
MemRed: Towards Reliable Web Applications

Masoomeh Rudafshani
University of Waterloo

mrudafsh@uwaterloo.ca

Paul A.S. Ward
University of Waterloo

pasward@uwaterloo.ca

Bernard Wong
University of Waterloo

bernard@uwaterloo.ca

ABSTRACT

Current approaches for improving the reliability of web ser-
vices focus on server side data collection and analysis to
detect errors and prevent failures. However, significant por-
tions of modern web applications are executed on the client
browser with the server only acting as a data store. These
applications are mostly developed using Javascript, which
presents a challenge for developing reliable web applications
due to a current lack of tools for debugging Javascript appli-
cations. In addition, these applications use AJAX to com-
municate with the server asynchronously; therefore they re-
main on the same page during their lifetime that can lead
to runaway memory usage from even minor memory leaks.
In this paper, we introduce MemRed, a system that im-
proves the reliability of the client side of web applications.
It achieves this goal by taking advantage of browser APIs
to monitor web applications. It analyzes the collected data
to detect excessive memory utilization and applies recov-
ery action to hide failures from end users, if needed. Our
prototype is implemented as an extension for the Chrome
browser. The evaluation shows the effectiveness of recovery
actions in lowering memory usage of web applications.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Fault-tolerance, Measure-
ment techniques; B.8 [Metrics]: Performance Measures

General Terms

Reliability, Performance, Measurement, Experiment

Keywords

Monitoring, Error Detection, Web Application, Recovery

1. INTRODUCTION
The use of asynchronous communication techniques, such

as AJAX, in modern web applications has enabled the de-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SDMCMM’12, December 3-4, 2012, Montreal, Quebec, Canada.
Copyright 2012 ACM 978-1-4503-1615-6/12/12 ...$15.00.

velopment of Rich Internet Applications (RIAs) that pro-
vide similar functionality and interactivity as desktop appli-
cations. In these applications, large parts of the code are
written in Javascript and run on the client browser, which
provides a platform for their development and execution.
However, it is hard to develop reliable web applications in
Javascript since it is a weakly typed language [21] and there
is a current lack of tools for debugging Javascript appli-
cations. Moreover, these applications often remain on the
same page for hours without requiring a full page refresh
since they asynchronously communicate with the server to
receive updates on specific objects on the page. This can
lead to excessive memory usage due to memory leaks or
fragmentation. The growth in the size and complexity of the
client side components in web applications, the potential for
error accumulation due to long-lived web applications, and
the weakness of Javascript in building large-scale reliable
applications have motivated us to work on techniques to im-
prove web application reliability.

Most current work focus on improving the reliability on
the server-side [12, 17, 25, 14, 9, 16, 11]. However, we need
new solutions on the client side as the differences between
the client and server environments introduce many new reli-
ability challenges. First, in a client browser, there are several
web applications running simultaneously and errors in one
web application may have some effects on the other appli-
cations. Second, approaches on the server side are meant
to help system administrators who have more technical ex-
pertise compared to the ordinary user on the client side.
Third, resources are limited on the client side which am-
plify failure perception by the user. It also limits the recov-
ery mechanisms due to overhead associated with monitoring
and recovery mechanisms. Finally, high interactivity on the
client-side of web applications makes transparent recovery
challenging. In addition, it makes user-perceived response
time a priority compared to the throughput. Therefore, we
need a new solution to make the client side of web applica-
tions more dependable.

In this paper, we present MemRed, a system for improv-
ing the reliability of web applications at runtime. MemRed
is implemented as an extension inside the Chrome browser.
It is designed to work by monitoring the memory usage of
web applications and then analyzing the collected data to
detect excessive memory usage, which could indicate a mem-
ory leak. If the data analysis predicts a failure, it tries to
apply a recovery action at an appropriate time to hide the
failures from the user.

Although the Chrome browser [1] provides high reliabil-

ity by executing each web application within a separate
process [23], there are several limitations to this approach.
First, the Chrome loads a page made of several iframes into
the same process so that objects within different iframes are
able to refer to each other; therefore, iframes are not iso-
lated [26]. Second, there is a limitation on the number of
processes that Chrome will create, which depends on the
available system resources. Upon reaching this limit, new
pages share a process with currently opened pages. Third,
an application within a separate process may suffer from
errors or failures due to a bug in the code and process sep-
aration does not help in such scenarios. Therefore, we need
new mechanisms for improving the reliability and availabil-
ity of the client side of web applications. It is worth men-
tioning that although we are focusing on Javascript-based
applications in the browser, the approach proposed is useful
in other contexts as well. For example, Javascript is also
used for application development in some operating systems
such as Windows 8, along with CSS and HTML5. There-
fore, our technique can be used for failure recovery of such
applications.

Overall, in this paper we present our system for online
detection and recovery of failures in web applications, and
make three contributions. First, we provide evidence sup-
porting the need for mechanisms to improve dependability
on the client side of web applications. Second, we present a
prototype of our approach for achieving this goal. Third, we
show the results of an empirical study on a real-world web
application as well as a benchmark application that demon-
strate the effectiveness of MemRed’s recovery actions.

2. RELATED WORK
Web applications are subjected to different types of fail-

ures. Functional errors in web applications have been stud-
ied by Ocariza et al. [21]. They categorize errors in Javascript-
based web applications and study the correlation between
application properties and failure frequencies. Failures due
to security bugs have been studied in the past [15]. we focus
on software aging [13] bugs which degrade software systems
gradually, resulting in poor response time or crash. Specif-
ically, we focus on excessive usage of memory in web appli-
cations.

To predict failures, Grottke et al.[14] make a model of sys-
tem behaviour while the server is under artificial workload
and then use this model during runtime to predict system
failures. Alonso et al. [9] estimate time-to-failure of a web
server based on the failure data. These approaches are not
appropriate on the client-side since many applications are
running inside the browser. Software rejuvenation [16, 11]
has been used to recover from errors due to software ag-
ing and inspired us to have similar recovery actions for web
applications.

To monitor web applications, Ajaxscope [18] acts as a
proxy, instrumenting Javascript code before being received
by the client. It receives data about application states,
analyzes them, and notifies the server in case of an error.
Richard et al. [24] study behaviour of web applications by in-
strumenting Javascript engine of Safari. To diagnose errors,
Mugshot [20] and WaRR [10] record events on a Javascript
page and replay them after failure to find the faults. While
these techniques are useful in development phase of web ap-
plications, our focus is on runtime.

Collect Data

Apply Recovery Action

Browser Tab

HTML Renderer

JavaScript Engine

DOM Bindings
MemRed

Error Detection

Monitor

Recovery

Chrome Browser

Figure 1: Overall structure of MemRed running as
an extension inside Chrome browser.

3. IMPLEMENTATION
MemRed is implemented as an extension to the Chrome

browser. We selected the Chrome browser as our system
platform due to its high usage share [5]. MemRed, as shown
in Figure 1, monitors the web pages in a browser, analyzes
the collected data, and applies proactive recovery actions
if needed. Communication between MemRed and browser
pages is done using the ChromeDevTools protocol [2]. In the
following, we describe the different components of MemRed.

3.1 Monitoring
In the monitoring phase, MemRed connects to a page

and collects memory-usage data. As shown in Figure 1, a
browser tab is a separate process having three components:
the Javascript engine which is called V8 in Chrome and ex-
ecutes the Javascript code of a web application, the DOM 1

bindings which are responsible for binding Javascript engine
and browser code, and the HTML renderer which displays
the web page on the screen based on HTML code and cas-
cading style sheets (CSS) of the web application. MemRed
collects snapshots of the Javascript heap periodically, which
consists of the heap graph structure as well as the size of
objects. The heap snapshot also contains information about
the DOM objects of the page. Table 1 shows metrics col-
lected from the Javascript and DOM domains. We also
monitor the amount of memory allocated to the heap by
instrumenting the V8 source code. It is shown in Table 1
under category JS Memory. It is worth mentioning that the
ChromeDevTools protocol performs full garbage collection
before taking a heap snapshot.

In the Chrome browser different tabs may share the same
process and in such cases the Javascript heap contains the
objects belonging to several tabs. We need to differen-
tiate between objects of different tabs, even though they
share the same process and Javascript engine. Currently,
the ChromeDevTools protocol does not provide the informa-
tion regarding which object belongs to each tab. We need
to augment this protocol to get tab related information by
taking advantage of information entailed in V8 Javascript
engine. In Firefox browser, the objects belonging to differ-
ent applications have been separated using the compartment
idea [26].

1The Document Object Model (DOM) is an abstract rep-
resentation of the HTML page and provides an API for ac-
cessing and manipulating HTML elements.

Monitored Com-
ponent

Metric Description Aging
Indicator

Javascript Heap

TotalSize Total size of all objects on the Javascript heap. X

NodeCount
Total number of all objects of the application, including
objects on the Javascript heap as well as browser objects.

×

ArraySelf
Sum of shallow sizes of all objects that are instantiated
using the array constructor function.

×

ArrayCount
Total number of objects that are instantiated using the
array constructor.

×

HiddenSelf

Sum of shallow sizes of hidden objects (objects that are
created behind the scenes by V8 (Javascript engine of the
Chrome [7]).

×

HiddenCount Number of hidden objects. ×

DOM data

DocDomCount Number of DOM objects of the page. ×

DetachDomCount
Number of objects that are detached from the DOM tree
of the page.

×

JS Memory TotalHeapSize (JS)
The amount of memory allocated to Javascript heap by
V8.

×

Table 1: Metrics collected from different domains of a browser tab.

3.2 Error Detection
In this phase, the collected data is analyzed to detect any

sign of error. Specifically, we want to detect excessive mem-
ory usage. Therefore, we analyze the TotalSize metric,
shown in Table 1, which indicates the memory usage of a
web application. Other metrics are useful for the diagnosis
step; however, in this prototype we do not have a diagnosis
step and leave it for future work.

To find the trend in the specified metric, we use linear
least squares method [27] to fit a line over data and measure
the quality of this fit by computing the correlation coeffi-
cient [27]. If the memory usage of a web application is con-
tinuously going up, this is reflected in the slope of the line
fitted to the data. A positive slope together with a high cor-
relation coefficient shows an increasing trend in data. The
higher is the correlation coefficient, the more accurate is the
slope of the line fitted to data. We cannot make any conclu-
sion about existence of any trend in the data if correlation
coefficient is low. The slope and correlation coefficient are
threshold values that should be determined based on the
desired level of sensitivity.

Note that the above technique is able to detect errors if
the data is collected from the same state of an application.
We define the state from the user’s point of view. Two
application states are the same if they look the same to the
user. We estimate an application state by the DOM tree of
the application. Continuous growth of the collected metric
over the same states is a sign of error. In this work, we are
not monitoring application states and assume that we are
aware of the state at each data collection point.

3.3 Recovery
In this phase we apply recovery actions to return the sys-

tem to a healthy state or to slow down system degradation.
The recovery actions should be applied at an appropriate
time to hide the failures from the user. Moreover, the recov-
ery action should be transparent to the user. The recovery

actions selected depends on the cause of errors. As men-
tioned earlier, in the current prototype we do not have a
diagnosis step and leave it for future work. In this work,
we study the effectiveness of the following recovery actions
which are implemented using the Chrome extension APIs:

• Page Reload: This action refreshes the web applica-
tion, deleting all the leaked and unused objects.

• Close the page and open it in a separate pro-
cess: This action restarts the process corresponding
to the page.

• Full Garbage Collection: This action collects all
the garbage on the Javascript heap of the application.

To reload or restart a page, MemRed waits until the mon-
itored tab is not visible to the user; garbage collection can
be done at any time.

4. EVALUATION
In this section, we examine the effectiveness of recovery

actions in improving the reliability of web applications. To
perform these experiments, we use two web applications.
The first one, Tudu [6], is an AJAX-based open source web
application which is used for managing personal todo lists.
The client side of this application consists of 3K lines of
code as well as AJAX libraries [19]. The second one is
Google’s GMail [3] application, which is developed mostly
using Javascript and AJAX technology. Tudu is an exam-
ple of a simple and small web application in which we can
simply inject bugs. On the other hand, GMail is one of the
largest web applications in wide-spread use that is developed
by high-quality engineers.

In every experiment, we monitored a web application run-
ning in a browser tab while a user navigates through the page
and generates events. To expedite the effects of software

Description

TuduNoAction Simulated user is navigating through the Tudu page and doing the set of actions repeatedly.

TuduReload
Simulated user is navigating through the Tudu page similar to the TuduNoAction case; the pages
is reloaded periodically.

TuduDiff
Simulated user is navigating through the Tudu page similar to the TuduNoAction case; the page is
closed and opened in a new tab (actually in a new process) periodically.

GmailNoAction
Simulated user is navigating through the page and doing the set of actions repeatedly; no recovery
action is applied.

GmailReload
Simulated user is navigating through the page like GmailNoAction case; the page is reloaded peri-
odically.

GmailDiff
Simulated user is navigating through the page as the GmailNoAction case; the tab is closed and
opened in a new tab (actually in a new process) periodically.

GmailIdle Gmail page is open and being monitored but the simulated user does not do any action.

GmailIdleFullGC
Gmail page is open and being monitored; the simulated user does not do any action; periodically a
full garbage collection is performed.

Table 2: Different experiments performed on Tudu and GMail applications.

aging we simulated user navigation using the WebDriver
API [4] for Java. To alleviate the need for application-state
monitoring, as discussed in Section 3, we forced the simu-
lated user to do a set of repeated tasks. Resource usage over
time for such a scenario is good indication of software aging.

The experiments in this section are performed on a 2.4
GHz quad-core PC with 4GB of RAM. We use Weka [8],
an open source machine-learning library, for data analysis.
The different experiments are described in Table 2 and cor-
responding results are discussed in the following. First, we
study the case where we injected a leak in the Tudu applica-
tion. Then, we show the result of experiments on the GMail
application.

4.1 Tudu Experiments
After logging into the Tudu page, the simulated user does

the following actions iteratively while waiting 4 seconds be-
tween each action:

1. Add a new todo list.

2. Edit the list.

3. Delete the list.

At all times, there are at most two lists in the system. We
injected a bug into Tudu application, so that every time
the user adds a list, some objects are created and added to
the Javascript heap, but are not used again. This results
in a memory leak in this application which is an example
of a software aging error. Note that since Javascript is a
garbage-collected language, a memory leak means the ex-
istence of unused objects; i.e., objects that are accessible
from the garbage-collection roots but are never used by the
application [22].

Figure 2 shows the variation in total size of objects on the
heap (JSLive) for different experiments on Tudu page. The
period of data collection is one minute. Note that software
aging in our system is a function of the number of events on
the page. However, since the user is repeating the same set of
tasks, time is a good approximation of the number of events
on the page. As shown in Figure 2, in the first experiment,

TuduNoAction, when no recovery action is applied; we see
an increasing trend in size of objects on the heap, because
of the leak.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

J
S

L
iv

e
 (

M
B

)

Time (Minute)

TuduNoAction
TuduReload

TuduDiff

Figure 2: Variation in total size of objects on the
heap (JSLive) over time for different experiments
on Tudu.

To see the effects of recovery actions, we perform TuduRel-
oad experiment, in which we periodically reload the page,
and TuduDiff, in which we periodically close and open the
tab in a new process. As shown in Figure 2, there is not
an increasing trend in these cases. The oscillation in data
values is due to performing a recovery action periodically;
i.e., every 37 minutes in this case.

We also fitted a line to the collected data to compute any
trend in the data. The slopes and correlation coefficients
of the corresponding lines are shown in Table 3. A positive
slope shows increasing trend if it is accompanied by a cor-
relation coefficient. To compute the slope for TuduReload
and TuduDiff experiments, we smoothed the data with ten
neighboring points to remove the effect of data oscillation on
trend estimation. As can be seen, we do not see any trend
in the data when recovery actions are applied periodically.
These results support the idea that web application’s relia-

 23

 24

 25

 26

 27

 28

 29

 30

 31

 32

 33

 0 50 100 150 200 250 300

J
S

L
iv

e
 (

M
B

)

Time (minute)

GmailNoAction
GmailReload

GmailDiff

Figure 3: Trend in total size of objects on the heap
(JSLive) for different experiments on GMail.

bility can be improved by our approach. Recovery actions
prevent excessive memory usage by a web application, so
more memory is available to other tabs. This means better
response time and time-to-failure for the whole system.

4.2 GMail Experiments
The simulated user, after logging into her GMail account,

performs the following actions iteratively while pausing a
few seconds between every action:

1. Compose an email (just clicks on the compose without
sending any email).

2. Click on the list of important emails.

3. Click on Inbox.

4. Read an email (the same email is read in each itera-
tion).

As shown in Figure 3, where no recovery action is applied on
the page, i.e. in the GmailNoAction experiment, the total
size of objects on the heap is going up. In this experiment,
the user is doing a repeated set of tasks without generat-
ing new objects (she is not sending or receiving any email).
Therefore, growth in the size of objects indicates an aging
issue in the GMail application. Since the ChromeDevTools
protocol performs a full garbage collection before taking a
heap snapshot, this growth cannot be related to a delay in
garbage collection. This behaviour may be due to a memory
leak; the important point is that this application suffers from
excessive memory usage. It is possible that the application
is intended to function in this way. For example, the appli-
cation may keep a history of all the states; the user may not
refer to them in the future, which results in a growth in the
number and size of the objects on the heap. This behaviour
is not acceptable in an operational context since it results in
unbounded memory growth which affects the reliability and
response time of the system. Therefore, having a mechanism
to reduce excessive memory usage is crucial.

Figure 3 also shows the result of the GmailReload ex-
periment, where we periodically reload the page, and the
GmailDiff experiments, where we periodically close and open
the page.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 50 100 150 200 250 300

S
iz

e
 (

M
B

)

Time (Minutes)

JS GmailIdle
JSLive GmailIdle

JS GmailIdleFullGC
JSLive GmailIdleFullGC

Figure 4: Trends in total size of objects on the heap
(JSLive) and memory allocated by Javascript en-
gine for the page (JS) for GmailIdle and GmailIdle-
FullGC experiments.

JSLive

Slope CC

TuduNoAction 0.26 0.9976

TuduReload 0 0.1283

TuduDiff 0 0.1267

GmailNoAction 0.017 0.7011

GmailReload 0 0.306

GmailDiff 0 0.0807

GmailIdle 0 0.1019

Table 3: Slope and correlation coefficient (CC) of
JSLive for different experiments, unit of slope is
MB/minute.

We do not see an increasing trend in these cases, since the
recovery actions delete objects from the heap. Table 3 shows
the slopes and correlation coefficients of the lines fitted to the
data. To compute the parameters of the line fitted to data
we smoothed each data point using ten neighboring points.
The reason is that the data values for GmailReload and
GmailDiff are oscillating between two boundaries because
of periodic recovery actions. As can be seen, there is no
increasing trend when the recovery actions are applied.

To measure the effectiveness of the garbage collection ac-
tion we need to look at the memory allocated by V8, which
is measured by the TotalHeapSize (JS) metric, as defined in
Table 1. To study this action, we perform two experiments
where the user is idle in both cases. In GmailIdleFullGC we
periodically collect all garbage and in GmailIdle we apply no
recovery action. Figure 4 shows the values of JSLive and JS

metrics over time. As can be seen, the memory that is allo-
cated by V8 (JS) is going up for the GmailIdle experiment;
however, we do not see such a trend when garbage collect-
ing periodically. Also, there is no increasing trend in the
size of objects on the heap (JSLive). Note that even though
the simulated user is idle, there are some events fired on the
page using a timer.

The increasing trends observed in metrics collected from
the GMail application represent software aging in a com-
monly used web application where the user is doing a set of

simple tasks. In a real world scenario in a browser, we are
dealing with large number of tabs, each one executing a dif-
ferent web application. We also need to consider that GMail
is a well-engineered application and that is not the case for
all those applications running in different tabs. Therefore,
we need a mechanism for improving reliability of the client
side of web applications.

5. CONCLUSION AND FUTUREWORK
In this paper, we have presented an initial implementation

of our approach for improving the reliability of the client
side of web applications by reducing memory usage. Mem-
Red, which is an extension in the Chrome browser, moni-
tors the Javascript heap of a web page. It then analyzes
the collected data to detect trends in memory usage of the
corresponding web application. Upon detecting a possible
memory leak, it applies a recovery action at an appropriate
time. Through experiments, we showed the effectiveness of
our recovery actions in lowering the memory usage of web
applications. However, there are many limitations with the
current prototype that need to be addressed in the future.
We need to enrich our recovery actions so that the user does
not lose any data because of recovery actions. This can be
done by monitoring the application state. In addition, a
diagnosis step is needed to take advantage of all the data
collected from different domains of a page.

6. REFERENCES
[1] Chrome browser. https: // www. google. com/ chrome .

Visited: May 2012.

[2] ChromeDevTools protocol.
http: // code. google. com/ p/ chromedevtools/

wiki/ ChromeDevToolsProtocol . Visited: May 2012.

[3] Gmail: A Google approach to email.
http: // gmail. com . Visited: May 2012.

[4] Selenium 2.0 and webdriver. http:
// seleniumhq. org/ docs/ 03_ webdriver. html .
Visited: May 2012.

[5] StatCounter Global Stats.
http: // gs. statcounter. com/ . Visited: May 2012.

[6] Tudu lists. http://tudu.sourceforge.net/. Visited: May
2012.

[7] V8 JavaScript engine.
http: // code. google. com/ apis/ v8/ design. html .
Visited: May 2012.

[8] Weka–data mining with open source machine learning
software.
http: // www. cs. waikato. ac. nz/ ml/ weka/ . Visited:
May 2012.

[9] J. Alonso, J. Torres, J. Berral, and R. Gavalda.
Adaptive on-line software aging prediction based on
machine learning. In Proceedings of the 40th
International Conference on Dependable Systems and
Networks, 2010.

[10] S. Andrica and G. Candea. WaRR: A tool for
high-fidelity web application record and replay. In 41st
International Conference on Dependable Systems and
Networks, 2011.

[11] G. Candea, S. Kawamoto, Y. Fujiki, G. Friedman, and
A. Fox. Microreboot–a technique for cheap recovery.
In Proceedings of the 6th Symposium on Opearting
Systems Design & Implementation, 2004.

[12] B. Cully, G. Lefebvre, D. Meyer, M. Feeley,
N. Hutchinson, and A. Warfield. Remus: High
availability via asynchronous virtual machine
replication. In Proceedings of the 5th USENIX
Symposium on Networked Systems Design and
Implementation, 2008.

[13] S. Garg, A. Van Moorsel, K. Vaidyanathan, and
K. Trivedi. A methodology for detection and
estimation of software aging. In Proceedings of the 9th
International Symposium on Software Reliability
Engineering, 1998.

[14] M. Grottke, L. Li, K. Vaidyanathan, and K. Trivedi.
Analysis of software aging in a web server. IEEE
Transactions on Reliability, 55(3), 2006.

[15] S. Guarnieri and B. Livshits. Gatekeeper: Mostly
static enforcement of security and reliability policies
for Javascript code. In Proceedings of the 18th
Conference on USENIX Security Symposium, 2009.

[16] Y. Huang, C. Kintala, N. Kolettis, and N. Fulton.
Software rejuvenation: Analysis, module and
applications. In Proceedings of the 25th International
Symposium on Fault-Tolerant Computing, 1995.

[17] M. Isard. Autopilot: automatic data center
management. ACM SIGOPS Operating Systems
Review, 41(2), 2007.

[18] E. Kiciman and B. Livshits. Ajaxscope: a platform for
remotely monitoring the client-side behaviour of web
2.0 applications. ACM SIGOPS Operating Systems
Review, 41(6), 2007.

[19] A. Mesbah. Analysis and Testing of Ajax-based
single-page web applications. PhD thesis, Delft
University of Technology: TU Delft, 2009.

[20] J. Mickens, J. Elson, and J. Howell. Mugshot:
Deterministic Capture and Replay for Javascript
Applications. In Proceedings of the 7th USENIX
Conference on Networked Systems Design and
Implementation, 2010.

[21] F. Ocariza Jr, K. Pattabiraman, and B. Zorn.
Javascript errors in the wild: An empirical study. In
Proceedings of 22nd International Symposium on
Software Reliability Engineering, 2011.

[22] D. Rayside and L. Mendel. Object ownership profiling:
a technique for finding and fixing memory leaks. In
Proceedings of the 22nd International Conference on
Automated Software Engineering, 2007.

[23] C. Reis and S. Gribble. Isolating web programs in
modern browser architectures. In Proceedings of the
4th European conference on Computer systems, 2009.

[24] G. Richards, S. Lebresne, B. Burg, and J. Vitek. An
analysis of the dynamic behaviour of javascript
programs. ACM SIGPLAN Notices, 45(6), 2010.

[25] S. Sidiroglou, O. Laadan, C. Perez, N. Viennot,
J. Nieh, and A. Keromytis. Assure: automatic
software self-healing using rescue points. ACM
SIGPLAN Notices, 44(3), 2009.

[26] G. Wagner, A. Gal, C. Wimmer, B. Eich, and
M. Franz. Compartmental memory management in a
modern web browser. ACM SIGPLAN Notices, 46(11),
2011.

[27] R. Walpole, R. Myers, S. Myers, and K. Ye.
Probability and statistics for engineers and scientists,
volume 5. Macmillan New York, 1972.

