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Abstract
A tremendous amount of data is processed daily in the cloud,

which inevitably introduces large amounts of data transfer

within a datacenter network. Numerous studies have re-

ported that the network is often the performance bottleneck

for cloud applications. While flow scheduling techniques

have been proposed to mitigate this performance problem,

distributed network-aware applications have not received

much attention. The advent of software-defined network-

ing (SDN) enables leveraging flow scheduling to make cloud

applications network-aware, opening up the potential to

improve the performance of these applications.

In this paper, we propose co-designing network and cloud

applications to optimize performance in the presence of data-

center network congestion. In particular, we built a network-

aware distributed database framework which uses network

state information to improve performance. We present two

techniques to reduce transaction completion time for cloud

database applications. First, we apply a novel load balancing

algorithm at the network layer to support intelligent net-

work route selection. Second, we introduce a network-aware

caching algorithm to retrieve fresh data replicas from links in

the network with low congestion. Our experimental results

show that our techniques can significantly reduce average

transaction completion times compared to an ECMP-based

baseline.
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1 Introduction
With the increasing proliferation of big data, companies need

to process terabytes of new data on a daily basis [15]. This

processing of big data usually requires data transfer in the

network. Since big data applications are usually deployed and

run in the cloud, a high volume of data transfers can cause

the datacenter network to become a performance bottleneck.

In addition to big data applications, there are many other

applications deployed in the shared infrastructure inside the

cloud. Many of these applications are response time sensitive,

and numerous studies have shown that delays ofmilliseconds

can have a significant impact on business revenue [21].

However, due to the shared nature of data centers, appli-

cations neither have a global view nor control of resources

when the datacenter network is congested, making it diffi-

cult to deliver good performance. With the network being

a key shared resource, performance optimizations at the

network layer are difficult to design, apply and control for

distributed databases hosted within data centers. In this pa-

per, we propose network-level optimizations to improve the

performance of applications in a shared environment. In

particular, we present a performant prototype system called

NetStore by co-designing a distributed database framework

with network optimizations in a shared cloud environment.

1.1 Problem Overview
Distributed storage systems often shard data across multi-

ple servers to distribute load and increase storage capacity.

Application programmers can perform optimizations based

on data access patterns to achieve performance guarantees.
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However, this is problematic for cloud environments be-

cause cloud networks exhibit on/off behaviours [7]. Net-

work traffic spikes from time to time, which may cause

network links to be saturated and add significant queuing

delays. Cloud providers may overcome this bottleneck by

over-provisioning network bandwidth in the system at the

cost of wasted resources when the network is idle.

When part of the network is congested, our goal is to min-

imize the transaction completion times without sacrificing

throughput. This is complicated by bandwidth constraints

resulting from background traffic. Moreover, since we expect

transactions to complete within a few milliseconds, effective

optimization decisions must be made efficiently. For instance,

for transactions with completion on the order of 10s to 100s

of milliseconds, existing dynamic flow scheduling solutions

such as Hedera [3] may take 10s of milliseconds to set up. Our

target for optimization is a transactional key-value storage

system.

1.2 Contributions
Our techniques leverage network-awareness to provide high

performance transaction processing even in the event of high

network utilization. While transaction traffic is unlikely to

saturate the network, the presence of significant background

traffic can cause poor response times. By co-designing the

database framework and the network manager together, Net-

Store is able to make intelligent routing decisions to avoid

congested paths and ensuing queuing delays. We introduce

two complementary algorithms that use this information

to route distributed transactions around network hotspots.

Another advantage of this co-design is that we do not need to

generate extra network traffic for our algorithms because the

optimization decisions are piggybacked onto lock messages

for transactions. Furthermore, we require no cooperation

with other tenants on the network so our techniques can be

deployed incrementally.

The main contributions of this paper are as follows:

• Least Bottlenecked Path (LBP), a novel load balancing

algorithm that selects the least congested path among

all the shortest paths between a pair of hosts for each

network flow.

• Network-Aware Caching (NAC), a network-aware caching

technique that uses knowledge of network traffic to

cache data away from congested segments of the net-

work

• NetStore, a prototype system which makes use of LBP

and NAC to implement a low-latency transactional

key-value store in the presence of unmanaged back-

ground traffic

2 System Architecture
We explore optimization opportunities in the context of a

key-value storage system that processes transactions issued

by clients in a data center network. We model a data cen-

ter network using one of the most common topologies, the

multi-rooted tree as shown in Figure 1
1
. A pod in the network

consists of a number of interconnected servers and switches.

In Figure 1, there are two pods each consisting of two ag-

gregation switches, four top-of-rack (ToR) switches, or edge

switches, and eight servers. Each ToR switch is connected to

each aggregation switch within its pod and different pods

are connected using links between core and aggregation

switches. Cross-pod communications have to traverse the

core link layer and cross-rack communications must traverse

the aggregation layer. Typical data center network architec-

tureswill have oversubscription
2
at each layer of the network.

For example, in our experiments, we use a network topology

such that the core to aggregation links have an oversubscrip-

tion factor of 2 and the aggregation to edge links have an

oversubscription factor of 4. This gives the network a total

oversubscription factor of 8:1 from core switches to servers.

Our transaction model provides strong consistency us-

ing 2PC and a centralized lock server with data stored in

memory at each server. Each operation within a transac-

tion is required to acquire a lock before execution. Combin-

ing strict two-phase-locking (2PL) with two-phase commit

(2PC) provides strict serializability [9]. Details on the archi-

tecture and components of our prototype are described in

Sections 2.1 and 2.2. Finally, we present our distributed data

storage server in Section 2.3.

2.1 System Architecture Overview
Our sample application has two major components: data

servers, forming a distributed transaction processing system,

and a controller. The logically centralized controller not only

acts as a lock server, but it also serves as a network manager.

This network manager is responsible for setting up network

routes among sources and destinations, as well as monitor-

ing network conditions and making intelligent scheduling

decisions based on the current network state. This design

also allows our system to piggyback many control messages

onto lock related messages.

As shown in Figure 2, client programs can interact with

NetStore using a transactional API. Clients can aggregate

multiple read or write operations and issue all the operations

as a single atomic transaction. A client sends its transactions

to the nearest data server in the network topology. The data

server receiving the transaction will act as the coordina-

tor. The coordinator requests the necessary locks via the

controller, performs each operation, and sends the final re-

sult back to the client. In addition to lock management, the

1
Note that the least bottlenecked path algorithm is designed to work with

any datacenter topology where multiple paths between pairs of servers

exist. Network-aware caching can work with any topology.

2
Oversubscription [4] is a situation in which the total egress bandwidth is

lower than the ingress bandwidth in a network switch or layer.
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Figure 1. A Multi-rooted Tree Topology

Figure 2. Prototype System Architecture

controller also determines which network path each opera-

tion should take. Furthermore, the controller maintains local

metadata consisting of the locations and versions of cached

data. This assists the controller in making network-aware

caching decisions. Both the path information and caching

decisions are piggybacked onto the controller’s messages to

coordinators. Upon receiving a response from a lock acquisi-

tion request from the controller, the coordinator will then

perform the operations by interacting with its local storage

or with a remote data server.

2.2 Controller
The controller performs three crucial tasks. First, the con-

troller implements a read/write lock server with all opera-

tions in a transaction classified as read or write. The con-

troller keeps updated information about lock acquisitions.

To avoid deadlocks, the controller establishes a lock ordering

based on transaction arrival times. With a two-phase-locking

(2PL) implementation at the data server, this guarantees that

no cycles can exist in the wait graph, avoiding deadlock.

Second, the controller also serves as a network topology

manager. When the controller starts, it reads topology in-

formation such as link bandwidth from configuration files.

Moreover, the controller discovers all of the switches and

links in the topology through the link-discovery logic pro-

vided by the Floodlight SDN controller [2]. The controller

aggregates all this information to set up path configurations

between each pair of servers. In particular, if there are multi-

ple paths between a pair of servers, switch configuration is

required to distinguish each unique path.

To configure the switches, the controller establishes rules

such that, in addition to the source and destination pair, the

DSCP [1] bits in the TCP header allow the sending server

to select a unique path to its destination. Furthermore, the

controller stores metadata, with respect to each network link,

to track the amount of data each flow transfers on each link

at any given time. The overhead for these updates is mini-

mal because they are performed only when the controller

grants or revokes locks in response to lock acquisition or

release requests. While it is possible to use the Floodlight

SDN controller to estimate the amount of data transfer for

background flows outside NetStore, we created our own

background flow servers which send flow information to our

controller before and after they send a flow into the network

for simplicity.

Third, the controller maintains a local metadata cache

of the real data entries maintained by the data servers. In

this metadata cache, the controller stores keys, version num-

bers, and server locations for actual cache entries. This ex-

tra caching layer not only allows the controller to provide

transactional consistency to NetStore without generating

extra cache invalidation messages, but also to allow the con-

troller to determine the most suitable server to read the cache

replica from based on the network information.

With the ability to monitor network and the flow informa-

tion, the controller is able to make intelligent path selections

and caching decisions which greatly improve performance.

The details are discussed in Sections 3 and 4.

2.3 Data Servers
The distributed data servers are in memory key-value stores.

Each data server is responsible for distributed communica-

tion with other data servers as well as the controller. On

startup, each server establishes TCP connections with other

data servers for each unique path in the network. For each

remote operation, while the data server is required to use the

path selected by the controller, the data server is oblivious to

the network topology. Servers only need to modify the DSCP

value in the TCP header based on information sent by the

controller. This design significantly reduces the complexity

of the data server and leaves network logic at the controller.

Figure 3 depicts the lifecycle of a transaction. So far, we

have discussed every stage in the transaction lifecycle except

the two red boxes in this figure. In the next section, we
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Figure 3. Transaction Lifecycle

examine how we achieve better performance by presenting

the design details for our controller.

3 Design Details
We make the following assumptions when exploring oppor-

tunities for optimization:

• The link bandwidth is the bottleneck in the data center

network. Many studies have shown this to be the case.

For instance, Ballani et al. [6] have shown that 20% of

network performance variability is caused by network

bandwidth variance.

• The network has multiple shortest paths between pairs

of servers.

• The network is heavily utilized at the core link layer

due to network oversubscription. A study [8] by Mi-

crosoft and Berkeley stated that the core is heavily

utilized in contrast to moderate utilization of the ag-

gregation layer and top of rack layers.

• The network switches are programmable such that we

can route packets using different paths between a pair

of servers.

In the following sections, we describe the least bottlenecked
path (LBP) algorithm for network layer path selection. We

then present network-aware caching (NAC), our database

layer optimization.

3.1 Least Bottlenecked Path
When there are multiple paths between pairs of servers, dis-

tributed systems typically use randomized algorithms, such

as the equal-cost multi-path routing (ECMP), to perform load

balancing. Proposals such as Hedera [3], mainly focus on load

balancing for long-lived flows. Furthermore, these proposals

typically require the controller to install dynamic network

configurations in switches in response to every new flow.

However, installing dynamic switch configurations is impos-

sible for short-lived flows. By the time a new configuration

is installed, the target flow may have already finished.

Least bottlenecked path (LBP) selects the least congested

path among all the shortest paths between a pair of servers

without installing new switch configurations. We consider

only the shortest paths to avoid multiple traversals of core

links since we assume that the core layer is oversubscribed.

To determine the least congested path for a new flow, LBP

first computes the maximum bandwidth each path can pro-

vide to the new flow. One reasonable approach, which pro-

vides fair sharing of the network resources between trans-

actional and background flows, is to use global max-min

fairness to compute flow bandwidth allocations. However,

existing algorithms to achieve max-min fairness are com-

putationally intensive and unsuitable for short-lived flows.

Instead, we define the link bandwidth factor on a link as

the value computed by dividing the capacity of the link by

the expected total amount of data in transit on the link at a

given moment. This link bandwidth factor is directional and

can be used to approximate the available bandwidth from

a source to a destination node on a particular link because

the bandwidth available on is proportional to capacity and

inversely proportional to the amount of data currently in

transit.

As we have discussed in Section 2.2, the traffic on each

link is captured and maintained by our controller. Further-

more, we identify that the bandwidth of a flow on a path is

determined by the bandwidth of the bottleneck link on the

path. Therefore, to determine the best path for a particular

flow between multiple paths, we can compute the minimum

link bandwidth factor on each path and pick the path with

the largest link bandwidth factor. Algorithm 1 shows howwe

compute the minimum bandwidth link factor for a particular

path. With link bandwidth factor information on all shortest

paths, the controller can pick the path with the largest band-

width by computing argmaxP ComputeBandwidthFactor(P)
for each shortest path P between the source and destination.

Algorithm2We compute the link bandwidth factor for each

link on the path. The minimum link bandwidth factor on a

link models the maximum path bandwidth.

1: procedure ComputerBandwidthFactor(path)
2: MinBandwidthFactor =∞

3: for each link L in path do
4: ▷ Expected bandwidth factor is the capacity of the link divided

by the expected data in transit on a link.

5: bandwidthFactor =

6: L.BandwidthCapacity / (L.dataSize + 1)

7: if bandwidthFactor < MinBandwidthFactor then
8: MinBandwidthFactor = bandwidthFactor
9: end if
10: end for
11: return MinBandwidthFactor
12: end procedure

Given the simple intuition behind our algorithms, the key

is to implement LBP efficiently to handle short-lived flows.

Asmentioned in Section 2.2, NetStore configures the network

switches to set up all paths when the system bootstraps. This

avoids the overhead of installing new switch configurations

at run-time. Since the controller uses DSCP bits in the TCP

header to identify each unique path between every pair of

servers, the controller piggybacks the DSCP values onto
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the lock reply messages, which are sent back to the data

servers. When a data server receives the lock reply messages,

the data server will start performing every operation for

which the lock is granted. For this reason, the controller can

update flow count information as soon as it sends out the lock

reply messages. Similarly, the controller updates flow count

information when the lock release messages are received.

The computation cost of Algorithm 1 is bounded by the

maximum number of links between any pair of servers. For

example, the maximum number of links in any path of three-

tier multi-rooted tree is eight. Furthermore, the complexity

of LBP is bounded by the number of unique paths between

any pair of servers, which is likely to be small due to common

data center network topologies.

To achieve horizontal scalability, LBP can easily work

in a decentralized environment where each server collects

and manages the global network state by querying Open-

Flow [18] enabled switches in the datacenter network.

3.2 Network-Aware Caching
A previous study [7] has found that data center networks in

shared environments are often heavily utilized at the core

layer due to network oversubscription. Consequently, we

can improve performance by reducing the load at the core

layers. This is the intuition behind network-aware caching

(NAC). To this end, we want to redistribute the core traf-

fic to the aggregation or edge layers. Moreover, we identify

that we can further reduce the network load by redistribut-

ing aggregation layer traffic to the edge. The simplest way

to perform this redistribution is through standard caching

mechanisms. In the case of our prototype, this means data

servers can cache read operation results in local memory.

In particular, many systems, such as MicroFuge [22], have

shown that caching can improve system performance or help

satisfy service level objectives. However, to provide consis-

tency, cached copies must be either updated or invalidated

when the corresponding data is overwritten. Data servers

may need to invalidate multiple cache entries in the event

of write operations. Communicating this evaluation on each

write results in extra load on the network, hurting system

performance. Instead, the controller can keep track of which

data servers have temporary replicas of their read operation

results and use this information to reduce network load.

To achieve this, we designed a two-layer caching scheme.

At the center of the network, the controller has a local cache

that keeps track of which replicas each data server has. At

the edge, data servers maintain the replicated data. Moreover,

we have augmented the controller to provide a version num-

ber for each replica. This version number increases each time

we create a new cache replica. This versioning enables our

system to provide an invalidation-free caching mechanism

which avoids increasing the load on the network. When-

ever the system performs a write operation on a key, the

controller will invalidate this key’s cache entry inside con-

troller’s metadata cache, which is described in Section 2.2.

When this key is added back into controller’s cache in the

future, a new version number will be associated this cache

entry. When a server performs a cache read at the edge of

the network in data server, it will always check if the cur-

rent version number provided by the controller matches the

version number kept in the local cache of the data server.

If the version number does not match, the data server will

deem the cache copy outdated and fetch it directly from the

server storing the original copy of the data. This enables

consistency of the caching mechanism without introducing

more load on the network.

Inside the controller, we have added one extra caching

stage in the transaction lifecycle. We determine the server

ID and the version number of the best replica, based on the

network information, for all read operations in a transaction

after the transaction has acquired all of its locks. This en-

sures consistency because any conflicting write operations

cannot acquire a lock before read operations complete. If a

cache entry exists for a particular read, the controller will

determine the best replica and send this replica information

along with the version number of the cache entry back to the

data server. If the cache entry does not exist, the controller

will insert this key into the cache with a new version num-

ber. This version is always larger than the previous version

number because the server will automatically keep this item

in its local cache after reading the data from the original

server.

Recall that we want to minimize both the core link layer

and the aggregation link layer traffic to redistribute the net-

work load. Therefore, to determine the best replica, we have

identified that only cross-pod operations will traverse the

core link layer and only cross-rack operations will traverse

the aggregation link layer. NAC is designed to reduce net-

work load by reducing the number of cross-pod operations

and number of cross-rack operations. For each cross-pod

read operation X, when the controller is ready to send the

lock reply message, the controller first looks into its local

cache to see if a server in the same rack has a cached copy

of the data. If the controller finds a cached copy in the same

rack, the controller will ask the server to fetch the data from

this replica. Otherwise, the controller will search for a cached

copy in the same pod. If this fails as well, the controller will

ask the server to fetch the data directly from the original

server. We note that the controller does not need to suggest a

local cache fetch because every server will always first look

into its local cache to see if there is a cache hit. The load on

the network will be reduced if the controller is able to turn

cross-pod operations into same-rack or same-pod operations.

The controller will also update its local cache to signal that

this server has a cache replica for this key. A unique version

number is generated only if this key is not previously stored

in the controller’s local cache.

5
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On the server side, after a server receives the lock reply

message, the server will first check to see if a cached copy is

available with the matching version number for each read

operation. If the version number does not match, the server

will evict the item from the cache. To further reduce the

network load, each server stores a list of keys whose data are

currently being fetched. For each incoming cache request,

where the server does not actually have a cached copy (i.e.,

it has been evicted), the server will first check if a duplicate

read operation is already in flight. If so, it is beneficial to wait

instead of sending an extra network message. After the fetch

is completed, all waiting requests will be completed by the

server with the latest data. If this fetch encounters outdated

data from the cache server, the local server is now responsible

to fetch the data from the origin server. This request will be

filled after the second cache fetch is completed and the first

cache fetch result will be sent back to the original requesting

server. Both servers will keep a replicated copy of the data

with the most recent version number.

Both the controller and data servers’ cache sizes are system

parameters which are provided when the system bootstraps.

Those values can be tuned based on the physical resources

available to the system. We implemented a clock-based evic-

tion algorithm for the controller cache and we use random

eviction for the data servers. Both eviction algorithms can

easily be replaced based on the scenario. With this design,

we can significantly reduce the amount of traffic generated

by our transactional system while preserving consistency

without implementing complex cache eviction schemes. To

integrate NAC with LBP, the controller assumes that data

servers fetch copies from the server suggested by the con-

troller and the controller picks the best path using LBP for

these network messages.

NAC can be made to scale horizontally with some dis-

tributed control. For instance, both decentralized locking and

cache versioning can be achieved with a distributed consen-

sus protocol. Furthermore, decentralized NAC nodes would

not require communication for cache invalidation since our

versioning scheme ensures only the current version of data

is readable from the cache. We envision decentralized NAC

implementation as a promising direction for future work.

4 Evaluation
In this section, we first describe our experimental setup.

Then, we demonstrate the performance of NetStore by com-

paring least bottlenecked path and network-aware caching

against equal-cost multi-path (ECMP) routing. In our compar-

isons, we will vary an array of different system parameters

to demonstrate NetStore’s performance.

4.1 Experiment Setup
To emulate a datacenter topology, we use Mininet [16] to

build a distributed virtual network with a 1 Gbps capacity

for each link. Rizvi, et al, use the same testbed to evaluate

their distributed filesystem and a detailed description of

this virtual network can be found in their paper [19]. In our

testbed, we emulate amulti-rooted tree topology as discussed

in Section 2 with 13 physical servers. Each physical server

is a Supermicro SYS-6017R-TDF compute node consisting

of 2 Intel E5-2620v2 CPUs, 64G RAM, 3 1TB SATA3 hard

drives, 1 Intel S3700 200GB SATA-III SSD, 2 Intel i350 Gigabit

Ethernet ports, and 1 Mellanox 10GbE SFP port.

In this evaluation, we use a modified version of ECMP as

a baseline for comparison. To avoid TCP connection setup

costs, our clients keep a persistent TCP connection with the

local data server. For this reason, transactions do not have

dynamic source and destination port numbers to perform

traditional ECMP. To achieve ECMP-like behaviour, we use

the same routing mechanism as NetStore, but randomly pick

one of the unique shortest paths for each flow between a

pair of servers.

In our emulation, there are 64 virtual machines. We run

one transactional client, one background traffic client, one

transactional server, and one background traffic server on

each of the 64 virtual machines. Our background clients and

servers are emulating network traffic in cloud environments.

The volume of data center network traffic varies depend-

ing on many factors such as communication patterns of the

deployed applications. This variation is captured in our ex-

periments by controlling the max background data size as

a tunable system parameter. We focus on cross-pod back-

ground traffic in our evaluation because the core layer links

are often heavily utilized as discussed in Section 3.2. The

background servers create multiple persistent TCP connec-

tions between every pair of data servers to emulate a realistic

cloud environment.

By default, the transactional clients issue transactions at

an interarrival rate that follows an exponential distribution

with a mean value of 50 milliseconds. Each transaction either

reads or writes 6,000 bytes of data to a randomly selected

key. The key selection process follows a Zipfian distribu-

tion with a distribution constant of 0.99
3
. There are 1% write

operations and 99% read operations in our workload. Each

background client issues one background traffic request that

follows an exponential interarrival rate with a mean value

of one second. The background server transfers N bytes of

data for each background traffic request, where N is uni-

formly selected from [1, Max background data size]. There

are a total 2,000,000 unique key-value pairs stored in our 64

transactional data servers. The controller stores a maximum

of 20,000 metadata cache entries and each data server may

store up to 20,000 cache entries which accounts for 1% of

all data entries in our data storage. Each experiment in our

evaluation runs approximately 7 minutes. A summary of

3
This is the same distribution constant used in YCSB [12].
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default system parameters is listed in Table 4.1. These sys-

tem parameters are empirically determined to demonstrate

NetStore’s performance in a partially congested datacenter

network. We show the sensitivity of these parameters in the

next section together with performance graphs where each

data point on the graph is an average over 5 independent

runs for every set of parameters.

NetStore parameter default values

write transaction percentage 1%

foreground op data size 6KB

max background flow data size 8000KB

average fg interarrival time 50ms

average bg interarrival time 1000ms

# of key-value pairs in database 2,000,000

# of metadata cache entries in controller 20,000

# of cache entries in each data server 20,000

4.2 Performance of NetStore
The first goal of our experiments is to show that least bottle-

necked path (LBP) routing can prevent transactional flows

from collidingwith background flows in the network, thereby

improving system performance. Figure 4 compares the trans-

action completion times of ECMP with LBP. When the max

background data size is at 8,000 bytes, LBP improves the

average transaction completion time by about 47%. While

at 12,000 bytes the network is heavily utilized, LBP can still

achieve about 30% improvement for transaction completion

times. This shows that LBP can effectively route transaction

flows around background flows, reducing average transac-

tion completion times when the network is the bottleneck.

However, the performance of LBP is about the same as ECMP

when themax background data size is 1,000 bytes because the

network is not congested enough for LBP to take advantage

of network information.

The second goal of our experiments is to demonstrate that

network-aware caching (NAC) can reduce the load on the

network, improving performance. In Figure 4, both ECMP

and LBP are compared with the combination of LBP and

NAC in terms of average transaction completion times. It

shows that the combination of LBP and NAC can signifi-

cantly improve the transaction completion times when the

data size of the background flow is extended to 7,000 KB.

In particular, NAC reduces average transaction completion

time by 53% and 69% when the max background data size

is at 11,000 bytes compared to LBP and ECMP respectively.

The performance improvement increases with the maximum

background data size because NAC effectively prevents per-

formance deterioration caused by heavily congested network.

This figure also shows that when the network is heavily

congested, ECMP cannot load balance the system well and

the transaction completion times increase significantly. In

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000 12000

Max background data size per flow in KB

0

2

4

6

8

10

12

A
v
e
ra

g
e
 t

ra
n
sa

ct
io

n
 c

o
m

p
le

ti
o
n
 t

im
e
 i
n

 m
s

ECMP

LBP

LBP + NAC

Figure 4. ECMP vs NetStore - varying the size of background

flows.
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Figure 5. Average background flow completion time.

contrast, NetStore maintains a stable linear increase in the

completion times with an increase in system load.

To understand the duration of each background flow, Fig-

ure 5 shows that when the max data size of a background

flow is 1,000 KB, flows complete within 50 milliseconds. As

we increase the maximum background flow size to 12,000

KB, flows will complete in 5 seconds on average. This shows

that the range of the background flow data sizes covers the

scenario from a network without congestion to a saturated

network.

Next, we vary the number of operations in each fore-

ground transaction to demonstrate NetStore’s performance.

Figure 6 shows that LBP and NAC outperforms by 48% and

84% when there are 5 operations because the increased num-

ber of operations improves both network-aware routing and

caching opportunities. Note that the variance of the results

has increased because a transaction completes after all of

its operations have completed. With a larger number of op-

erations, there is a higher probability that some operations

within a transaction must traverse a congested part of the

network which in turn increases the performance variance.
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Figure 6. ECMP vs NetStore - Varying # of ops in transac-

tions.
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Figure 7. ECMP vs NetStore - varying write transaction

percentage.

In Figure 7, we vary the percentage of write transactions

in our microbenchmark. It shows that while transaction com-

pletion time increases as we increase the percentage of write

transactions. The LBP and NAC performance improvement

over ECMP is steady throughout the experiments. In the case

of write-heavy workloads, we expect NAC to still provide a

performance improvement for two reasons: (i) NAC intro-

duces minimal overhead because the cache lookup operation

inside the controller requires only a small number of hash

table look-ups, and (ii) NAC implements a batch-processing

mechanism whereby multiple consecutive reads of the same

key from one rack will issue at most one cross-rack read

request, reducing network load.

We vary the average transaction interarrival time in Fig-

ure 8, which also reveals that NetStore consistently performs

better than ECMP. ECMP has a spike in response times when

the average transaction interarrival time is at 10 ms because

overwhelming foreground traffic may cause partial conges-

tion in the network without network-aware routing algo-

rithms.

Lastly, we vary the foreground transaction data sizes. Fig-

ure 9 shows that our algorithms have higher gains relative to

ECMP when the foreground data sizes are large. However, as

foreground data size gets smaller, the improvement compar-

ing to ECMP diminishes because most operations complete
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Figure 8. ECMP vs NetStore - varying average transaction

interarrival time.

1 6 11 16 21 26

Transaction op data size in KB

0

1

2

3

4

5

6

7

8

9

A
v
e
ra

g
e
 t

ra
n
sa

ct
io

n
co

m
p
le

ti
o
n
 t

im
e
 i
n
 m

s ECMP

LBP

LBP + NAC

Figure 9. ECMP vs NetStore - varying op data size in trans-

actions.

in a short period of time and there is not much potential

improvement.

The proceeding results demonstrate NetStore’s superior

performance compared to ECMP, showing that NetStore

has promising potential to significantly reduce transaction

completion times in a shared datacenter network.

5 Related Work
5.1 Network Systems
In the network research community, much effort has been in-

vested in improving flow scheduling in datacenter networks.

For example, DCTCP [5] has proposed a new transport layer

protocol for datacenter networks. DCTCP uses Explicit Con-

gestion Notification (ECN) combined with rate control to

provide both high throughput for background traffic and

low latency for short-lived flows, or “mice” flows. Alizadeh

et al. [17] use priority scheduling in pFabric to prioritize

mice flows to achieve lower average flow completion time.

Alternatively,Wilson et al. [24] have proposed D
3
, a deadline-

aware network control protocol that targets mice flows to

satisfy service level agreement (SLA) requirements. Unlike

the aforementioned systems, we use a combination of load

balancing and spatial locality to achieve better performance

for short-lived transactions in the cloud.
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Hedera [3] uses a centralized flow scheduler to increase to-

tal throughput. Unlike our work, Hedera targets bandwidth-

intensive flows, or “elephant” flows, to reduce scheduling

overhead. Moreover, Hedera needs to dynamically modify

switch routing configuration at run-time, which is not suit-

able for mice flows in online transactional processing sys-

tems.

More recent work has identified that simple flow abstrac-

tions cannot capture all of the performance requirements of

datacenter applications. Therefore, researchers have shifted

their attention to solve the scheduling problem of coflows:

tasks that consist of multiple flows. Dogar, et al., have pro-

posed Baraat [14], a decentralized network scheduler. Similar

to our work, Baraat does not require explicit switch coor-

dination and it leverages limited-multiplexing to improve

both the average completion time and tail latency. However,

Baraat focuses on non-transactional tasks with multiple net-

work flows such as web search. Our target is distributed

transaction processing systems which provide strong consis-

tency. Furthermore, Baraat models a simple network where

there is only a single path between hosts.

Similar to Baraat, Chowdury et al. have proposed Varys [11]

which uses the coflow abstraction to group multiple flows

into a single entity for efficient scheduling. However, despite

the performance improvement Varys can provide, the coflow

abstraction cannot be easily used to implement database

transactions.

Similar to NetStore, many of the aforementioned systems

assume that flow size information is known a priori. Chow-

dury et al. recognize that most applications do not have such

information. They have proposed Aalo [10], a centralized

coflow scheduler that does not require flow size informa-

tion a priori. We note that this is an interesting direction

for our future work to estimate both the foreground and the

background flow size information dynamically.

SquirrelJoin [20] focuses on network optimization for

distributed join operations. Rupprecht, et al., identify that

straggling workers resulting from transient network skew in

shared clusters increases join completion time. They propose

a lazy partitioning technique to mitigate this problem. In par-

ticular, SquirrelJoin delays a subset of partition assignment

decisions to enable estimation and avoidance of network

congestion dynamically. However, the distributed joins tar-

geted by SquirrelJoin may take tens of seconds or more to

complete, limiting the need for the rapid decision-making

required in our low-latency environment.

5.2 Query Processing Systems
In the database community, the traditional approach to op-

timizing network usage in distributed query processing is

to apply smart key placement strategies to minimize the

number of distributed transactions, as well as the amount of

data that must be transferred between nodes. For example,

Schism [13] uses graph partitioning techniques to reduce

the cost of distributed transactions by up to 30%. Vilaça et

al. [23], target key-value stores and aim to improve locality

in a multidimensional space of tags (such as foreign keys) ap-

plied to data items. We expect partitioning techniques such

as these to be complementary to our work.

Xiong et al. [25] examine the usefulness of software-defined

networking in supporting distributed analytical queries. Their

workload consists of read-only SQL queries where query

processing is bandwidth-intensive. They construct a global

query optimizer which decides on join order and on how

query results should be passed between sites. Similar to our

work, their work targets distributed transaction processing.

However, we focus on short-lived transactions instead of

bandwidth-intensive transactions. This presents additional

challenges since decisions must be made quickly. Moreover,

we propose two novel optimizations in both the network

layer and the database layer whereas their work focuses

on integrating existing optimizations within the SQL query

optimizer.

6 Conclusion
In this paper, we have made the case for network-level op-

timizations for cloud databases. These techniques leverage

network-aware optimizations to support cloud applications

without performance deterioration due to network satura-

tion. In particular, we demonstrate the potential performance

improvements by co-designing software systems with net-

work optimizations. Our prototype system augments a dis-

tributed database system with a network manager which

maintains network state information. Using this manager,

we are able to apply least bottlenecked path (LBP), a net-

work load balancing algorithm which intelligently routes

requests to less congested parts of the network. Moreover, we

introduce network-aware caching (NAC), a database layer

caching technique, to further improve the system perfor-

mance. Through experiments, we have shown that network-

level optimizations can significantly reduce average transac-

tion completion time.
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