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ABSTRACT

This paper introduces Natto, a geo-distributed database system that
supports transaction prioritization. Instead of having each shard
process transactions in their arrival order, Natto leverages network
measurements to estimate the transaction arrival time at each shard,
and assigns a timestamp to the transaction based on its arrival time
to the furthest shard. These timestamps establish a global ordering
of transactions, and introduces opportunities to selectively abort
pending low-priority transactions that conflict with a high-priority
transaction, or even preempt transactions that are already partially
prepared. Our experiments on both Microsoft Azure and a local
cluster show that Natto’s tail latency for high-priority transactions
are significantly lower than the tail latencies of Carousel and TAPIR,
which are the current state-of-the-art in geo-distributed transaction
processing systems.
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1 INTRODUCTION

Priority-based scheduling is critically important for database sys-
tems that process different classes of transactions. By assigning
a high priority to a time-sensitive transaction, the transaction’s
completion time should largely be unaffected by concurrent low-
priority batch transactions. In a single-server database system, pri-
ority scheduling is relatively straightforward to implement. Most
implementations create a separate queue per priority level and
process transactions starting from the highest priority queue. In-
progress transactions can optionally be preempted to further reduce
the wait time for a high-priority transaction.
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However, this single-server approach for providing priority sche-
duling cannot be easily extended to distributed database systems,
such as Spanner [17] and CockroachDB [15], that process geo-
distributed data. In these systems, data is partitioned and replicated
across datacenters in different geographic locations, and transac-
tions are scheduled independently at each data partition. Without
a global view of concurrent transactions, the effectiveness of pri-
ority scheduling is fairly limited. This is because the arrival order
of transactions will often be different at each partition. A high-
priority transaction may only be scheduled ahead of a conflicting
low-priority transaction for some partitions, resulting in a potential
distributed deadlock that has to be resolved by aborting one or both
transactions. Preemption of partially-prepared transactions is also
generally not supported in these systems due to both the complex-
ity of performing distributed preemption, and the high latency to
confirm that a transaction has successfully been preempted. A high-
priority transaction must wait until conflicting partially-prepared
transactions are complete before it can be processed.

Systems with a logically centralized transaction sequencer, such
as Calvin [49] and FaunaDB [26], can be extended to support prior-
ity scheduling as their schedulers are given a complete global view
of the transactions in the system by their sequencers. However,
employing such a sequencer introduces an extra wide-area network
round trip to process a transaction, which is unacceptable for some
time-sensitive transactions. These systems also introduce other
restrictions, such as requiring transactions to be non-interactive
and deterministic, making them unsuitable for certain classes of
transactions.

In this paper, we introduce Natto, a geo-distributed database
system that can significantly reduce the tail latency of high-priority
transactions through transaction prioritization. Natto builds on the
Carousel [53] database system in which data is partitioned and
stored at the datacenter where it will most frequently be used. Parti-
tions are also replicated using Raft [41] to additional datacenters to
provide fault tolerance. Similar to Carousel, Natto targets 2-round
Fixed-set Interactive (2FI) transactions, where each transaction con-
sists of a read round followed by a write round, the read and write
sets are known at the start of the transaction but the write values
can depend on the read results, and users can choose to abort their
transactions after the first round.

Natto introduces or extends several techniques that build on
each other to provide effective and efficient transaction prioritiza-
tion. First, it uses network measurements from clients to servers
to accurately estimate the arrival time of a transaction at the par-
ticipating Natto servers. Each transaction is assigned a timestamp
based on its estimated arrival time at the furthest participanting
server, and the transaction is not processed on any server until that
time. This approach was first introduced in Domino [52] for use
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in state machine replication. Natto extends it to establish a global
ordering of transactions without the need for a logically centralized
sequencer or coordination messages between servers. Even though
a transaction is not processed immediately on nearby servers, its
completion time does not increase since the second round of the
transaction cannot start until the client receives all of the results
from the first round, including the result from the furthest server.
Using this approach, Natto does not acquire resources prematurely,
and its transactions cannot deadlock as the global ordering prevents
cyclic dependencies.

Although the Natto servers agree on the ordering of transactions,
each server only receives transactions that read and/or write to
its partition. Therefore, they cannot unilaterally schedule a high-
priority transaction ahead of a low-priority transaction without
potentially introducing a distributed deadlock. However, for a given
transaction, all servers other than the furthest one from the client
will receive the transaction before its execution time. This creates
an abort window at these servers during which time the transaction
has been received but may still be aborted if it conflicts with a
new high priority transaction. This abort window comes out of our
use of arrival time-based execution timestamps, and gives Natto
an opportunity to perform a priority abort of a low priority trans-
actions that can interfere with high priority transactions without
introducing any delays when there are no conflicts.

Additionally, each Natto transaction embeds its estimated trans-
action arrival time to all of the participating servers. Without this
information, if a high priority transaction arrives at a Natto server
that conflicts with an already prepared low priority transaction,
the high priority transaction must wait until the low priority trans-
action completes even if the low priority transaction is eventually
aborted. However, by having the arrival time information to all
participating servers for its received transactions, a Natto server
can in some cases know that a prepared low-priority transaction
will likely be aborted. With this knowledge, it can send a condi-
tional prepare message to the 2PC coordinator, which prepares the
high-priority transaction before the server receives an abort ac-
knowledgement for the conflicting transaction. This conditional
prepare will be successful if the conflicting low-priority transac-
tion is aborted. Otherwise, Natto will safely discard the conditional
prepare results and prepare the high-priority transaction after the
conflicting transaction completes successfully.

Finally, in the Carousel protocol, results from a committed trans-
action are not visible to other transactions until they have been
replicated to a majority of the replicas. This is necessary since, in
the event of a replication group failure, committed transactions
that have not been replicated must be replayed, and a Carousel
server cannot determine the ordering of multiple transactions in
this state. With the availability of transaction timestamps, Natto
can determine the order of transactions in the committed but not
yet replicated state. This allows Natto to introduce Early Committed
State Forwarding (ECSF) that allows a transaction to read committed
results that have not been replicated. ECSF significantly reduces
lock contention by reducing the amount of time that a transaction
needs to hold a lock by one wide-area network roundtrip. This
significantly reduces the latency of both high and low-priority
transactions for high-contention workloads.

This paper makes three main contributions:

e We describe the use of network measurements to establish a
global ordering of transactions based on transaction arrival
time. We use this ordering to identify and selectively abort
low-priority transactions that would delay the processing of
a high-priority transaction.

e We introduce conditional prepare and early committed result
forwarding, which allow Natto to further overlaps operations
that are performed sequentially in previous systems.

e We evaluate Natto using the Smallbank [13, 20], Retwis [34,
54] and YCSB+T [19] on both an Microsoft Azure deploy-
ment and a local cluster. Our results show that Natto has
significantly lower tail latency for high-priority transactions
compared to Carousel [53] and TAPIR [54].

2 BACKGROUND

We design Natto on top of Carousel [53], a transaction processing
system for globally distributed data. Unlike Carousel that processes
transactions in their arrival order, Natto introduces a timestamp-
based ordering to support transaction prioritization. Natto assigns a
timestamp to each transaction, where the timestamp indicates when
the transaction should have arrived at all participants. To estimate
a transaction’s arrival time at participants, Natto uses techniques
introduced in Domino [52]. This section will first briefly review
Carousel, and then describe the techniques that Natto borrows from
Domino for estimating a transaction’s arrival time at participants.

2.1 Carousel

Similar to many other geo-distributed database systems, such as
Google Spanner [17] and CockroachDB [15], Carousel shards data
into partitions to achieve scalability, and replicates each partition
in different datacenters to tolerate datacenter-wide failures. Un-
like other systems, Carousel targets a specific type of read-write
transactions, 2-round Fixed-set Interactive (2FI) transactions [53].

A 2FI transaction consists of one round of reads followed by a
round of writes. Both read and write keys are pre-defined at the
start of a 2FI transaction. However, a client can decide the write
values based on the read results and does not need to modify all
of the keys in the write set. This interactive read-write pattern
between clients and servers is preferred by many applications [42],
especially in rapid development [10]. The 2FI model can directly
implement common read-modify-write patterns in transactions,
such as reading, incrementing, and updating one or more counter
values. This allows many transactions to fit in the 2FI model, in-
cluding transferring balance between user accounts and updating
user profiles in web applications.

In order to have low transaction completion time, Carousel lever-
ages the pre-defined read and write keys in 2FI transactions to
overlap transaction processing (i.e., reads and writes) with 2PC
and replication. Figure 1 shows an example of Carousel’s basic
protocol (known as Carousel Basic). In this example, a transaction
accesses two data partitions in different datacenters. We only show
the leader of each partition’s replica group for clarity. The client
starts executing the transaction by sending ((1)) read-and-prepare
requests to the two partition leaders. A read-and-prepare request
includes both the read and write keys that the transaction accesses



on the partition. Since the read and write keys are known, a par-
tition leader uses optimistic concurrency control (OCC) to serve
reads and isolate conflicting transactions. While returning ((2))
read results back to the client, each partition leader prepares the
transaction. At this point, the transaction processing and 2PC start
in parallel.

After receiving the read results, the client generates write data
and sends ((4)) the data together with its commit request to the
transaction coordinator. In Carousel, the coordinator is typically in
the same datacenter as the client, and it is also the leader of a replica
group. Upon receiving the commit request, the coordinator will
replicate ((5)) the write data to its replicas for fault tolerance. Once
the replication completes, the coordinator marks the transaction
processing as completed. To commit the transaction, it must also
know the 2PC prepare results from all participants.

2PC executes in parallel with the transaction processing. Each
participant leader replicates ((3)) its prepare result to its followers.
After the replication completes, a partition leader sends ((6)) its
prepare result to the transaction coordinator. When the coordinator
receives a prepared result from all participants and has completed
its own processing, it will commit ((7)) the transaction. It will notify
the client of its commit decision and asynchronously send a commit
message with write data to every participant. Upon receiving the
commit message, a partition leader will apply the updates after
replicating the write data to its followers.

Carousel also has a fast protocol (known as Carousel Fast) to
reduce transaction completion time by having a client send read-
and-prepare requests directly to every replica of each participant
partition. Although Carousel Fast has a lower average transaction
completion time than Carousel Basic for most low-contention work-
loads, its tail latency for high-contention workloads is no better
than Carousel Basic. This is because both protocols experience high
abort rates for high-contention workloads, and retrying aborted
transactions dominates their tail latencies. Without transaction pri-
oritization support, Carousel is just as likely to abort a high-priority
transaction as it is to abort a low-priority transaction. In contrast,
Natto offers transaction prioritization to reduce the tail latency of
high-priority transactions for high-contention workloads.

2.2 Estimating Request Arrival Time

Natto uses techniques from Domino [52] to estimate a transaction’s
arrival time at a Natto server. Domino has shown that network
delays in private WANS are relatively stable, such as the one con-
necting Microsoft Azure data centers, and network delay informa-
tion can be used to accurately estimate a request’s arrival time at a
server in a different datacenter.

Domino is a state machine replication (SMR) protocol that is de-
signed for WANS. In order to account for both network delays and
clock skews, each Domino client periodically probes the Domino
servers, and each server returns its local time back to the client.
The client calculates the one-way delay to a server as the difference
between the sending time of its probe and the timestamp in the
response from the server. To reduce the probability of underestimat-
ing its request’s arrival time at the server, the client will estimate
the arrival time by using the 95th percentile value from its collected
delay information over a period of time.
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Figure 1: An example of Carousel’s basic protocol.

Natto uses the same technique as Domino to estimate a trans-
action’s arrival time at a participant server. While Domino targets
SMR, Natto uses this estimation to support atomic commits and
transaction prioritization. Unlike Domino that assigns a request
with the estimated arrival time at a quorum of replicas, Natto’s
transaction timestamp indicates when the transaction should arrive
at all of the servers that hold keys in the transaction’s read and
write sets.. Furthermore, Domino commits requests out of times-
tamp order, but Natto orders transactions across servers based on
their timestamps and processes them in timestamp order to sup-
port transaction prioritization. Natto also differs from Domino in
how it handles requests that arrive at a server later than the esti-
mated arrival time. While Domino rejects these requests, Natto will
only abort such a transaction if the transaction violates timestamp
ordering with a conflicting transaction.

3 NATTO

Natto is a geo-distributed transaction processing system that pro-
vides transaction prioritization support for applications. It allows
applications to assign a transaction with a high or low priority at
runtime, and aims to lower the tail latency for high-priority transac-
tions. Natto supports transaction prioritization in a distributed way
by leveraging both network and transactional information. This
section will first present Natto’s system model and then describe
Natto’s transaction ordering and prioritization support.

3.1 System Model

We design Natto on top of Carousel’s basic protocol [53]. We chose
the basic protocol over the fast protocol because our focus is on
reducing the tail latency for high contention workloads, and the
fast protocol generally performs worse than the basic protocol in
this scenario. Similar to Carousel, data in Natto are sharded into par-
titions, and data partitions can be distributed across geographically
different datacenters. Each partition is further replicated at differ-
ent datacenters for fault tolerance. For each partition, a replica is
selected as the partition leader. Natto clients are application servers
that also run in the same datacenters as Natto data servers. Fol-
lowing from Carousel, Natto targets the fail-stop failure model and
support 2FI transactions.

In Natto, the leader of a participant partition in a transaction
is called a participant leader, and other replicas of the partition
are participant followers. Each transaction has a coordinator co-
located with the client in a datacenter, and the coordinator’s state
is replicated to other datacenters to tolerate coordinator failures.



Natto transactions have two priority levels, low-priority and
high-priority. This follows from previous work [37, 38] that argues
that two priority levels are sufficient for many applications. For
example, a web application can reserve high-priority transactions
for high-value users to provide them with better performance [37].
In a trading platform, a large institutional trader may be willing to
pay a premium to run its transactions at a high priority [38]. None
of the techniques introduced in Natto is specific to having just two
priority levels. Part of our future work is to extend Natto to support
additional priority levels.

Natto clients issue transactions through a Natto client-side li-
brary that assigns each transaction a unique ID. The transaction
ID can be derived from a client’s unique ID and a monotonically
increasing counter. A Natto client can specify the priority at the
beginning of a transaction at runtime. This provides applications
with flexible priority configurations for transactions.

The client-side library assigns each transaction a timestamp
in order to provide support for transaction prioritization, which
we will describe later in Section 3.2. As Natto leverages network
measurements to assign transaction timestamps, it makes similar
assumptions to Domino [52] about the network and deployment.
Natto assumes that clients and servers are connected within a pri-
vate wide-area network, which is common when they are deployed
at a cloud provider. A private wide-area network can provide rela-
tively stable network delays between datacenters, e.g., on Azure as
shown by previous work [52]. Natto also assumes loosely synchro-
nized clocks between clients and servers, which can be implemented
by using a clock synchronization protocols, such as NTP.

3.2 Basic Timestamp-Based Prioritization

In geo-distributed database systems, a high-priority transaction
may arrive at participant data servers in different orders relative
to other transactions. By processing transactions in their arrival
order, the servers would have different commit decisions for the
high-priority transaction due to conflicts with other high-priority
or low-priority transactions. This would cause the system to abort
and retry the high-priority transaction, resulting in high latency.
To address this issue, Natto introduces a timestamp-based ordering
for transactions across data servers. This ordering enables Natto
data servers to process transactions in the same order and handle
high-priority and low-priority transactions with different concur-
rency control mechanisms to reduce the latency for high-priority
transactions.

Observing that the critical path in 2PC is dominated by the
furthest participant, there is no need for the other participants to
process a received transaction immediately. Natto uses the same
network measurement technique as Domino [52] to estimate a
transaction’s arrival time at participant servers (as described in
Section 2.2). It then uses this time information to make participant
servers process a transaction at the same time. Specifically, a Natto
client will assign its transaction with a timestamp, indicating a
future time when the transaction (i.e., its read-and-prepare request
as described in Section 2.1) should have arrived at all participant
leaders. The client will piggyback this transaction timestamp on its
read-and-prepare requests to every participant leader.
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Figure 2: An example of Natto’s transaction ordering.

Upon receiving the read-and-prepare request, a participant leader
will not process the request until its clock time passes the trans-
action timestamp. Figure 2 shows an example where a transaction
accesses two partitions. In this example, the client estimates that its
request will arrive at participant leader L; and Ly after 10 ms and
25 ms, respectively. It will set its transaction timestamp to be Tp
+ 25 ms, where Ty is its current time. After 10 ms, the transaction
arrives at Ly first, but L; will not process the transaction. When it
is time Ty + 25 ms, the transaction has arrived at Ly, and both L
and Ly will independently process the transaction.

As there will be many concurrent transactions, a Natto server
will buffer received transactions in a transaction queue in their times-
tamp order. If two transactions have the same timestamp, the server
orders them based on the transaction ID. The server will process a
transaction if its current time passes the transaction timestamp and
the transaction is at the head of the queue. This timestamp-based
ordering enables Natto servers to process conflicting transactions
in the same order without a centralized scheduler.

To further support transaction prioritization, Natto uses different
concurrency control mechanisms to prepare high-priority and low-
priority transactions. When it is time to process a low-priority
transaction, Natto simply follows Carousel’s basic protocol to use
OCC to serve reads and prepare the transaction. For high-priority
transactions, a Natto server prepares them by using a locking-based
mechanism to avoid unnecessarily aborting and retrying a high-
priority transaction due to conflicts with concurrent transactions.

When it is time to process a high-priority transaction, Natto will
first check whether the transaction can acquire locks on all its read
and write keys (which are known at the start of the transaction
for 2FI transactions). A lock on a key is available only if there is
no prepared transaction (either high or low priority) that accesses
the key. If the locks for the transaction’s keys are all available,
Natto will prepare the transaction. If any lock is unavailable, the
transaction will not acquire any locks, and Natto will buffer the
transaction until all its required locks are available. Buffered high-
priority transactions are waiting for locks also in their timestamp
order. In this locking-based mechanism, a high-priority transaction
waits for conflicting transactions that have smaller timestamps to
complete. When only a small number of conflicting transactions are
queued up waiting for a lock, the waiting time is less than the time
required to retry a transaction under high transaction contention,
where a transaction may need to be retried multiple times before it
is committed.

As long as data servers process conflicting high-priority transac-
tions in the same timestamp order, there will be no deadlocks. To
guarantee this timestamp order, a Natto server will check whether



a high-priority transaction that arrives later than the expected time
conflicts with any ongoing transaction (i.e., prepared or in the trans-
action queue) that has a smaller timestamp. If there are conflicts,
instead of putting the high-priority transaction into the transaction
queue, the server will abort the transaction to avoid deadlocks.

In Natto’s basic timestamp-based prioritization approach, except
for processing read-and-prepare requests, Natto executes transac-
tions in the same way as Carousel’s basic protocol (as described
in 2.1). Natto provides the same guarantees offered by Carousel. Its
timestamp-based ordering only provides advisory information for
servers to help it decide when to process a transaction and operates
on top of the transaction commit protocol. The ordering requires
no communication between servers, and each server can indepen-
dently prepare or abort transactions based on its local information.

Mispredicting a transaction’s timestamp in Natto can reduce
performance but does not affect the system’s correctness. Over-
predicting the timestamp would increase the transaction latency as
even the furthest participant would wait to process a transaction
after receiving it from the client. Underestimating the timestamp
can cause a transaction to abort and retry, which can increase the
overall completion time. Consistent underestimation of the times-
tamp can affect transaction liveness as it is possible for the same
transaction to repeatedly abort. However, Natto leverages network
measurements to dynamically adjust its timestamp estimation. This
allows Natto’s prediction accuracy to be robust under low and
moderate network delay variance. Our experimental results in Sec-
tion 5 show that Natto can have low tail latency for high-priority
transactions even with significant network delay variance.

In Natto, clients are not end users but application servers run-
ning in datacenters. In most deployments, clients will be in the
same administrative domain as Natto servers, and the system trusts
applications to use the Natto client-library to determine transaction
timestamps and to set transaction priorities following system-wide
policies. However, Natto can be extended to be used in a shared
environment where clients are not fully trusted. Instead of directly
sending requests to Natto servers, clients must send transactions
through a local trusted proxy server that runs a Natto client-side li-
brary to assign transaction timestamps. Clients can be given a quota
of high-priority transactions based on their payment plan, and their
high-priority transaction can be processed as a low-priority trans-
action if they go over their quota.

3.3 Priority-Based Prepare and Aborts

Using just basic timestamp-based prioritization, Natto servers pro-
cess transactions in timestamp order. If a low-priority transaction
has a smaller timestamp than a conflicting high-priority transac-
tion, Natto will not process the high-priority transaction until the
low-priority transaction completes, which introduces delays for the
high-priority transaction.

However, Natto’s timestamp-based ordering creates an abort
window on participant servers other than the furthest one from the
client to preemptively abort low-priority transactions and reduce
the waiting time for high-priority transactions. While a Natto server
queues up transactions in their timestamp order, it can abort queued
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Figure 3: An example of priority abort.

low-priority transactions if the transactions would block a high-
priority transaction. We call this optimization priority abort, which
we will describe later in this section.

Furthermore, if a server can estimate that a prepared low-priority
transaction is going to abort before receiving the actual abort deci-
sion, it can optimistically prepare the subsequent conflicting high-
priority transaction in order to reduce the waiting time for the
high-priority transaction. We introduce conditional prepare to sup-
port such an optimization in Natto. In the rest of this section, we
will describe priority abort and conditional prepare in detail.

3.3.1 Priority Abort. As a transaction timestamp indicates when
the transaction should have arrived at the furthest participant
server, other participant servers may receive the transaction before
the timestamp and buffer the transaction in the transaction queue
until that timestamp. This buffering allows a Natto server to detect
conflicts between low and high-priority transactions in the trans-
action queue before processing these transactions. If a low-priority
transaction is ahead of a conflicting high-priority transaction in
the queue, the server can abort the low-priority transaction imme-
diately to avoid having the high-priority transaction wait for the
completion of the low-priority transaction.

A Natto server can perform a priority abort for a low-priority
transaction in its transaction queue any time before it prepares the
transaction. When a high-priority transaction arrives at a server,
the server puts the transaction in its transaction queue. It will abort
any conflicting low-priority transactions in the queue. Similarly, a
low-priority transaction can arrive at a server after a high-priority
transaction but with a smaller timestamp. In this case, the server
will also perform a priority abort for the low-priority transaction if
there are conflicts between them.

Figure 3 shows an example of priority abort. In this example, a
low-priority transaction Txn; and a high-priority transaction Txny
have conflicts on participant A. They also access other data par-
titions without conflicts, where we have omitted these partitions
in the figure for clarity. When the current time is Ty, client; sends
Txn; to every participant, estimating that the transaction will ar-
rive at all participants after 25 ms. The transaction first arrives at
participant A after 10 ms. Participant A will buffer the transaction
until the time reaches the transaction’s timestamp. However, be-
fore that happens, at time Ty + 20ms, participant A receives Txns.
Since Txny has a larger timestamp than Txn;, participant A will
perform a priority abort for Txn; in order to prepare Txnz on time.
This example shows that priority abort allows a high-priority trans-
action to commit even through there are conflicting low-priority
transactions that have smaller timestamps.



In Natto, it is possible that a high-priority transaction has a
large timestamp because it needs to access a distant remote data
server. When the transaction arrives at a nearby server, the differ-
ence between its timestamp and a previous conflicting low-priority
transaction in the queue is larger than the expected completion
time of the low-priority transaction. In this case, it is not neces-
sary to abort the low-priority transaction because the low-priority
transaction should complete before the execution time of the high-
priority transaction. This will reduce the abort rate for low-priority
transactions. To achieve this, a Natto server needs to estimate a
transaction’s completion time. A server can leverage network mea-
surements to estimate network delays to other participant servers
and use the estimation to predict a transaction’s completion time.

Priority abort leverages the timestamp-based ordering to abort
low-priority transactions. It maintains the invariant that a server
will not have a low-priority transaction ahead of a conflicting high-
priority transaction in its transaction queue. Although priority
abort reduces latency for high-priority transactions, it may lead
to starvation in some workloads, where a low-priority transaction
keeps being aborted. A number of existing approaches can be used
to address the starvation. For example, a low-priority transaction
can be promoted to high priority if it is aborted one or more times.

3.3.2  Conditional Prepare. When a server performs a priority abort
for a low-priority transaction due to the arrival of a conflicting high-
priority transaction, it is possible that another participant server
is preparing the low-priority transaction because it has yet to re-
ceive the high-priority transaction. The high-priority transaction
may also have conflicts with the low-priority transaction at this
participant server. However, this server cannot perform a prior-
ity abort for the low-priority transaction. It needs to wait for the
abort notification from the coordinator. The abort notification may
not arrive in time to process the high-priority transaction at its
transaction timestamp, which can introduce delays. To reduce this
delay, Natto introduces conditional prepare that allows the server
to optimistically prepare the high-priority transaction even if the
low-priority transaction is still in a prepared state. As the server
does not know the low-priority transaction’s state on other partici-
pant servers, preparing the high-priority transaction will succeed
only if the low-priority transaction is finally aborted.

To perform conditional prepare for a high-priority transaction,
a Natto server will estimate whether the transaction causes pri-
ority abort for conflicting low-priority transactions at the other
participant servers. To support accurate predictions, each client
piggybacks its estimated arrival time of a transaction at every par-
ticipant server as well as all read/write keys on its read-and-prepare
requests (as described in Section 2) to all participants. If a server
estimates that priority abort happens on another participant server,
it will conditionally prepare the high-priority transaction, where
the condition is that the conflicting transaction will be priority
aborted on another participant server. It will replicate its condi-
tional prepare result and then send the result together with the
condition to its transaction coordinator. The transaction coordina-
tor will determine whether the conditional prepare is successful
after receiving the prepare results from all participant servers.
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Figure 4: An example of conditional prepare.

Figure 4 shows an example of when a Natto server performs
conditional prepare. This example is similar to our previous ex-
ample on priority abort except that the high-priority transaction,
Txny, has conflicts with the low-priority transaction, Txn1, on both
participant A and B. In this example, when participant B receives
Txny, it has not seen Txny. It prepares Txn; when the time passes
the transaction timestamp. At a later time, it receives Txng, and
it uses the embedded timestamp and transaction information to
estimate that participant A has performed a priority abort for Txny.
It will then conditionally prepare Txny without waiting for the
abort acknowledgement on Txn;. This will reduce the latency for
the high-priority transaction.

When a server conditionally prepares a high-priority transaction,
it also sends the read results to the client. The client executes the
transaction based on the read results and sends the commit request
to the transaction coordinator. However, the coordinator will not
commit the transaction until it learns that the conditional prepare
is successful. The conditional prepare could fail if the conflicting
low-priority transaction is committed. In this case, Natto discards
the conditional prepare result and processes the high-priority trans-
action using the normal path. The client also needs to re-execute
the transaction based on the normal-path read results. To support
this, Natto tracks whether reads are from conditional prepare, and
the client needs to handle failed conditional prepare in its transac-
tion execution. To reduce latency under the failure of conditional
prepare, Natto executes the normal path and conditional path in
parallel. If the conditional path successfully commits a high-priority
transaction, Natto ignores the results from the normal path. Other-
wise, Natto executes the transaction normally.

Conditional prepare introduces an optimistic path to prepare a
high-priority transaction earlier. The system maintains the invari-
ant that it cannot commit the high-priority transaction based on
the conditional prepare result if the condition is not satisfied.

3.4 Early Committed State Forwarding

Priority abort and conditional prepare can reduce the latency of a
high-priority transaction by preempting the conflicting low-priority
transactions. However, when a high-priority transaction conflicts
with transactions that cannot be preempted, like other high-priority
transactions, the high-priority transaction needs to wait until the
conflicting transactions complete. In Carousel, a transaction’s up-
dates will not be visible until after a participant leader replicates
the updates to its followers. If we use this approach in Natto, then
a high-priority transaction can block on a committed conflicting
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Figure 6: An example of RECSF.

transaction until the conflicting transaction’s updates are applied
by participant leaders.

To reduce this waiting time for high-priority transactions, we
introduce early committed state forwarding (ECSF) in Natto to allow
a committed transaction’s updates to be visible to the subsequent
conflicting transactions (in Natto’s timestamp order) as early as
possible. In ECSF, once a transaction’s commit is fault-tolerant,
its updates can be visible to the subsequent conflicting transac-
tion before being applied by servers. If the subsequent conflicting
transaction commits, Natto servers will apply the two transactions’
updates in their timestamp order. We observe that, in Carousel,
a transaction’s commit and write data are first fault-tolerant at
the transaction coordinator [53], and then propagated to partici-
pant leaders (as described in Section 2.1). Before participant leaders
replicate the write data, Natto can perform ECSF at the participant
leaders or the coordinator, which we call local ECSF or remote
ECSF, respecitvely.

Local ECSF (LECSF). In LECSF, once a participant leader re-
ceives a committed transaction’s update data from the transaction
coordinator, it will make the data visible to the next conflicting
transaction before replicating the data to its replication group. Fig-
ure 5 shows an example of LECSF. In this example, at time T, the
participant leader has prepared Txn; that writes key A. At time
Ty, it processes high-priority transaction Txny but cannot serve
its read on key A. Once it receives the commit result from Txnjs
coordinator, it performs LECSF to serve Txnés read. This reduces
latency compared to serving the read after having the leader repli-
cate and apply Txn/s writes. Natto uses LECSF for both high and
low priority transactions, where a transaction can read the update
data of a previous committed conflicting transaction before the
updates are applied to the data store. This reduces the latency for
both high-priority and low-priority transactions.

Remote ECSF (RECSF). A committed transaction’s updates
first become reliable on the transaction coordinator before they are
forwarded to participant leaders. A participant leader has to wait

for the updates to process any subsequent conflicting high-priority
transactions in its transaction queue. RECSF aims to reduce this
waiting time for high-priority transactions.

As a participant processes transactions in their timestamp or-
der, it knows the immediate previous conflicting transaction for a
queued high-priority transaction. The participant can forward the
read requests of the high-priority transaction to the coordinator of
the conflicting transaction. Figure 6 shows an example of RECSF.
This example is similar to the previous LECSF example (in Figure 5).
However, when the participant leader processes Txny, it forwards
the read request to Txn{s coordinator instead of waiting for Txnjs
write data. Once the coordinator commits Txn1, it will serve Txnés
read. In RECSF, a high-priority transaction’s read request is served
by a different transaction’s coordinator, and the coordinator may be
in a different datacenter from the client of the high-priority trans-
action. Depending on the network delay between the coordinator
and the client, the client may not receive the read results earlier
compared to just using LECSF. To address this, Natto can run both
RECSF and LECSF in parallel, and the client will use its first re-
ceived read results. Due to the overhead of forwarding read results
in RECSF, Natto only applies RECSF to high-priority transactions.

Both LECSF and RECSF make a transaction read the updated
data of a previously committed conflicting transaction (in Natto’s
timestamp order) earlier than Natto’s transaction commit proto-
col without changing Natto’s transaction isolation for conflicting
transactions. This is because the data that the transaction reads is
deterministic, and is the same as the data the transaction would
have read after the servers apply the previous conflicting trans-
action’s updates. Also, with both LECSF and RECSF, participant
servers apply conflicting transactions’ updates in the order that the
transactions are prepared, which guarantees the same execution
order as Natto’s commit protocol.

4 IMPLEMENTATION

As Natto is based on Carousel’s basic protocol, we extend an im-
plementation of Carousel to build a prototype of Natto. Our Natto
prototype has all of the optimizations that we have introduced in
this paper, including Priority Abort, Conditional Prepare, Local
ECSF, and Remote ECSF. Our implementation consists of approx-
imate 4k lines of code in the Go language. It uses gRPC [27] for
network I/Os and extends an open-source implementation [22] of
Raft [41] to manage replicas.

To reduce the overhead of network measurements, our Natto
prototype uses one proxy per datacenter to periodically probe the
replica leader of every data partition. A proxy uses its network mea-
surement data to estimate network delays to servers on behalf of
all clients in its datacenter. A client will fetch the delay information
from the local proxy to determine a transaction timestamp. To re-
duce the load on the proxy, clients will buffer the delay information
and periodically contact the proxy for updates.

Our prototype of Carousel includes both Carousel Basic and
Carousel Fast. In addition to Carousel, we also implement a pro-
totype of TAPIR [54] and a Spanner [17]-like system that uses
2PL+2PC to compare with Natto in our evaluation. For a fair com-
parison, our implementations of TAPIR and the 2PL+2PC system are
also written in GO and uses gRPC for network I/O. Like Carousel,



WA PR NSW SG
VA 67 80 196 214

WA - 136 175 163
PR - - 234 149
NSW - - - 87

Table 1: Network roundtrip delays (ms)

TAPIR also has a fast path and a slow path to commit transactions.
Compared with the open-source implementation [51] of TAPIR,
our TAPIR prototype starts a slow path as soon as the fast path
fails, instead of waiting for a 500 ms timeout. This reduces TAPIR’s
transaction completion time in our evaluation settings, where it
typically takes less than 500 ms to know the failure of the fast path.

Our implementation of the 2PL+PC system uses wound-wait to
prevent deadlocks. We further implement priority preemption in
the 2PL+2PC system to support transaction prioritization, where
a high-priority transaction will preempt conflicting low-priority
transactions. To prevent deadlocks, the system will also preempt all
low-priority transactions that have a smaller timestamp and wait
for the lock. This is similar to placing high-priority transactions in a
separate queue and always processing transactions from that queue
first. Furthermore, we also implement preempt-on-wait (POW) [38]
in the 2PL+2PC system as another mechanism to support trans-
action prioritization. Our prototypes of Carousel, TAPIR, and the
2PL+2PC systems do not implement fault recovery.

5 EVALUATION

Our evaluation compares Natto with Carousel [53], TAPIR [54]
and a Spanner [17]-like (2PL+2PC) system. It includes experiments
both in a local cluster (with emulated wide-area network delays)
and on Microsoft Azure datacenters. In these experiments, we use
three different workloads: YCSB+T [19] (a transactional extension
on the YCSB key-value workload [16]), Retwis [34, 54] (a synthetic
Twitter-like workload), and SmallBank [13, 20] (a workload that
models banking applications).

5.1 Experimental Settings

In our experiments, data is sharded into 5 partitions, and each par-
tition has 3 replicas, resulting in a deployment that spans 15 data
servers. We run one server on each machine, and we select servers
evenly across 5 Microsoft Azure datacenters: Virginia (VA), Wash-
ington (WA), Paris (PR), New South Wales (NSW) and Singapore
(SG). Table 1 shows the average network roundtrip delays between
these datacenters based on the network measurement data in [52].
Our deployment has one partition leader at each datacenter, and a
datacenter has at most one replica for a partition.

We deploy two client machines at each datacenter. For each ex-
periment, all clients generate transactions at the same rate, and we
use the transaction input rate metric to represent the total num-
ber of new transactions (from all clients) that are submitted per
time unit in a system. When the system aborts a transaction, the
client will immediately retry the transaction. Retried transactions
are not counted in the transaction input rate. If a transaction can-
not commit after 100 retries, we consider the transaction to have
failed, and its latency is not included in the experimental results.

The latency of a committed transaction includes retries. By default,
a transaction has a 10% (or 90%) probability of being assigned a
high-priority (or low-priority), which is the same as the settings
used in [37]. Unless specified otherwise, our data set consists of 1
million key-value pairs, where a key and a value are both 64 bytes
in size. Transactions access keys by following a Zipfian distribution
with a default coefficient of 0.65. We run each experiment for 60
seconds and exclude the transactions from first and last 10 seconds.
We repeat each experiment 10 times and show the 95% confidence
interval for data points using error bars.

In our evaluation, a Natto proxy (as described in Section 4) probes
partition leaders every 10 ms and uses the measurement data from
the last second to estimate delays to the leaders. A client will con-
tact the local proxy for the delay information every 100 ms. We
evaluate Natto by using different combinations of its transaction
prioritization mechanisms as follows: Natto-TS for Natto’s basic
timestamp-based transaction prioritization support (TS); Natto-
LECSF for TS and Local ECSF (LECSF); Natto-PA for TS, LECSF,
and Priority Abort (PA); Natto-CP for TS, LECSF, PA, and Con-
ditional Prepare (CP); Natto-RECSF for TS, LECSF, PA, CP, and
Remote ECSF (RECSF). We use Carousel Basic and Carousel Fast
to represent Carousel’s basic protocol and fast protocol, respec-
tively. We use 2PL+2PC to represent the 2PL+2PC system, and
2PL+2PC(P) and 2PL+2PC(POW) to represent the system running
with transaction preemption and POW [38], respectively.

In our local cluster, each machine has 12 CPU cores and 64 GB
of memory. The machines are connected through a 1 Gbps network.
We use the Linux traffic control utility to emulate wide-area net-
work (WAN) delays between machines that belong to the different
datacenters shown in Table 1. We also deploy the systems on Mi-
crosoft Azure by using the same five datacenters. Our deployment
uses the Standard_D8s_v3 VM instance, which has 8 virtual CPU
cores and 32 GB of memory.

5.2 Impact of Transaction Input Rate

We first evaluate the performance of the systems with different
transaction input rates using three workloads: YCSB+T on our local
cluster, and Retwis and SmallBank on Microsoft Azure.

5.2.1 YCSB+T Workload. In this experiment, each transaction con-
sists of 6 read-modify-write operations accessing different keys.
Figure 7 (a) shows the 95th percentile (95P) latency of high-priority
transactions. When the input rate is low, i.e., at 50 transactions
per second (txn/s), all versions of Natto have a similar latency to
Carousel Basic. This is because few transactions have conflicts,
and Natto processes transactions following their timestamp order
without triggering its transaction prioritization mechanisms. Fur-
thermore, although Natto waits until a transaction’s timestamp
to process the transaction, this waiting time has limited overhead
compared to Carousel Basic in this experiment. This shows that
Natto’s transaction timestamp assignment is effective when net-
work delays are relatively stable. In addition, Carousel Fast has
the lowest latency among all of the systems since its fast path can
commiit a transaction in one WAN roundtrip while Carousel Basic
needs two WAN roundtrips. TAPIR also has a fast path to commit
transactions in one network roundtrip. However, it needs to read
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Figure 7: Impact of increasing transaction input rate.

data from remote datacenters first before committing a transac-
tion, resulting in higher latency than Carousel Fast. Compared with
Carousel and TAPIR, the three 2PL+2PC based systems sequentially
execute reads, 2PC, and replication, resulting in significantly higher
latency (approximate 715 ms).

Furthermore, Figure 7 (a) also shows that, as the transaction input
rate increases from 50 to 350 txn/s, the 95P latency of high-priority
transactions significantly increases for Carousel, TAPIR, and the
three 2PL+2PC systems. In contrast, the latency increase for Natto
is much smaller. For example, when the input rate is at 350 txn/s,
both Carousel and TAPIR have over 5000 ms 95P latency compared
to only 656 ms in Natto-TS. This is because contention between
transactions increases with the input rate, and both Carousel and
TAPIR abort and retry high-priority transactions, resulting in a sig-
nificant increase in tail latency. Compared to Carousel and TAPIR,
2PL+2PC has lower latency since it decreases the number of aborts
and retries for high-priority transactions. Although 2PL+2PC(P)
and 2PL+2PC(POW) can further reduce the latency for high-priority
transactions by preempting conflicting low-priority transactions,
they still have much higher latency than Natto-TS. Furthermore,
Natto-LECSF has 147 ms less latency than Natto-TS because a trans-
action can read the write data from a conflicting transaction earlier.
Natto-PA, Natto-CA, and Natto-RECSF have similar latencies that
are approximately 40 ms less than Natto-LECSF since there is only
moderate transaction contention in this experiment.

Figure 7 (b) illustrates the 95P latency of low-priority transac-
tions for the same experiment. To show how many low-priority
transactions a system commits in this experiment, we change the
x-axis from the input rate to the corresponding number of com-
mitted (low-priority) transactions per second. Even though it is
prioritizing high-priority transactions, Natto still has a similar or
even lower latency for low-priority transactions than Carousel and
TAPIR under the same goodput. Natto-LECSF, Natto-PA, Natto-CP,
and Natto-RECSF perform similarly for low-priority transactions

because Natto’s PA, CP, and RECSF optimizations are only effec-
tive for high-priority transactions. They have a lower latency than
Natto-TS for low-priority transactions since the LECSF optimiza-
tion allows transactions to read the write data from a committed
but not replicated transaction, which reduces the latency of both
low and high-priority transactions.

Natto-TS has lower latency for low-priority transactions than
Carousel Basic as the goodput increases. This is because Carousel
Basic will, in some cases, abort transactions that arrive at partic-
ipants leaders in a different order relative to other transactions.
When the input rate is low, transaction contention is low as well,
and Carousel Fast and TAPIR have lower latencies than Natto-
TS because of their fast path. However, as transaction contention
increases with the input rate, Carousel Fast experiences higher
latency than Natto-TS and Carousel Basic due to a higher abort rate
from reading stale data from local replicas. In addition, 2PL+2PC,
2PL+2PC(P), 2PL+2PC(POW) and TAPIR’s latencies remain lower
than Natto-TS and Carousel Basic for all of the tested goodputs, but
are significantly higher than the other variations of Natto.

Both Figure 7 (a) and Figure 7 (b) show that Natto provides ef-
fective transaction prioritization support for geo-distributed trans-
actions. Compared to the other systems, Natto can significantly
reduce the tail latency for high-priority transactions while having
similar or even lower tail latency for low-priority transactions.

5.2.2  Retwis workload. We use the same Retwis workload as in [54],
which is a synthetic Twitter-like workload. Compared with YCSB+T,
Retwis transactions read and write a different number of keys, rep-
resenting workloads in more complicated applications. The trans-
action profile of Retwis includes 5% adding users (reads 1 key and
writes 3 keys), 15% following users (reads and writes 2 keys), 30%
posting tweets (reads 3 keys and writes 5 keys), and 50% loading
timelines (reads a random number of keys between 1 and 10).



Figure 7 (c) shows the 95P latency of high-priority transactions
in different systems as the transaction input rate increases. Like
our YCSB+T experiments, Natto-RECSF and Natto-TS have signifi-
cantly lower latency than TAPIR, Carousel, and 2PL+2PC systems
when the input rate is high. For example, when the input rate is
1500 txn/s, Natto-RECSF has only 432 ms latency while 2PL+2PC (P)
and TAPIR have 1922 ms and 4393 ms latency respectively. At this
point, Carousel Basic and Carousel Fast have higher latency than
TAPIR. This is because Carousel uses partition leaders to perform
coordination operations (like replication and 2PC) for a transaction,
and the leaders become a performance bottleneck due to the many
retried transactions. TAPIR replicas are not saturated at this point
since it offloads transaction coordination work to clients. The three
2PL+2PC systems have lower latency than TAPIR and Carousel
because they have fewer aborts and retries with increasing transac-
tion contention. However, with more effective transaction priority
mechanisms, Natto has significantly lower latency compared with
2PL+2PC(P) and 2PL+2PC(POW). We also show the 95P latency of
low-priority transactions and their good throughput in Figure 7 (d).
Natto-RECSF has the lowest latency when the goodput is above
800 txn/s, showing that Natto-RECSF introduces little overhead to
low-priority transactions in practical deployments.

5.2.3 SmallBank workload. In addition to Retwis, we also compare
the different systems on Microsoft Azure by using the SmallBank
workload from OLTP-Bench [20]. SmallBank represents banking-
like applications, where transactions only read and update one
or two users’ accounts. The OLTP-Bench SmallBank implemen-
tation extends the original SmallBank implementation [13] with
money transfer transactions between user accounts. We configure
the SmallBank workload with 1 million users. 1K users’ accounts
are hot data, and 90% of transactions will access the hot data.

Figure 7 shows the 95P latency of high-priority and low-priority
transactions in different systems as the transaction input rate in-
creases from 500 txn/s to 2000 txn/s. Similar to the results in our
Retwis experiments, Figure 7 (e) shows that Natto-TS and Natto-
RECSF have significantly lower latency for high-priority transac-
tions than TAPIR and Carousel when the transaction input rate
is high (e.g., at 1500 txn/s). Figure 7 (f) also shows that, under the
same goodput, Natto-TS and Natto-RECSF have similar or even
lower latency for low-priority transactions compared to Carousel
and TAPIR. These experimental results demonstrate that Natto’s
transaction prioritization support is also effective for transactions
that only access a small number of keys.

Both Retwis and SmallBank experiments show that Natto effec-
tively reduces the latency for high-priority transactions for different
types of workloads on Microsoft Azure. As a result, Natto’s network-
measurement-based techniques are a practical approach to provide
transaction prioritization support for geo-distributed transactions.

5.3 Performance under High Contention

To further compare the different systems, we evaluate the perfor-
mance of the systems under high transaction contention. We run
the experiments on our local cluster with the YCSB+T workload to
show the performance improvements of Natto’s transaction priori-
tization mechanisms. We also perform experiments on Microsoft
Azure using the Retwis workload.
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Figure 8: Impact of increasing the Zipfian coefficient.

5.3.1 YCSB+T Workload. Figure 8 (a) shows the 95P latency for
high-priority transactions with various Zipfian coefficient values at
50 txn/s input rate. Under this relatively low input rate, as transac-
tion contention increases by increasing the Zipfian coefficient from
0.65 to 0.95, Carousel and TAPIR experience an order of magnitude
increase in latency (from under 400 ms to over 5000 ms) since they
have to retry a transaction multiple times due to conflicts with
concurrent transactions. The three 2PL+2PC systems have higher
latency increase (from 700 ms to over 25000 ms) because of queu-
ing due to contention. Natto-TS only has approximately 2.5 times
higher latency (from 372 ms to 903 ms). This is because Natto-TS
delays processing a high-priority transaction until a conflicting
transaction with a smaller timestamp completes.

The figure also shows that when transaction contention is high,
e.g., at 0.95 Zipfian coeflicient, Natto-LECSF has approximately
136 ms lower latency than Natto-TS due to reading the write data
of a conflicting transaction earlier. At the same point in the fig-
ure, Natto-PA has lower latency than Natto-LECSF. This is because
Natto-PA can process a high-priority transaction earlier by abort-
ing a conflicting low-priority transaction that has a smaller times-
tamp. In this scenario, Natto-CP can optimistically prepare the
high-priority transaction across data partitions so that, as shown in
the figure, Natto-CP has lower latency than Natto-PA. Natto-RECSF
has the lowest latency out of the different systems because it allows
a high-priority transaction to read the write data from a conflicting
transaction as early as possible. This experiment shows that Natto’s
LECSF, PA, CP, and RECSF mechanisms effectively reduce the la-
tency for high-priority transactions, especially when transaction
contention is high.
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ment transactions are given a high priority.

5.3.2  Retwis workload. Figure 8 (b) shows the 95P latency of high-
priority transactions in the different systems with moderate to
high transaction contention when the transaction input rate is 100
txn/s. When transaction contention is moderate, i.e., at 0.75 Zip-
fian coefficient, Natto-TS (438 ms) and Natto-RECSF (378 ms) have
over 3 times lower latency than TAPIR (1794 ms), Carousel Basic
(1892 ms), Carousel Fast (1745 ms), 2PL+2PC (1103 ms), 2PL+2PC(P)
(984 ms), 2PL+2PC(POW) (953 ms). Although Natto-RECSF’s la-
tency increases with transaction contention, at 0.95 coefficient, it
has 10 times lower latency than TAPIR, Carousel, and 2PL+2PC.

5.4 Impact of High-Priority Transaction Load

We also evaluate the performance of Natto by varying the percent-
age of high-priority transactions in the YCSB+T workload. With the
transaction input rate at 350 txn/s, Figure 9 shows the 95P latency
of high-priority transactions in different systems under various
percentage of high-priority transactions. As Carousel, TAPIR, and
2PL+2PC process both low and high priority transactions identically,
and 2PL+2PC has lower latency based on the result shown in Fig-
ure 7 (a), we only show 2PL+2PC, 2PL+2PC(P), and 2PL+2PC(POW).
To further improve the readability of the graph, instead of showing
every variation of Natto, we only show Natto-RECSF combining
all transaction prioritization mechanisms in Figure 9.

As shown in the figure, when the high-priority transaction
percentage increases from 10% to 100%, 2PL+2PC has a stable la-
tency that slightly fluctuates at around 3700 ms. 2PL+2PC(P) and
2PL+2PC(POW) have latencies that increase from 1778 ms and
1951 ms to 3748 ms and 3762 ms, respectively, as fewer low-priority
transactions can be preempted. Compared to these systems, Natto
effectively reduces the latency of high-priority transactions to about
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Figure 11: Impact of network delay variance.

600 ms when the high-priority transaction percentage is lower than
60%, However, when the workload only contains high-priority trans-
actions, Natto performs worse than 2PL+2PC. Natto is not designed
for high-priority-transaction-only workloads. We believe the vast
majority of applications that require priority transaction process-
ing have a high priority transaction percentage that is significantly
lower than 80%.

Furthermore, we compare the four different systems with the
SmallBank workload by having only the sendPayment transaction as
high-priority. This represents workloads that have multiple trans-
action types with one set as high-priority. Figure 10 shows the
increase ratio of the 95P latency of high-priority transactions un-
der various input rate compared to the latency at 100 txn/s. Note
that Natto has a lower latency than the other systems when the
input rate is 100 txn/s. The three 2PL+2PC systems have over 200%
increase on the 95P latency for high-priority transactions when the
input rate is 6000 txn/s. In contrast, Natto-RECSF has less than 50%
increase. Our experiments also found that the latency growth of
Natto’s high priority transaction is significantly slower than that
of its low priority transactions as more load is introduced.

5.5 Impact of Network Delays

As Natto leverages network measurement to assign transaction
timestamps, we further study how Natto responds to network delay
variance. For network delays between two datacenters, we rep-
resent network delay variance by using the ratio of the standard
deviation and the average network delay. By using the network
measurement data in [52], we find that the network delay variance
between the five Azure datacenters in our previous experiments is
at most 0.1%. Since network delays between datacenters on Azure
are relatively stable, we run experiments in our local cluster by
emulating network delay variance between the five datacenters. In
our emulation, network delays between datacenters follow a Pareto
distribution with the same average network delays as in Table 1.
In this experiment, we use our YCSB+T workload with the trans-
action input rate at 350 txn/s. Figure 11 shows the 95P latency of
high-priority transactions in different systems under various net-
work delay variances. When the network delay variance is low and
moderate (e.g., up to 15%), Natto-TS and Natto-RECSF have signifi-
cantly lower latency than Carousel, TAPIR, and the three 2PL+2PC
systems. The latency of Natto-TS and Natto-RECSF increase with
the network delay variance. This is because a transaction is more
likely to arrive at a server later than its timestamp under large net-
work delay variance, and Natto may abort and retry the transaction
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Figure 13: Latency under hybrid cloud (AWS and Azure).

under transaction contention. However, even when network delay
variance is large, i.e., at 40% in the figure, Natto-TS and Natto-RECSF
still have lower latency than the other systems that are under no
emulated network delay variance. This shows that Natto’s transac-
tion prioritization support can be effective even under moderate to
large network delay variance.

Furthermore, we evaluate the impact of network packet loss on
Natto using the YCSB+T workload with transaction input rate at
100 txn/s. Figure 12 shows the 95P latency of high-priority transac-
tions in different systems under various packet loss rates. When the
packet loss is at 1.5%, Carousel Basic experiences significant latency
increase because the TCP throughput becomes the bottleneck. The
TCP throughput drops significantly as the packet loss rate increases.
Carousel Basic is saturated earlier than TAPIR and the 2PL+2PC sys-
tems since it requires more network bandwidth as it must replicate
transactional data twice. As Natto-TS is built on top of Carousel
Basic, it has similar network bandwidth usage and is also saturated
with 1.5% packet loss. Carousel Fast uses more network bandwidth
than Carousel Basic and experiences significant latency increase
earlier at 1% packet loss. The TCP throughput becomes a bottleneck
for Natto-RECSF when the packet loss is above 2.5%. This is because
Natto-RECSF completes a high-priority transaction earlier before
participant leaders complete data replication, which mitigates the
impact of packet loss on client perceived latency. While a high
packet loss rate could cause high latency in Natto, the packet loss
rate of most networks is typically low to moderate (e.g., less than
1%) in practice. At more typical packet loss rates, Natto has lower
latency than the other systems.

Although Natto targets deployments in private WANs, we further
evaluate the performance of Natto under a hybrid cloud network
environment. In this experiment, we deploy the different systems
on both Azure and AWS by replacing two Azure datacenters (i.e.,
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Figure 14: Throughput with different numbers of partitions.

VA and WA) in our default setting with the us-east and us-west
datacenters on AWS. Our deployment on AWS uses the c4.2xlarge
machine, which has 8 vCPUs and 15 GiB memory. Figure 13 shows
the 95P latency of high-priority transactions in the different systems
using the Retwis workload with 1000 txn/s input rate. In this hybrid
cloud network setting, both Natto-TS and Natto-RECSF have signif-
icantly lower latency than the other systems. As a result, Natto’s
transaction prioritization mechanisms can be effective in a more
general network environment.

5.6 Throughput

We further study the peak throughput of different systems running
the experiments on our local cluster using the Retwis workload
with an uniform key distribution. We simulate three datacenters,
and the simulated roundtrip delays between datacenters are 4 ms,
6 ms, and 8 ms. Due to a lack of machine resources, we deploy one
partition leader and two partitions followers on each machine and
limited our experiments to 12 partitions.

Figure 14 illustrates that t he peak throughput of Carousel, TAPIR,
2PL+2PC, and Natto scale linearly with the number of partitions.
Carousel Basic and Natto have similar peak throughput ranging
from 8000 txn/s to 17500 txn/s. With 12 partitions, Carousel Fast has
slightly higher throughput (15112 txn/s) than TAPIR (14598 txn/s),
2PL+2PC (14069 txn/s), and 2PL+2PC(P) (14156 txn/s).

6 RELATED WORK

This section will first summarize previous work on transaction
processing for geo-distributed data and then briefly review past
work on supporting transaction prioritization.

6.1 Geo-Distributed Transaction Processing

Geo-distributed storage systems shard data into partitions to achieve
scalability and replicate data partitions to provide fault tolerance.
To process distributed transactions that access multiple partitions,
Megastore [10], Spanner [17], and CockroachDB [15], sequentially
perform transaction processing (i.e., reads and writes), 2PC, and the
replication of transactional data and states. This requires multiple
wide-area network roundtrips to complete and result in high la-
tency. To reduce the latency, MDCC [33] and TAPIR [54] introduce
a fast path to execute 2PC and replication in parallel. By requiring
read and write keys to be specified in the beginning of a transac-
tion, Carousel [53] further overlaps the execution of transaction
processing with 2PC and replication.



However, these systems have limited support for transaction pri-
oritization. For example, Google’s Cloud Spanner has recently added
support for transaction priorities, although its priorities mainly af-
fect resource scheduling [28]. CockroachDB [15] only considers
transaction priority when handling deadlocks. In these systems, a
high-priority transaction can be aborted and retried due to conflicts
with low-priority transactions, significantly increasing the transac-
tion’s total completion time. For comparison, Natto’s transaction
prioritization support focuses on transaction contention, and aims
to reduce latency for high-priority transactions.

Similar to Carousel and Natto, many systems limit transaction
expressiveness in order to reduce latency and/or abort rate. For
example, Sinfonia [7] also parallelizes transaction processing and
commit but requires pre-defining both write keys and values in its
mini-transaction model. Calvin [49], CalvinFS [48], and Q-Store [43]
target deterministic transactions that also require pre-defined read
and write sets, and they can avoid aborting transactions by de-
terministically ordering the transactions. By targeting one-shot
transactions [32], Granola [18], Rococo [39], Janus [40], and Ocean
Vista [24] can also avoid aborting transactions. RAMP [9] and
ALOHA-KV [25] do not abort transactions either but only support
read-only and write-only transactions. Although ALOHA-DB [23]
extends ALOHA-KYV to support read-write transactions, it needs to
convert a transaction to a set of functors. Lynx [55] chops a trans-
action into a chain of tasks to execute sequentially across servers.
Compared to Natto, most of these systems provide no support
for transaction prioritization. Furthermore, while the transaction
models in these systems have no support for interactive reads and
writes between clients and servers, Natto targets Carousel’s transac-
tion model that supports interactive read-modify-write operations,
which are preferred by many application developers [42], espe-
cially for rapid development [10]. A detailed comparison of these
transaction models can be found in the Carousel paper [53].

Increasing data locality is an alternative approach to reduce trans-
action completion time in geo-distributed systems. CLOCC [6, 35]
uses caches on the client side. However, some workloads need large
caches, and it is expensive to keep caches consistent. Requiring
data to be fully replicated at every datacenter can avoid the need to
perform 2PC across datacenters, such as in Replicated Commit [36]
and Consus [21], but the storage cost is significant in a deployment
that consists of a moderate to large number of datacenters. Also,
the replication latency increases with the number of replicas [8].
Microsoft’s Cloud SQL Server [11] avoids 2PC by forcing that a
transaction can only access the data on one server. By having a
write site for each data object, Walter [47] can execute a transac-
tion locally if the local site is the write site for all write objects in
the transaction. Otherwise, Walter still needs to run 2PC across
datacenters to commit a transaction. Akkio [8] moves data between
datacenters as workloads change to increase data locality but it
provides no transaction guarantees. Compared to Natto, most exist-
ing systems have little to no prioritization support for distributed
transactions in a wide-area network environment.

6.2 Transaction Prioritization

Most previous work on supporting transaction prioritization in a
database system focuses on transactions that only access data on a

single data server instead of distributed transactions. For example,
targeting a centralized database system that uses two-phase locking,
McWherter et al. [37] propose to schedule high-priority transac-
tions ahead of a queue of transactions that wait for a lock. This work
also adopts priority inheritance and priority preemption to reduce
the lock-waiting time for high-priority transactions. McWherter et
al. [38] propose to only allow a high-priority transaction to preempt
a low-priority transaction on a lock if the low-priority transaction
waits for another lock.

There are also systems that schedule computing resources (i.e.,
CPU, memory, and disks) to support transaction prioritization on a
single server. For example, Carey et al. [14] study multiple strategies
of CPU scheduling, disk scheduling, and memory management in a
database system to provide a best-effort service for high-priority
transactions while minimizing the negative impact on low-priority
transactions. Brown et al. [12] focus on memory management for
transactions that have different requirements on the response time.
These scheduling mechanisms are not effective for geo-distributed
data, where network delays become a main source of latency.

EQMS [44, 45] introduces an external scheduler to limit the
number of transactions in a system in order to provide quality of
service. When the number of incoming transactions is over the
limit, EQMS will buffer transactions and schedule them based on
priorities. Using a centralized scheduler in geo-distributed database
systems would increase transaction completion time since clients
and servers can be in different datacenters from the scheduler.

In real-time database systems, there has been a large body of pre-
vious work on transaction scheduling, such asin [1-5, 29-31, 46, 50].
Some of these systems [2, 30, 31] also address problems in priority
inheritance and priority preemption techniques. However, most
of these systems aim to minimize deadline violations. In contrast,
Natto aims to reduce latency for high-priority transactions over
low-priority transactions.

7 CONCLUSION

Many applications require low tail latencies for their high-priority
transactions. Natto addresses this requirement by providing support
for transaction prioritization. It leverages network measurements
to establish a global order of transactions based on their estimated
arrival time at their furthest participating server. With accurate ar-
rival time estimates, this ordering eliminates transaction aborts for
high-priority transactions, and provides opportunities to selectively
abort conflicting low-priority transactions. Natto further reduces
the tail latency of high-priority transactions through conditional
prepare and early committed state forwarding. Our experiments
on Microsoft Azure and on a local cluster show that Natto has
significantly lower tail latency for high-priority transactions than
competing geo-distributed transaction processing systems.
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