event has occurred anywhere in the system.

A representative subset should also be low in redundancy, so

we can exclude multiple occurrences of similar events on the

same process. Considering these two objectives, we propose

c11 d12 a13 a14 a15 c17

a21 d22 e23 b25

d31 e32 a33 a34

All: a13b25, a14b25, a15b25, a21b25

Window: a13b25, a14b25, a15b25

Desired: a15b25, a21b25 (not unique)

Fig. 3: Choosing a Representative Subset for A → B

a subset that has at least one occurrence per process for each
primitive event class. Figure 3 shows a simple process-time

diagram where the dotted vertical line is the current cut. On

arrival of the new event b, there are four matches for the

pattern A → B.

Figure 3 also shows a sliding window and the set of matches

that it will report. We chose the window to have n2 events

where n is the number of processes. If we look at the reported

matches, it fails to return a match that involves an event

a on P2 (a21b25). Thus the returned subset is not a proper

representative of the set of all matches. Considering the pattern

as a safety condition, the action that we take based on the

returned subset will be incomplete as it misses the matches

that span beyond the maintained window.

Our representative subset will report if any of the constituent

events in the pattern has occurred on any of the processes and

is part of a complete match. Thus if there is only one match,

it will definitely be reported. If there are many matches, it can

be proved that there exists a subset according to our definition

that has cardinality of at most kn. Here k is the number of

events in the pattern and n is the number of processes.

C. OCEP Algorithm

OCEP uses backtracking to find the subset of matches to

the pattern, as shown in Algorithm 1. We start with the newly

matched event as our initial assignment (e1). At every stage of

backtracking, the algorithm tries to extend the partial match

by finding a match to the event ei (goForward) so that it is

causally related to the existing assignment (e1, e2, . . . , ei−1) as

specified by the pattern. If a complete match is found with

an event ei on trace t or there is no unexplored match on it,

the algorithm continues with matches for ei on trace t + 1. If

there is no unexplored match on any of the traces the algorithm

backtracks (goBackward). The variable consistent controls the

direction of backtracking by keeping track of the return value

from the two traversal functions.

Algorithm 1 OCEP Algorithm

Precondition: M is a partial match of length one: {e1}
1: level ← 2 � level is updated inside called functions

2: consistent ← true
3: while level ! = 1 do
4: if consistent then
5: consistent ← goForward(M, level)
6: else
7: consistent ← goBackward(M, level)
8: if M is a complete match then
9: updateSubset(M)

A very basic implementation of goForward can use chrono-

logical backtracking, which will start with the latest match on

a trace and chronologically go back in time. That is not very

efficient in practice as it explores the entire search space until

a solution is found or a conflict is reached.
When dealing with a causal pattern, given a partial match

(e1, e2, . . . , ei−1), it is possible to use the causality relationship

of the instantiated events to restrict the domain of event ei on

any trace. The greatest predecessor (GP) of an event a on a

trace t is the most-recent event e on that trace that happens

before a. An interesting property of GP(a, t) is that it shows

in which parts of the process t an event b can occur so as to

happen before a. The least successor (LS) of an event a on

a trace t is the least-recent event e on that trace that happens

after a. LS (a, t) shows in which portion of the process t an

event b can occur so as to happen after a. When used together,

GP(a, t) and LS (a, t) can also identify the portions with which

a is concurrent.
Suppose we are trying to instantiate the event ei on trace l

that is concurrent with event e on trace m, which is already

instantiated. The earliest event on trace l that can be concurrent

with e is the event that happens immediately after its GP on

trace l. The latest concurrent event is the event that occurs

immediately before its LS on trace l. Thus the domain of ei

on l that can extend the partial match with respect to e is

given by (GP(e, l), LS (e, l)). The open interval denotes that

the GP and LS themselves are not included in the domain.

We summarize how we restrict the domain for all relations in

Figure 4.

Causality Domain

e ‖ ei (GP(e, l), LS (e, l))
e → ei [LS (e, l),∞)

ei → e (−∞,GP(e, l)]

Fig. 4: Restricting Domain of ei with Respect to e

572485485

This technique is similar to the forward checking algorithm,

which uses the instantiated variables to restrict the domains of

all future variables [33]. In contrast, we are restricting only

the domain of the variable that is currently being instantiated.

Algorithm 2 Forward Algorithm

Precondition: M is a partial match of length i − 1, i is the

backtracking level, and n is the total number of traces.

1: function goForward(M, i)
2: if Di is not initialized then
3: while tracei < n do
4: for prev ← 1 . . . i − 1 do
5: Di ← restrictDomain(Mprev, tracei)

6: if Di == ε then
7: bt[prev][i] ← getTS(Mprev, tracei)

8: break
9: tracei ← tracei + 1

10: if Di ! = ε then
11: Mi ← nextMatch(Di, tracei)

12: i ← i + 1

13: return true

14: else
15: return false

The pseudo-code for the function goForward, which instan-

tiates an event in each backtracking level, is given in Algo-

rithm 2. The variable i is the passed backtracking level. The

variables tracei and Di store the trace that is currently being

traversed and the domain of matched events on it. The function

starts by initializing the domain Di by restricting it using the

already instantiated events (a summary of restrictDomain is

given in Figure 4). If a conflict is found, i.e., a previously

instantiated event constrains Di to empty, getTS determines

the desired timestamp for the event at the previous level that

can possibly resolve this conflict.

After all the traces are tried, it returns to goBackward,

which uses the recorded timestamps in bt to backtrack to the

closest event that can resolve one of the conflicts. A simple

backtrack to the previous event would have caused repeated

failure from the same conflicting event.

Suppose ei has an empty domain on trace m with respect

to the instantiated event e2 on trace l. The vector timestamps

of the conflicting events can then be used for updating the

domain at the earlier level during backtracking. This is done

in the function getTS and we illustrate its operation in Figure 5

for each of the causal relations. For simplicity we have shown

a truncated process-time diagram and fragmented vector time-

stamps that only show entries for the relevant traces.

If we are looking for e2 → ei, then the conflict happens

because LS(e2,m), if it exists, happens after the latest ei on

m, Figure 5(a). The l-th entry in the vector timestamp of ei

(tl
i) indicates GP(ei, l). Any matched e2 that happens after the

GP(ei, l) will again lead us to the same conflict. So tl
i is stored

for later use and during backtracking, updateDomain uses this

to restrict e2’s domain to (−∞,GP(ei, l)].
If the conflict is for ei → e2, GP(e2,m) happens before

l

.
.
.

m

e2[. . . , tl
2
, . . . , tm

2
, . . .]

ei[. . . , tl
i, . . . , t

m
i , . . .]

(a)

l

.
.
.

m

e2[. . . , tl
2
, . . . , tm

2
, . . .]

ei[. . . , tl
i, . . . , t

m
i , . . .]

(b)

2

1

l

.
.
.

m

e2[. . . , tl
2
, . . . , tm

2
, . . .]

e′i[. . . , t
l
i, . . . , t

m
i , . . .]

ei

(c)

Fig. 5: Using Causality to Update Domain when Backtracking:

a) Precedence, b) Follow, c) Concurrency

the earliest ei on m, Figure 5(b). Thus we can prune all the

matches for e2 on l as none of them will be able to create a

complete match.
When we have a conflict for e2‖ei, Figure 5(c), all the

matches for ei on m either happen after e2 or happen before it.

So e2 cannot create a complete match with an ei on trace m but

an earlier e′2 on trace l may still create one. Then the domain

of ei on m that can be of possible interest is (−∞,GP(e2,m)).

We can use tm
2

to find GP(e2,m), say e′i . The backtracked level

then needs to restrict e2’s domain to (−∞, LS (e′i , l)) and we

can use tm
i to find LS(e′i , l).

Algorithm 3 Backward Algorithm

Precondition: M is a partial match of length i−1 and i is the

backtracking level

1: function goBackward(M, i)
2: jumpTS ← getClosest(i, bt[i])
3: if JumpTS exists then
4: Di ← updateDomain(i, jumpTS)

5: else
6: i ← i − 1

7: return true

The pseudo-code for the function goBackward is given in

Algorithm 3. It first tries to determine if any conflict with

the uninstantiated events is recorded for the instantiated event

at this level. If any exists, it finds the one that will make it

backtrack to the latest match in the current domain. It extracts

the required timestamp and uses it to restrict its domain. If no

conflict was found, it simply backtracks to the previous level.

573486486

V. Performance Evaluation

A. Partial-Order Event Tracer

This work is built on top of the various techniques and

algorithms in an existing tool, the Partial-Order Event Tracer

(POET) [21]. POET itself is a distributed application that

allows a user to instrument a distributed application and collect

information about it. It is target-system independent as it

can collect data from a wide variety of execution (target)

environments with a minimum amount of effort [39].

The core information stored by POET is a set of events

grouped by traces and the partial-order relationships among

those events. The occurrence of a POET event indicates that

one of a predefined set of important actions has occurred in the

monitored application. This set of important actions is entirely

dependent on the target environment being used.

A client can connect to the POET server in a way that it

receives the arriving events in a linearization of the partial

order of the events. A linearization of a partial order → on a

set X is a sequence containing each element of X once such

that any x occurs before x′ whenever x → x′. Our monitor

application connects to POET as one such client and tries to

detect the specified pattern as the events appear.

B. Evaluation Methodology

We evaluate the effectiveness of OCEP using some repre-

sentative bug patterns that we have chosen from the existing

literature [13, 27]. These test patterns were run on event data

collected from μC++ and MPI environments. μC++ [11] ex-

tends C++ with additional constructs to incorporate concurrent

programming. MPI [38] is a widely used library for writing

parallel applications.

Each test case is executed until the number of events

generated exceeds one million. We used the dump feature in

POET to save the collected trace-event data in a file. The

reload feature in POET allows us to reuse this file with the

saved events passed to POET via the same interface used to

collect events from a running application. OCEP connects

to POET as a client in order to receive the events in a

linearization of the partial order.

All measurements are performed on a workstation with an

Intel Core 2 Duo 2GHz CPU and 2GB memory running Linux

kernel 3.0.0. OCEP is executed with each set of trace-event

data five times and the average is used for the evaluation.

The main performance metric that we used for our evalua-

tion is the execution time, which is measured as the wall clock

time taken by the monitor to find the set of matches on arrival

of an event. The events can be divided into three categories

depending on a given pattern: i) events that do not match the

pattern, ii) events that match the pattern but will not generate

a complete match, and iii) events that can possibly generate

a complete match, which we call terminating events. For the

pattern A → B, only a newly arrived b is a terminating event

as it can generate a complete match if a causally related a
is already found. In contrast, for the pattern A‖B, any newly

arrived a or b is a terminating event.

C. Case Studies

We use boxplots to show the measured execution time

taken for each of our case studies in Figures 6-9. The centre

rectangle spans the inter quartile range (IQR), which is the

likely range of variation, with the inner segment representing

the median. The whisker marks are placed 1.5 × IQR above

the third quartile and below the first quartile, while the crosses

mark the outliers.

1) Deadlock: In MPI, when a process executes a blocking

point-to-point communication, it does not return until it is

complete and the buffer can be reused. So an application

can deadlock if there exists a send-receive cycle due to

incorrect usage of the communication routine. A commonly

used method for detecting such a deadlock is to build a

dependency graph and check for cycles [2]. Event patterns are

not able to detect a generic cycle as opposed to a dependency

graph, but they can be used to identify a deadlock of specific

length.

We simulate deadlock using a parallel algorithm for random
walk which has many applications in statistical and scientific

computation. It divides a domain among the parallel processes

and each process has a number of walkers traversing a

contiguous sub-domain. The processes communicate among

themselves to exchange the walkers that move across process

boundaries. We deliberately leave a deadlock in the code for

this point-to-point communication. Interestingly enough, this

deadlock is rarely visible as MPI_Send, although a blocking

operation, only gets blocked when the network cannot buffer

the message completely [38].

10 20 50

Number of Traces

0

1000

2000

3000

T
im

e
 (

m
ic

ro
s
e
c
o
n
d
)

Fig. 6: Execution Time for Deadlock

Figure 6 shows that our algorithm is still exponential in

terms of the length of the pattern, which is expected since

we are using a backtracking algorithm. The efficiency of our

backtracking algorithm depends on its ability to prune the

domain for an event on a trace based on its causality relation

with the other events. As we explained in Figure 5, we used

vector timestamps of the causally related events to constrain

the searched domain. In contrast, building and maintaining a

dependency graph is costly, which is apparent from the runtime

of 35 seconds to detect a cycle of length 30 [2].

2) Message Race: When two or more concurrent messages

are sent to the same process they may arrive in a random order,

causing nondeterministic execution of a parallel program. This

may lead to sporadically occurring errors that are difficult to

reproduce. Even when a message race happens by design, it

574487487

is critical to detect it for debugging in order to ensure that all

possible executions of a program are examined [20].

A common method for detecting message races is to keep

track of the receive events on a trace and compare their vector

timestamps for causality [30]. If any two incoming messages

to a process are concurrent then the two messages race. A

causal-event-pattern can express this pattern, which we use to

express message races.

We use a benchmark program in which all processes but

one concurrently send message to the remaining process

while the latter accepts them using a blocking receive with

MPI_ANY_SOURCE wild-card.

10 20 50

Number of Traces

0

50

100

150

T
im

e
 (

m
ic

ro
s
e
c
o
n
d
)

Fig. 7: Execution Time for Message Races

Existing methods for detecting message races pass the

vector timestamp among the processes by attaching them to

messages [32]. OCEP receives a vector timestamp constructed

in POET, not in the application, so there is minimal extra

overhead on the application itself.

3) Atomicity Violation: An atomic code segment is pro-

tected in the sense that when a process executes the first

event in the segment, no other process can start executing the

segment before the first process executes the last event. The

approaches for detecting an atomicity violation rely on finding

unserializable patterns of operations by searching the events

that are related to shared-variable access and synchronization

primitives [40]. Our approach is similar in the sense that we

search for a causal pattern among these same events, but we

also monitor the synchronization primitives as separate traces,

which allows us to represent an atomicity violation as a causal

pattern.

10 20 50

Number of Traces

0

50

100

150

T
im

e
 (

m
ic

ro
s
e
c
o
n
d
)

Fig. 8: Execution Time for Atomicity Violation

We demonstrate this with a μC++ program that has a

method protected by a semaphore so that there is never more

than one thread executing it. There is an intentional bug for

which, when a thread attempts to execute the method, the

semaphore will not be acquired properly with 1% probability.

Existing approaches often build a conflict graph with the

monitored events and synchronization primitives, which has

previously taken 0.4-40 seconds for detecting similar viola-

tion [40].

We chose the μC++ environment as a POET plugin for

μC++ already adds semaphores as separate traces. It is pos-

sible to add different semaphore implementation, such as a

pthreads semaphore, which will require additional plugins.

4) Undesired Order: Studies have found that most non-

deadlock concurrency bugs in real-world applications be-

long to one of two categories: atomicity-violation and order-

violation [27]. Existing concurrency-bug detection tools do

not address bugs that are manifested by the violation of order

implied by the developer.

There are various ways to analyze the expected behaviour

of a system. A developer can represent the violation of

intended ordering with a causally-related pattern of events.

Large software systems often use software classification tools

to identify repetitive patterns of events from program execution

traces [26]. Over the last decade, design patterns have become

one of the most powerful tools in designing large software

systems [16]. Design patterns are reusable software modules

for recurring problems and both formal [9] and informal [16]

specifications exist defining precise semantics.

50 100 500

Number of Traces

0

50

100

150

T
im

e
 (

m
ic

ro
s
e
c
o
n
d
)

Fig. 9: Execution Time for Ordering Bug

We use the ordering-bug pattern shown in Section III-D

that has a leader-and-follower coherence issue. We simulate

a distributed application that handles a replicated service. We

left a deliberate bug in the synchronization procedure so that

there is a 1% chance that a leader may make an update after

it takes a snapshot of the system and then it will forward this

stale snapshot to the synchronizing follower.

D. Results and Discussion

The strength of our event monitor lies in its ability to detect

the occurrences of a pattern that will include each trace that has

a constituent event matching to it. This makes it an excellent

tool for identifying safety conditions in a system. The outliers

in the boxplots for test cases show that in order to identify

such a subset we occasionally have to traverse a large section

of the process-time diagram. We limited the number of outliers

shown in Figures 6-9 so that the IQR and whisker marks are

clearly shown. We summarize the quartiles, top whisker, and

the maximum time taken by an event in the Figure 10.

575488488

Test Case Q1 Med Q3 Top Whisker Max

Deadlock 1712 1805 1888 2153 14931

Races 49 69 76 117 10830

Atomicity 42 45 51 65 6819

Ordering 119 121 124 132 7668

Fig. 10: Detailed Runtime for Test Cases (μsecond)

The second performance metric that we used is complete-

ness. Since we used known violation cases in simulated

applications, we also knew all such occurrences. Our OCEP

algorithm is complete as it correctly reported all violations for

the test cases. OCEP also did not report any false positives for

any of the test cases.

The major question that we wanted to answer in our

simulation was whether our algorithm is efficient enough to

provide fast detection of violation patterns with low overhead

in realistic application settings.

We demonstrated this by choosing some of the prevalent

concurrency bug patterns in real-world applications. We find

that OCEP is able to find a match to most of the tested

violation patterns in less than one millisecond. The only test

case where the whisker marks are above this limit is when we

are searching for a long deadlock cycle. We could not evaluate

the existing graph-based approaches as their implementations

are not publicly available. As shown in Section V-C, OCEP

runs orders of magnitude faster to detect similar violation com-

pared to previously published results. Additionally, we support

generic patterns which are able to detect various undesired

behaviours as opposed to detecting a specific violation.

Survey results often show that most concurrency bugs

involve only a small number of processes [27]. We use

variable binding for both an event and its attributes inside

the class definition to clearly specify the relationship among

the constituent events in the pattern. For example, a complete

match of the ordering bug in Section III-D only involves

the leader and the follower. Figure 9 shows almost a linear

increase in runtime with the number of traces. This signifies

that our algorithm was effectively able to isolate the relevant

traces from the pattern specification. So OCEP can provide

fast detection for a range of violation patterns when the pattern

involves a moderate number of traces.

That leaves us the question of the overhead. In this work

we used a very simple approach of discarding multiple occur-

rences of the same event on a trace which have no send or

receive events between them. As we are dealing with potential

causality, how an event is causally related to the other events

is only affected by the messages. So two events which do

not have any send or receive events between them have the

same causal relation with events on other traces. This approach

is computationally simpler, O(1), but does not guarantee a

minimal subset size. In the worst case it will store all the events

since the start-up. So OCEP is not scalable to an arbitrarily

large number of long-running processes. The main challenge

in maintaining a minimal overhead is that there are cases in

which it is always possible to extend a partial match with

future events. Comparison of timestamps can help but each

such operation is O(n) and hence prohibitively expensive. We

think a technique that exploits the causality present in the

pattern can work better in this situation rather than a general

solution. We leave this for future work.

Finally, the detection of violation with OCEP requires

knowledge of the causality structure among the monitored

events that represents an undesired behaviour. An unexpected

behaviour with a different causality structure may remain

undetected although it has the same effect on the global

property.

VI. Conclusion

Online detection of causal-event-patterns is a complex prob-

lem, particularly for long-running applications. In this paper,

we introduced OCEP, an efficient online causal-event-pattern-

matching framework that can be used to identify safety-

condition violations in distributed applications. On arrival of

each event, OCEP returns a representative subset of matches

that spans the entire execution time. It uses vector timestamps

and the causality relation among the events in the pattern to

efficiently prune the search space.

We evaluated our approach with some of the most frequently

found concurrency bug patterns. OCEP successfully finds

all occurrences of the pattern in each application within a

millisecond in almost all cases. This is the first available online

tool that detects safety violations using generic causally related

sets of events that represents event-patterns.

Our work can be extended by exploring the possibility of

pruning events from the event history that can no longer

generate new matches for the subset. A future plugin for

POET, which will allow a client to retrieve the timestamp

values of any previously matched event in constant time, can

also be used to restrict the size of the event history maintained

at the monitor. Also, at each backtracking level, the traces are

traversed sequentially. Each of these traces represents a subtree

in the total search space. This parallelism can be exploited to

improve the performance of the algorithm.

References

[1] “ZooKeeper bug# 962,” https://issues.apache.org/jira/

browse/ZOOKEEPER-962, accessed: 10/10/2012.

[2] R. Agarwal, L. Wang, and S. D. Stoller, “Detecting

potential deadlocks with static analysis and run-time

monitoring,” in HVC, Haifa, Israel, Nov 2005, pp. 191–

207.

[3] J. Agrawal, Y. Diao, D. Gyllstrom, and N. Immerman,

“Efficient pattern matching over event streams,” in SIG-
MOD, Vancouver, BC, Jun 2008, pp. 147–160.

[4] M. K. Aguilera, J. C. Mogul et al., “Performance debug-

ging for distributed systems of black boxes,” in SOSP,

Bolton Landing, NY, Oct 2003, pp. 74–89.

[5] A. Arasu, B. Babcock et al., “Characterizing memory

requirements for queries over continuous data streams,”

ACM T. Database Syst., vol. 29, no. 1, pp. 162–194,

2004.

576489489

[6] R. Baldoni, J.-M. Hélary, and M. Raynal, “Rollback-

dependency trackability: A minimal characterization and

its protocol,” Inf. Comput., vol. 165, no. 2, pp. 144–173,

2001.

[7] P. Barham, A. Donnelly, R. Isaacs, and R. Mortier,

“Using Magpie for request extraction and workload mod-

elling,” in OSDI, Seattle, WA, Dec 2004, pp. 259–272.

[8] T. Basten, T. Kunz et al., “Vector time and causality

among abstract events in distributed computations,” Dis-
trib. Comput., vol. 11, pp. 21–39, 1997.

[9] I. Bayley and H. Zhu, “Formal specification of the

variants and behavioural features of design patterns,” J
Syst. Software, vol. 83, no. 2, pp. 209–221, 2010.

[10] K. P. Birman, “Overcoming failures in a distributed

system,” in Reliable Distributed Systems. Springer New

York, 2005, pp. 247–275.

[11] P. A. Buhr, G. Ditchfield et al., “μC++: Concurrency in

the object-oriented language C++,” Softw. Pract. Exper.,
vol. 22, no. 2, pp. 137–172, 1992.

[12] R. Cooper and K. Marzullo, “Consistent detection of

global predicates,” in PADD, May 1991, pp. 167–174.

[13] E. Farchi, Y. Nir, and S. Ur, “Concurrent bug patterns

and how to test them,” in IPDPS, Apr 2003.

[14] C. Fidge, “Logical time in distributed computing sys-

tems,” Computer, vol. 24, no. 8, pp. 28–33, Aug 1991.

[15] M. Fox, “Event-predicate detection in the monitoring of

distributed applications,” Master’s thesis, University of

Waterloo, Waterloo, Ontario, 1998.

[16] E. Gamma, R. Helm, R. Johnson, and J. Vlissides,

Design Patterns: Elements of Reusable Object-Oriented
Software, 1st ed. Addison Wesley, 1995.

[17] D. Geels, G. Altekar et al., “Friday: Global comprehen-

sion for distributed replay,” in NSDI, Cambridge, MA,

Apr 2007, pp. 285–298.

[18] M. P. Herlihy and J. M. Wing, “Linearizability: A cor-

rectness condition for concurrent objects,” ACM T Progr.
Lang. Sys., vol. 12, pp. 463–492, 1990.

[19] P. Hunt, M. Konar, F. Junqueira, and B. Reed,

“Zookeeper: Wait-free coordination for Internet-scale

systems,” in USENIX ATC, Boston, MA, Jun 2010.

[20] D. Kranzlmüller and M. Schulz, “Notes on nondeter-

minism in message passing programs,” in 9th European
PVM/MPI Users’ Group Meeting, Linz, Austria, Sep/Oct

2002, pp. 357–367.

[21] T. Kunz, J. P. Black, D. Taylor, and T. Basten, “POET:

Target-system independent visualizations of complex dis-

tributed application executions,” Comput. J., vol. 40,

no. 8, pp. 499–512, 1997.

[22] L. Lamport, “Time, clocks and the ordering of events in

a distributed system,” Commun. ACM, vol. 21, no. 7, pp.

558–565, Jul 1978.

[23] L. Lamport, “On interprocess communication, part I:

Basic formalism, part II: Algorithms,” Distrib. Comput.,
vol. 1, pp. 77–101, 1986.

[24] K. H. Lee, N. Sumner, X. Zhang, and P. Eugster, “Unified

debugging of distributed systems with Recon,” in ICDSN,

Hong Kong, China, Jun 2011, pp. 85–96.

[25] X. Liu, Z. Guo et al., “D3S: Debugging deployed dis-

tributed systems,” in NSDI, San Francisco, CA, Apr

2008, pp. 423–437.

[26] D. Lo, H. Cheng et al., “Classification of software

behaviors for failure detection: A discriminative pattern

mining approach,” in SIGKDD, Paris, France, Jun/Jul

2009, pp. 557–566.

[27] S. Lu, S. Park, E. Seo, and Y. Zhou, “Learning from mis-

takes: A comprehensive study on real world concurrency

bug characteristics,” in ASPLOS XIII, Seattle, WA, Mar

2008, pp. 329–339.

[28] F. Mattern, “Virtual time and global states of distributed

systems,” in I W Parall. Distrib. Alg., North-Holland /

Elsevier, Dec 1988, pp. 215–226.

[29] N. Mittal and V. K. Garg, “On detecting global predicates

in distributed computations,” in ICDCS, Phoenix, AZ,

Apr 2001.

[30] R. H. B. Netzer and B. P. Miller, “Optimal tracing and re-

play for debugging message-passing parallel programs,”

in Supercomputing, Minneapolis, MN, Nov 1992, pp.

502–511.

[31] M. Nichols, “Efficient pattern search in large, partial-

order data sets,” Ph.D. dissertation, University of Water-

loo, Waterloo, Ontario, 2008.

[32] M.-Y. Park, S. J. Shim, Y.-K. Jun, and H.-R. Park,

“MPIRace-Check: Detection of message races in MPI

programs,” in GPC, May 2007, pp. 322–333.

[33] P. Prosser, “Hybrid algorithms for the constraint satis-

faction problem,” Computat. Intell., vol. 9, no. 3, pp.

268–299, 1993.

[34] P. Reynolds, C. Killian et al., “Pip: Detecting the unex-

pected in distributed systems,” in NSDI, San Jose, CA,

May 2006, pp. 115–128.

[35] S. Savage, M. Burrows et al., “Eraser: A dynamic data

race detector for multithreaded programs,” ACM Trans.
Comput. Syst., vol. 15, no. 4, pp. 391–411, Nov 1997.

[36] R. Schwarz and F. Mattern, “Detecting causal relation-

ships in distributed computations: In search of the holy

grail,” Distrib. Comput., vol. 7, no. 3, pp. 149–174, Mar

1994.

[37] A. Singh, P. M. T. Roscoe, and P. Druschel, “Using

queries for distributed monitoring and forensics,” in

EuroSys, Leuven, Belgium, Apr 2006, pp. 389–402.

[38] M. Snir, J. Dongarra et al., MPI: The Complete Refer-
ence, 2nd ed. The MIT Press, 1998.

[39] D. Taylor, T. Kunz, and J. P. Black, “A tool for debugging

OSF DCE applications,” in COMPSAC, Seoul, Korea,

Aug 1996, pp. 440–446.

[40] L. Wang and S. D. Stoller, “Accurate and efficient

runtime detection of atomicity errors in concurrent pro-

grams,” in PPoPP, New York, NY, Mar 2006, pp. 137–

146.

[41] P. Xie, “Convex-event based offline event-predicate de-

tection,” Master’s thesis, University of Waterloo, Water-

loo, Ontario, 2003.

577490490

