
Meridian: A Lightweight Framework for Network Positioning
without Virtual Coordinates

Bernard Wong Aleksandrs Slivkins Emin Gün Sirer
Dept. of Computer Science, Cornell University, Ithaca, NY 14853�

bwong, slivkins, egs � @cs.cornell.edu

February, 2005

Abstract
Selecting nodes based on their position in the network
is a basic building block for many distributed systems.
This paper describes a peer-to-peer overlay network for
performing position-based node selection. Our system,
Meridian, provides a lightweight, accurate and scalable
framework for keeping track of location information for
participating nodes. The framework consists of an overlay
network structured around multi-resolution rings, query
routing with direct measurements, and gossip protocols
for dissemination. We show how this framework can be
used to address three commonly encountered problems in
large-scale distributed systems without having to compute
absolute coordinates; namely, closest node discovery, cen-
tral leader election, and locating nodes that satisfy target
latency constraints. We show analytically that the frame-
work is scalable with logarithmic convergence when Inter-
net latencies are modeled as a growth-constrained metric,
a low-dimensional Euclidian metric, or a metric of low
doubling dimension. Large scale simulations, based on
latency measurements from 6.25 million node-pairs, and
an implementation deployed on PlanetLab both show that
the framework is accurate and effective.

1 Introduction
A central problem in distributed systems is to find an ef-
ficient mapping of system functionality onto nodes based
on network characteristics. In small systems, it is possible
to perform extensive measurements and make decisions
based on global information. For instance, in an online
game with few servers, a client can simply measure its la-
tency to all servers and bind to the closest one for minimal
response time. However, collecting global information is
infeasible for a significant set of recently emerging large-
scale distributed applications, where global information is
unwieldy and lack of centralized servers makes it diffi-
cult to find nodes that fit selection criteria. Yet many dis-
tributed applications, such as filesharing networks, content
distribution networks, backup systems, anonymous com-

munication networks, pub-sub systems, service discovery,
and multi-player online games, could substantially benefit
from selecting nodes based on their location in the net-
work.

A general technique for finding nodes that optimize a
given network metric is to perform a network embedding,
that is, to map high-dimensional network measurements
into a location in a smaller Euclidian space. For instance,
recent work in network positioning [40, 12, 36, 52, 48, 41,
9, 39, 35] maps a large vector of node-to-node latency
measurements on the Internet into a single point in a � -
dimensional space. The resulting embedded address facil-
itates location-aware node selection.

While this approach is quite general, it is neither accu-
rate nor complete. The embedding process typically intro-
duces significant errors. The selection of parameters, such
as the constant � and the set of measurements taken to per-
form the embedding, is nontrivial and has a significant im-
pact on the accuracy of the approach. Coordinates change
over time due to changes in network latencies on the In-
ternet, and introduce additional errors when performing
latency estimates from coordinates computed at differ-
ent times. Finally, finding a set of nodes that match de-
sired criteria without centralized servers that retain �����	�
state, an essential requirement in large-scale networks, re-
quires additional mechanisms besides virtual coordinates.
Peer-to-peer substrates that can naturally work with Eu-
clidian coordinates, such as CAN [43] and P-Trees [10],
can reduce the state requirements per node; however, both
systems introduce substantial complexity and bandwidth
overhead in addition to the overhead of network embed-
ding. And our simulation results show that even with a
P2P substrate that always finds the best node based on vir-
tual coordinates, the embedding error leads to a subopti-
mal choice.

This paper introduces a lightweight, scalable and accu-
rate framework, called Meridian, for performing node se-
lection based on a set of network positioning constraints.
Meridian is based on a loosely-structured overlay net-
work, uses direct measurements instead of a network em-

1

bedding, and can solve spatial queries without an abso-
lute coordinate space. It is similar in functionality to GNP
combined with CAN in performing node selection based
on network location1.

Meridian is lightweight, scalable and accurate. Each
Meridian node keeps track of a fixed number of peers and
organizes them into concentric rings of exponentially in-
creasing radii. A diverse node selection protocol is used
in determining ring membership to maximize the marginal
utility provided by each ring member. A query is matched
against the relevant nodes in these rings, and optionally
forwarded to a subset of the node’s peers. Intuitively, the
forwarding “zooms in” towards the solution space, hand-
ing off the query to a node that has more information to
solve the problem due to the structure of the peer set. A
scalable gossip protocol is used to notify other nodes of
membership in the system. Meridian avoids incurring em-
bedding errors by making no attempt to reconcile the la-
tencies seen at participating nodes into a globally consis-
tent coordinate space. Directly evaluating queries against
relevant peers in each ring further reduces errors stemming
from out of date coordinates.

In this paper, we focus on three commonly-encountered
network positioning problems in distributed systems, and
describe how the lightweight Meridian framework can be
used to resolve them without computing virtual coordi-
nates. The first, and most significant, problem is that
of discovering the closest node to a targeted reference
point. This is a basic operation in content distribution net-
works (CDNs) [25], large-scale multiplayer games [34],
and peer-to-peer overlays [24, 26, 6, 5]. Having the clos-
est node serve the client or operate on the target can sig-
nificantly reduce response time and aggregate network
load. For instance, a geographically distributed peer-to-
peer web crawler can reduce crawl time and minimize net-
work load by delegating the crawl to the closest node to
each target web server. Similarly, CDNs take network po-
sition into account when assigning clients to servers. And
multiplayer games often perform a similar mapping from
clients to nearby servers. In fact, the closest node dis-
covery problem is so pervasive and so significant that we
examine it in great detail. We also show that the Meridian
framework can be used to find a node that offers minimal
latencies to a given set of nodes (we make precise this no-
tion of closeness in Section 3). Intuitively, we want to se-
lect a node that is at the centerpoint of the region defined
by the set members. This basic operation can be used,
for instance, for location-aware leader election, where it
would enable the chosen leader to minimize the average
communication latency from the leader to set members.

1We use the term “location” to refer to a node’s position in the Inter-
net as defined by its roundtrip latency to other nodes. While Meridian
does not assume that there is a well-defined location for any node, our
illustrations depict a single point in a two-dimensional space for clarity.

Such an operation can be used in tree construction for
an application-level multicast system, where it can reduce
transmission latencies by placing centrally-located nodes
higher in the tree. Finally, we examine the problem of
finding a set of nodes in a region whose boundaries are
defined by latency constraints. For instance, given a set
of latency constraints to well-known peering points, we
show how Meridian can locate nodes in the region defined
by the intersection of these constraints. This functional-
ity is useful for ISPs and hosting services to cost effec-
tively meet service-level agreements, for computational
grids that can sell node clusters with specific inter-node
latency requirements, and generally, for applications that
require fine-grain selection of services based on latency to
multiple targets.

We demonstrate through a theoretical analysis that our
system provides robust performance, delivers high scal-
ability and balances load evenly across the nodes. The
analysis ensures that the performance of our system is not
an artifact of our measurements.

We evaluate Meridian through simulation parameter-
ized by a large-scale network measurement study, and
through a deployment on PlanetLab [2]. For our measure-
ment study, we collected node-to-node round-trip latency
measurements for 2500 nodes and 6.25 million node pairs
on the Internet using the King [17] measurement tech-
nique. We use 500 of these nodes as targets, and the re-
maining 2000 as the overlay nodes in our experiments.

Overall, this paper makes three contributions. First,
it outlines a lightweight, scalable, and accurate system
for keeping track of location-information for participating
nodes. The system is simple, loosely-structured, and en-
tails modest resources for maintenance. The paper shows
how Meridian can efficiently find the closest node to a tar-
get, the latency minimizing node to a given set of nodes,
and the set of nodes that lie in a region defined by la-
tency constraints, frequently encountered building block
operations in many location-sensitive distributed systems.
Although less general than virtual coordinates, we show
that Meridian incurs significantly less error. Second, the
paper provides a theoretical analysis of our system that
shows that Meridian provides robust performance, high
scalability and good load balance. This analysis is gen-
eral and applies to Internet latencies that cannot be accu-
rately modeled with a Euclidean metric. Following a line
of previous work on object location (see [21] for a recent
summary), we give guarantees for the family of growth-
constrained metrics. Moreover, we support a much wider
family of metrics of low doubling dimension which has
recently become popular in the theoretical literature. Fi-
nally, the paper shows empirical results from both sim-
ulations using measurements from a large-scale network
study and a PlanetLab deployment. The results confirm
our theoretical analysis that Meridian is accurate, scalable,

2

and load-balanced.
The rest of this paper is structured as follows. The next

section describes the design and operation of the general-
purpose Meridian framework. Section 3 illustrates how
the target applications can be implemented on top of this
framework. Section 4 contains a theoretical analysis of
our closest node discovery protocol. Section 5 presents
results from a large-scale Internet measurement study and
evaluates the system based on real Internet data as well as
a PlanetLab deployment. Section 6 discusses related work
and Section 7 summarizes our findings.

2 FRAMEWORK
The basic Meridian framework is based around three
mechanisms: a loose routing system based on multi-
resolution rings on each node, an adaptive ring member-
ship replacement scheme that maximizes the usefulness of
the nodes populating each ring, and a gossip protocol for
node discovery and dissemination.

Multi-Resolution Rings. Each Meridian node keeps
track of a small, fixed number of other nodes in the sys-
tem, and organizes this list of peers into concentric, non-
overlapping rings. The
 th ring has inner radius �
������ ����� and outer radius ����� ��� � , for
���� , where �
is a constant, � is the multiplicative increase factor, and������� for the innermost ring. Each node keeps track of a
finite number of rings; all rings
 �!
#" for a system-wide
constant
$" are collapsed into a single, outermost ring that
spans the range % ��� �'&)(+*-, .

Meridian nodes measure the distance �/. to a peer 0 ,
and place that peer in the corresponding ring
 such that� �21 �3.546� � . This sorting of neighbors into concen-
tric rings is performed independently at each node and
requires no fixed landmarks or distributed coordination.
There is an upper limit of 7 on nodes kept in each ring,
where peers are dropped from overpopulated rings; conse-
quently, Meridian’s space requirement per node is propor-
tional to 7 . We later show in the analysis (Section 4) that a
choice of 78�9����:<;/=>�	� can resolve queries in ����:<;/=>�	�
lookups; in simulations (Section 6), we verify that a small7 suffices. We assume that every participating node has a
rough estimate of the maximum size of the system.

The rationale for exponentially increasing ring radii
stems from the need for a node to have a representative
set of pointers to the rest of the network, and the higher
marginal utility nearby peers offer over faraway ones. The
ring structure favors nearby neighbors, enabling each node
to retain a relatively large number of pointers to nodes in
their immediate vicinity. This allows a node to author-
itatively answer geographic queries for its region of the
network. At the same time, the ring structure ensures that
each node retains a sufficient number of pointers to remote
regions, and can therefore dispatch queries towards nodes

Figure 1: Each Meridian node keeps track of a fixed number
of other nodes and organizes these nodes into concentric, non-
overlapping rings of exponentially increasing radii. Within a
given ring, a set of nodes that span a large amount of space (dark)
are more desirable than a more limited subset (light).

that specialize in those regions. An exponentially increas-
ing radius also makes the total number of rings per node
manageably small and
#" clamps it at a constant.

Ring Membership Management. The number of nodes
per ring, 7 , represents an inherent tradeoff between accu-
racy and overhead. A large 7 increases a node’s infor-
mation about its peers and helps it make better choices
when routing queries. On the other hand, a large 7 also
entails more state, more memory and more bandwidth at
each node.

Within a given ring, node choice has a significant ef-
fect on the performance of the system. For instance, if
the nodes within a given ring are clustered together, their
marginal utility is very small, despite their additional cost.
A key principle then, as shown in Figure 1, is to promote
geographic diversity within each ring.

Meridian achieves geographic diversity by periodically
reassessing ring membership decisions and replacing ring
members with alternatives that provide greater diversity.
Within each ring, a Meridian node not only keeps track of
the 7 primary ring members, but also a constant number ?
of secondary ring members, which serve as a FIFO pool
of candidates for primary ring membership.

We quantify geographic diversity through the hyper-
volume of the 7 -polytope formed by the selected nodes.
To compute the hypervolume, each node defines a local,
non-exported coordinate space. A node
 will periodically
measure its distance � �. to another node 0 in its ring, for all�@4A
 (0@4B7DCE? . The coordinates of node
 consist of the
tuple 1 � � � (� �F3(HG<GIGI(� � JLK�M � , where � �� �B� . This embedding
is trivial to construct and does not require a potentially
error-introducing mapping from high-dimensional data to
a lower number of dimensions.

Having computed the coordinates for all of its members
in a ring, a Meridian node can then determine the subset
of 7 nodes that provide the polytope with the largest hy-

3

pervolume. For small 7 , it is possible to determine the
maximal hypervolume polytope by considering all pos-
sible polytopes from the set of 7NC9? nodes. For large7�CO? , evaluating all subsets is infeasible. Instead, we
take a simple, greedy approach: A node starts out with the7PCQ? polytope, and iteratively drops the vertex (and corre-
sponding dimension) whose absence leads to the smallest
reduction in hypervolume until 7 vertices remain. The re-
maining vertices are designated the new primary members
for that ring, while the remaining ? nodes become secon-
daries. This computation can be performed in linear time
using standard computational geometry tools [7]. The ring
membership management occurs in the background and
its latency is not critical to the correct operation of Merid-
ian. Note that the coordinates computed for ring member
selection are used only to select a diverse set of ring mem-
bers - they are not exported by Meridian nodes and play
no role in query routing.

Churn in the system can be handled gracefully by the
ring membership management system due to the loose
structure of the Meridian overlay. If a node is discov-
ered to be unreachable during the replacement process, it
is dropped from the ring and removed as a secondary can-
didate. If a peer node is discovered to be unreachable dur-
ing gossip or the actual query routing, it is removed from
the ring, and replaced with a random secondary candidate
node. The quality of the ring set may suffer temporarily,
but will be corrected by the next ring replacement. Dis-
covering a peer node failure during a routing query can
reduce query performance; 7 can be increased to compen-
sate for this expected rate of failure.

Gossip Based Node Discovery. The use of a gossip proto-
col to perform node discovery allows the Meridian overlay
to be loosely connected, highly robust and inexpensively
kept up-to-date of membership changes. Our gossip pro-
tocol is based on an anti-entropy push protocol [14] that
implements a membership service. The central goal of
our gossip protocol is not for each node to discover every
node in the system, but simply for each node to discover a
sufficiently diverse set of other nodes.

Our gossip protocol works as follows:

1. Each node R randomly picks a node S from each of
its rings and sends a gossip packet to S containing a
randomly chosen node from each of its rings.

2. On receiving the packet, node S determines through
direct probes its latency to R and to each of the nodes
contained in the gossip packet from R .

3. After sending a gossip packet to a node in each of its
rings, node R waits until the start of its next gossip
period and then begins again from step 1.

In step 2, node S sends probes to R and to the nodes
in the gossip packet from R regardless of whether S has

Figure 2: A client sends a “closest node discovery to target T ”
request to a Meridian node U , which determines its latency V
to T and probes its ring members between W X and YZWX to deter-
mine their distances to the target. The request is forwarded to
the closest node thus discovered, and the process continues until
no closer node is detected.

already discovered these nodes. This re-pinging ensures
that stale latency information can be replaced as latency
between nodes on the Internet changes dynamically. The
newly discovered nodes are placed on S ’s rings as sec-
ondary members, subject to FIFO replacement.

For a node to initially join the system, it needs to know
the IP address of one of the nodes in the Meridian overlay.
The newly joining node contacts the Meridian node and
acquires its entire list of ring members. It then measures
its latency to these nodes and places them on its own rings;
these nodes will likely be binned into different rings on the
newly joining node. From there, the new node participates
in the gossip protocol as usual.

The period between gossip cycles is initially set to a
small value in order for new nodes to quickly propagate
their arrival to the existing nodes. The new nodes grad-
ually increase their gossip period to the same length as
the existing nodes. The choice of a gossip period depends
on the expected rate of latency change between nodes and
expected churn in the system.

3 APPLICATIONS
The following three sections describe how Meridian can
be used to solve some common network positioning prob-
lems.

Closest Node Discovery. Meridian locates the closest
node by performing a multi-hop search where each hop
exponentially reduces the distance to the target. This is
similar to searching in structured peer-to-peer networks
such as Chord [50], Pastry [45] and Tapestry [54], where
each hop brings the query exponentially closer to the des-
tination, though in Meridian the routing is performed us-
ing physical latencies instead of numerical distances in a

4

Figure 3: Central leader election selects the node with the min-
imum average distance to the nodes in the node group. For this
example, node U is the best leader out of nodes U to [.

virtual identifier space. Another important distinction that
Meridian holds over the structured peer-to-peer networks
is the target nodes need not be part of the Meridian over-
lay. The only requirement is that the latency between a
node on the overlay and a target node can be measured.
This enables applications such as finding the closest node
to a public web server, where the web server is not di-
rectly controlled by the distributed application and only
responds to HTTP queries.

When a Meridian node receives a client request to find
the closest node to a target, it determines the latency �
between itself and the target. Once the latency is deter-
mined, it locates its corresponding ring 0 and simultane-
ously queries all nodes in that ring, as well as all nodes in
the adjacent rings 0]_^ and 0`Ca^ whose distances to the ori-
gin are within bF to cdbF . These nodes measure their distance
to the target and report the result back to the source. Nodes
that take more than e)� to provide an answer are ignored,
as they cannot be closer to the target than the source.

Meridian uses an acceptance threshold f , which serves
a purpose similar to the routing base in structured peer-
to-peer systems; namely, it determines the reduction in
distance at each hop. The route acceptance threshold is
met if one or more of the queried peers is closer than f
times the distance to the target, and the client request is
forwarded to the closest node. If no peers meet the accep-
tance threshold, then routing stops and the closest node
currently known is chosen. Figure 2 illustrates the pro-
cess.

Meridian is agnostic to the choice of a route acceptance
threshold f , where �g4hf 1 ^ . A smaller f value reduces
the total number of hops, as fewer peers can satisfy the re-
quirement, but introduces additional error as the route may
be prematurely stopped before converging to the closest
node. A larger f may reduce error at the expense of in-
creased hop count.

Figure 4: A multi-constraint query consisting of targets U ikj_i$l
with respective latency constraints of mon/ikm�p+iqmsr . The shaded
area represents the solution space, and contains two nodes.

Central Leader Election. Another frequently encoun-
tered problem in distributed systems is to locate a node
that is “centrally situated” with respect to a set of other
nodes as illustrated in Figure 3. Typically, such a node
plays a specialized role in the network that requires fre-
quent communication with the other members of the set;
selecting a centrally located node minimizes both latency
and network load. An example application is leader elec-
tion, which itself is a building block for higher level appli-
cations such as clustering and low latency multicast trees.

The central leader election application can be imple-
mented by extending the closest node discovery protocol.
We replace � in the single target closest node selection
protocol with �utLv+w in the multi-target protocol. When a
Meridian node receives a client request to find the clos-
est node to the target set x , it determines the latency
set yz� � (HG<GIGI(�|{ }~{<� between itself and the targets through
direct measurements, and computes the average latency��tLv+w������ { }~{�<��� � � �#�]� xg� . Similarly, when a ring member
is requested to determine its latency to the targets, it com-
putes the average latency and returns that to the requesting
node. The remaining part of the central leader election ap-
plication follows exactly from the closest node discovery
protocol.

Multi-Constraint System. Another frequent operation in
distributed systems is to find a set of nodes satisfying con-
straints on the network geography. For instance, an ISP
or a web hosting service is typically bound by a service
level agreement (SLA) to satisfy latency requirements to
well-known peering locations when hosting services for
clients. An geographically distributed ISP may have thou-
sands of nodes at its disposal, and finding the right set
of nodes that satisfy the given constraints is necessary for
satisfying the SLA. Latency constraints are also important
for grid based distributed computation applications, where
the latency between nodes working together on a problem

5

is often the main efficiency bottleneck. A customer may
want to specify that ��� (��-�-� where � is the set of grid
nodes, ?����k�z�s�L����� (�� � 1 � for some desired latency � .

Finding a node that satisfies multiple constraints can be
viewed as a node selection problem, where the constraints
define the boundaries of a region in space (the solution
space), as illustrated in Figure 4. A constraint is specified
as a target and a latency bound around that target. When
a Meridian node receives a multi-constraint query with �
constraints specified as 1 �k���z�u�H� � (�
���o�`� � � , for all � 1
�4�� , it measures its latency � � to the target nodes and
calculates its distance to the solution space as

� �
��
�<�~��� ���~���

(����\ range � � F (1)

If � is 0, then the current node satisfies all the con-
straints, and it returns itself as the solution to the client.
Otherwise, it iterates through all its peers, and simultane-
ously queries all peers 0 that are within � �������

(b+� � range �F �
to c����Ib+� K range ���F from itself, for all � 1
 4A� . These nodes
include all the peers that lie within the range of at least
one of the constraints, and possibly other peers that do not
satisfy any of the constraints, but are nevertheless close to
the solution space. These peer nodes measure their dis-
tance to the � targets and report the results back to the
source. Nodes that take longer than e�¡@¢3£ � ��� � C range � �
for � 1
¤4h� to provide an answer are ignored.

The distance � . of each node 0 to the solution space is
calculated using (1). If � . is 0, then node 0 satisfies all the
constraints and is returned as a solution to the client. If no
zero valued � . is returned, the client determines whether
there is an � . 1 f5¥ � , where f is the route acceptance
threshold. If the route acceptance threshold is met, the
client request is forwarded to the peer closest to the solu-
tion space. A larger f may increase the success rate, at the
expense of increased hop count.

4 Analysis of scalability
In this section we argue analytically that Meridian scales
well with the size of the system. Our contributions are
three-fold. First, we put forward a rigorous definition that
captures the quality of the ring sets, and prove that un-
der certain reasonable assumptions small ring cardinal-
ities suffice to ensure good quality. Second, we show
that with these good-quality rings, the nearest-neighbor
queries work well, i.e. return exact or near-exact neigh-
bors in logarithmic number of steps. Finally, we argue
that if the ring sets of different nodes are stochastically
independent then the system is load-balanced, that is if
many random queries are inserted into the system then the
load is spread approximately evenly among the Meridian
nodes.

We model the matrix of Internet latencies as a metric.

We should not hope to achieve theoretical guarantees for
arbitrary metrics; we need some reasonable assumptions
to capture the properties of real-life latencies. We avoid
assumptions on the geometry of the metric (e.g. we do
not assume it is Euclidean) for two reasons. Firstly, re-
cent experimental results suggest that approximating In-
ternet latencies by Euclidean metrics, although a use-
ful heuristic in some cases, incurs significant relative er-
rors [40,12,36,52,48,41,9,39,35]. Secondly, and perhaps
more importantly, even if we assume that the metric is Eu-
clidean our algorithm is not allowed to use the coordinates
– since one of the goals of this work is precisely to avoid
heavy-weight embedding-based approaches.

We will consider two families of metrics that have been
popular in the recent systems and theoretical literature
as non-geometric notions of low-dimensionality: growth-
constrained metrics and doubling metrics. In particular,
growth-constrained metrics have been used as a reason-
able abstraction of Internet latencies in the analysis of the
object-location algorithm of Plaxton et al. [42]. Using a
more general family of doubling metrics leads to good
guarantees even for metrics that combine very dense and
very sparse regions.

We focus on the case when the rate of churn and fluctua-
tions in Internet latencies is sufficiently low so that Merid-
ian has ample time to adjust. So for the purposes of this
analysis we assume that the node set and the latency ma-
trix are not changing with time.

Full proofs of the following theorems are quite detailed;
they are deferred to Appendix A.

Preliminaries. Nodes running Meridian are called Merid-
ian nodes. When such node receives a query to find the
nearest neighbor of some node � , this � is called the tar-
get. Let ¦ be the set of all possible targets. Let §~¨ª©�¦
be the set of Meridian nodes, of size � . Let � be the dis-
tance function on ¦ : denote the �|« -distance by � � v . LetS � ���3� denote the closed ball in § ¨ of radius � around
node � , i.e. the set of all Meridian nodes within distance �
from � ; let S � �¤�!S � ��e � � . For simplicity let the smallest
distance be 1; denote the maximal distance by ¬ .

For some fixed 7 , every node � maintains :<;/=|��¬g� rings§ � � ©�S � � of exactly 7 nodes each; the elements of the
rings are called neighbors. We treat each ring at a given
time as a random variable; in particular, we can talk about
a distribution of a given ring, and about rings being prob-
abilistically independent.

Quality of the rings. Intuitively, we want each ring § � � to
cover the corresponding ball S � � reasonably well, e.g. we
might want each node in S � � to be within a small distance
from some node in § � � . Moreover, for load-balancing it
is bad if many different queries pass through the same
node, so, intuitively, it is desirable that the rings of dif-
ferent nodes are probabilistically independent from each

6

other.
Say a pair �|« of Meridian nodes ­ -nice if node � has a

neighbor ® within distance ­|� � v from « , and, moreover,® � § � � where e ����� 1 � � v �$^ C¯­L�°4±e � ; say the rings are­ -nice if all pairs of Meridian nodes are ­ -nice.
In Thm. 4.3 and Thm. 4.4a it suffices for the rings to

be �F -nice; for better precision in a more relaxed model of
Internet latencies (see Thm. 4.1) we might need smaller
values of ­ .

We will show that even with small ring cardinalities it is
possible to make the rings ­ -nice; this is later confirmed by
the empirical evidence in Section 5 (see Fig. 12). We give
a constructive argument where we show that the rings with
small cardinalities are ­ -nice provided that the ring sets
(seen as stochastic distributions) have certain reasonable
properties.

4.1 Growth-constrained metrics
Define the Karger-Ruhl dimension (KR-dimension) � as
the :<;/= of the smallest � such that the cardinality of any
ball S � ���3� is at most � times smaller that of S � ��e
�3� . Say
the metric is growth-constrained [26] if � is constant.

Since for a 7 -dimensional grid the KR-dimension is���²7]� , growth-constrained metrics can be seen as general-
ized grids; they have been used as a reasonable abstraction
of Internet latencies in past work (see the intro of [22] for a
short survey). Growth-constrained metrics have also been
considered in the context of dimensionality in graphs [32]
and spatial gossip [27].

We start with a model where the metric on the Merid-
ian nodes is growth-constrained, but we make no such as-
sumption about the non-Meridian nodes. This is important
because even in an unfriendly metric we might be able
to choose a relatively well-behaved subset of (Meridian)
nodes.

Our first result is that even with small ring cardinalities
it is possible to make the rings ­ -nice. We say at some
point of time the ring § � � is well-formed if it is distributed
as a random 7 -node subset of S � � . Intuitively, this is de-
sirable since in a growth-constrained metric the density is
moreless uniform.

Theorem 4.1 Assume the rings are well-formed; let the
metric on Meridian nodes have KR-dimension � . Fix³ 1 ^ and ­´4µ^ ; set 7¯�¶��� � · �#¸P:I;)=o���´� ³ � . Then with
probability at least ^¹\ ³ the rings are ­ -nice.

Recall that our nearest-neighbor search algorithm for-
ward the query to the node ® � § that is closest to the
target � subject to the constraint that � �zº �3�/» º 4¼f � ; if
such ® does not exist, the algorithm stops. Here f � �½^ is
a parameter; we denote this algorithm by ¾8��f � � .

Consider a node � and let � be its nearest neighbor.
Say node « is a ¿ -approximate nearest neighbor of � if

�/vÁÀz�
� � Àa4�¿ . Say ¾ is ¿ -approximate if for any query it
finds a ¿ -approximate nearest neighbor, and does so in at
most e�:I;)=Â��¬�� steps.

Theorem 4.2 If the rings are ­ -nice, ­ 4½^
�
Ã then
(a) ¾´��e)� is 3-approximate,
(b) ¾´��f]�
� is �k^>CE­L� -approximate, fÂ�Ä�Å^>C5����­ F � .2
(c) if we use a larger threshold f|�Æ�Ç^ CA¿ , ¿ � �²­ (�F �

then ¾´��fÂ�z� is �$^>C¯­�CEe
¿�� -approximate .

Note the tradeoff between the threshold fo� and accu-
racy of the queries, which matches our simulation in Sec-
tion 6 (see Figure 8).

In Thm. 4.1 the value of 7 depends on ­ . We can
avoid this (and find exact nearest-neighbors) by restrict-
ing the model. Specifically, we’ll assume that the metric
on § ¨ÉÈ yz��� is growth-constrained, for any target � in
some set ÊO©h¦ . However, we do not need to assume that
the metric on all of Ê is growth-constrained; in particular,
very dense clusters of targets are allowed.

We’ll need to modify ¾´��f � � slightly: if ® is the neigh-
bor of the current node � that is closest to the target � ,
and � �zº �
� » º � �k^ (fÂ�z� then instead of stopping at � the
algorithm stops at ® . Denote this modified algorithm by¾DËZ��f]�Ì� ; say it is Ê -exact if it finds an exact nearest neigh-
bor for all queries to targets in the set Ê , and does so in at
most :<;/=|��¬�� steps.

Theorem 4.3 Fix some set Ê¶©Í¦ such that for any � �Ê the metric on § ¨ÎÈ yz��� has KR-dimension � . Fix
³ �� , let 7Ï�Ðe3Ñ � ¸ � :I;)=o���E� Ê´� � ³ � , and assume the rings are

well-formed. Then with probability at least ^�\ ³ algorithm¾DËZ�²e)� is Ê -exact.

Ideally, the algorithm for nearest neighbor selection
would balance the load among participating nodes. In-
tuitively, if � qy ��¾a� is the maximal number of packets ex-
changed by a given algorithm ¾ on a single query, then
for � random queries we do not want any node to send or
receive much more than Ò ÓP� qy ��¾Ô� packets.

We make it precise as follows. Fix some set ÊO©h¦ and
suppose each Meridian node � receives a query for a ran-
dom target � � � Ê . Say algorithm ¾ is �Õ¿ (ÊD� -balanced if
in this scenario under this algorithm any given node sends
and receives at most ¿�� qy ��¾Ô� packets.

We’ll need a somewhat more restrictive model. In par-
ticular, we’ll assume that the metric on all of Ê is growth-
constrained, and that the rings are stochastically indepen-
dent from each other. The latter property matches well
with our simulation results (see Figure 11).

Theorem 4.4 Fix some set ÊÖ©±¦ such that the metric onÊ has KR-dimension � . Suppose §�¨ is a random � -node
subset of Ê . Let 7@�Be)Ñ � ¸ � :I;)=|�#� Ê´� � ³ �`:I;)=Â�²�	�`:I;)=o�²¬�� .

2Here ×ÙØ<Ú3ÛÁÜ might need to look at Ý°Ø<Þ�ßLà áâ Ü rings at every node.

7

(a) If the rings are well-formed then with probability at
least ^¹\ ³ algorithm ¾DËZ��e)� is Ê -exact.

(b) If moreover the rings are stochastically independent
then with probability at least ^�\ ³ algorithm ¾aË²��e)� is��¿ (ÊD� -balanced, ¿N��e Ñ � ¸ � :I;)=Â�²�	¬@� ³ � .

Note that in Thm. 4.4 it does not suffice to assume that§s¨ is an arbitrary subset of Ê , since in general a subset
of a growth-constrained metric can have a very high KR-
dimension.

4.2 Extensions
Our results allow several extensions. The proofs are omit-
ted from this version of the paper.

(1) Our results hold under a less restrictive definition of
KR-dimension that only applies to balls of cardinality at
least �	�Í:<;/=¤� ; moreover, we can take �	�Í:<;/=Â��� � Ê´� � in
Thm. 4.3, and �2�A:I;)=ã� Ê´� in Thm. 4.4.

(2) We show that if a metric is comparatively ’well-
behaved’ in the vicinity of a given node, then some of its
rings can be made smaller. We’d like the size of § � � to de-
pend only on what happens in the corresponding ball S � � .
Specifically, for �_��­|e ��� c we let ä � � be the ratio of � S � �+�
to the smallest � S v ���3��� such that � � v 4Åe � \¯� ; note thatS v ���3�Ù©±S � � for any such « . Then in Thm. 4.1 it suffices
to assume that the cardinality of each ring § � � is at leaste G eåä � � :<æ���� F � ³ � .

(3) Our guarantees are worst-case; on average it suf-
fices to query only a fraction of neighbors of a given ring.
Recall that on every step in algorithm ¾´��f|�Ì� we look at a
subset § of neighbors and forward the query to the node® � § that is closest to the target � subject to the con-
straint that the progress of ® , defined as the ratio � �zº �3� » º ,
is at least f � . For f � 4±e , suppose instead we forward the
query to an arbitrary progress-2 node in § if such node ex-
ists. It is easy to check that all our results for ¾´��f � � carry
over to this modified algorithm. Moreover, in Thm. 4.2a
(used in conjunction with Thm. 4.1 for ­a�É^Ì�3Ã) instead
of asking all neighbors of a given ring at once, we can
ask them in random batches of size 7/���ç���$^z�#¸ ; then in
expectation one such batch will suffice. Therefore on av-
erage on every step (except maybe the last one) we’ll use
only 7)� randomly selected neighbors from a given ring.
Similarly, we can take 7)�D�9��� �· �#¸ for Thm. 4.2bc (used
in conjunction with Thm. 4.1), 7/�Ä�½����ä � � � for Extension
(2) above, and 7)�´�Î���k^z�#¸ for Thm. 4.3 and Thm. 4.4a.
We obtain similar improvements for Thm. 4.2 used with
Thm. 4.5 for doubling metrics.

(4) Thm. 4.4b holds under a stronger definition of a��f (ÊD� -balanced algorithm which allows more general ini-
tial conditions. Specifically, fix some ¿�è6� and � è��¥/¡@¢3£���¿ (^z� , and choose a random partition of � into� summands � � , � � §�¨ , such that ¿Ö4 � � 4¶f � �Ì�for each � . Suppose each Meridian node � receives

queries for � � random targets in Ê . Say algorithm ¾ is��f (¿ (�
(ÊD� -balanced if under this algorithm in this sce-

nario any given node sends and receives at most f~� qy ��¾Ô�
packets. Note that an algorithm is ��f (ÊD� -balanced if and
only if it is ��f (^ (� (ÊD� -balanced.

4.3 Doubling metrics
Define the doubling dimension DIM as the :I;)= of the small-
est � such that every ball S � ���3� can be covered by � balls
of radius �)�3e . Metrics of low doubling dimension is a
strictly more general family than growth-constrained met-
rics since it is easy to see [18] that DIM is at most four
times the KR-dimension, but the converse is not true, e.g.
for a subset yÌe � é �	49
Ä49��� of the real line DIM �¶^ ,
but KR-dimension is e Ó . Intuitively, doubling metrics
are more powerful because they can combine very sparse
and very dense regions. Moreover, doubling metrics can
be seen as a generalization of low-dimensional Euclidean
metrics; it is known [18] that for any finite point set in a7 -dimensional Euclidean metric DIM �½���²7ê� .

Doubling dimension has been introduced in the mathe-
matical literature (see [20]) and has recently become a hot
topic in the theoretical CS community [18, 30, 33, 51, 28,
49]; in particular it was used to model Internet latencies in
the context of distributed algorithms for embedding and
distance estimation [28, 49].

For metrics of low doubling dimension, well-formed
rings are no longer adequate since we need to boost the
probability of selecting a node from a sparser region. In
fact, this is precisely the goal of our ring-membership
management in Section 2. Mathematical literature pro-
vides a natural way to make this intuition precise.

Say a measure is � -doubling [20] if for any ball S � ���
�
its measure is at most � times larger than that of S � ���)�3e)� .
It is known [20] that for any metric there exists a e DIM-
doubling measure ë . Intuitively, a doubling measure is
an assignment of weights to nodes that makes a met-
ric look growth-constrained; in particular, for exponential
line ë¤��e � � �Be ��� Ó . Say that at some point of time the ring§ � � is ë -well-formed if it is distributed as a random 7 -
node subset of S � � , where nodes are drawn with probabil-
ity ë¤�k¥��#�
ë¤��S � ��� . Using these notions, one can obtain the
guarantee in Thm. 4.1 where instead of the KR-dimension
we plug in a potentially much smaller DIM of § ¨ .

Theorem 4.5 Suppose the metric on §~¨ has doubling di-
mension DIM, and let ë be a e DIM-doubling measure on§s¨ . Fix

³ 1 ^ and ­´4Ç^ ; set 7¯�¶��� � · � DIM :I;)=|���´� ³ � .
If the rings are ë -well-formed, then Meridian rings are­ -nice, so Thm. 4.2 applies.

8

5 EVALUATION
We evaluated Meridian through both a large scale simula-
tion parameterized with real Internet latencies, as well as
a physical deployment on PlanetLab.

Simulation. A large scale measurement study of 2500
DNS servers was used to parameterize simulations for
evaluating Meridian. For the study, we collected pair-
wise round trip time measurements between 2500 servers,
spanning approximately 6.25 million node pairs. The
study was replicated 9 times from 9 different PlanetLab
nodes across North America, with the median value of
the 10 runs taken for the round-trip time of each pair of
nodes. We verified that each server has an unique IP ad-
dress to reduce the likelihood that more than one of the
chosen servers are hosted on the same machine. The ex-
periment took approximately 8 days to complete, as the
query interarrival times were dilated, and queries them-
selves randomized, to avoid queuing delays at the DNS
servers. The experiments were performed from May 5 to
May 13, 2004.

We obtained the latency measurement between DNS
servers on the Internet via the King measurement tech-
nique [17]. King works as follows: assuming that a node§ wants to determine the latency between DNS server R
and S , it first sends a name lookup request to R and mea-
sure distance Rã§ . Next, a recursive name request is sent toR for a domain where S is the authoritative name server,
which will cause R to contact S on the measuring ma-
chine’s behalf. This request will yield the roundtrip time
from the measuring node to S via R , that is RÄ§-C�R S .
By taking the difference between the two measured times,§ can determine an approximate roundtrip time betweenR and S .

In the following experiments, each of the tests consist
of 4 runs with 2000 Meridian nodes, 500 target nodes, 7@�^Hì nodes per ring, 9 rings per node, size of the innermost
ring � �¶e , probe packet size of 50 bytes, f½�í� G�î , and� �µ^ ms, for 25000 queries in each run. The results are
presented either as the mean result of the ^H�/�)�)�/�8�Îï2ðe î �)�/� queries, or as the mean of the median value of the 4
runs. All references to latency in this section are in terms
of round trip time. Each simulation run begins from a cold
start, where each joining node knows only one existing
node in the system and must discover other nodes in the
system through the gossip protocol.

We first evaluate how accurate Meridian is in finding the
closest node to a given target compared to the embedding
based approaches. We computed the coordinates for our
2500 node data set using GNP, Vivaldi and Vivaldi with
height. GNP represents an absolute coordinate scheme
based on static landmarks. We configured it for 15 land-
marks and 8 dimensions as suggested by the GNP authors,
and used the � -clustered-medians protocol for landmark

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

MeridianVivaldi(h)+CANVivaldi(h)Vivaldi+CANVivaldiGNP+CANGNP

E
rr

or
 (m

s)

Figure 5: Light bars show the median error for discovering the
closest node. Darker bars show the inherent embedding error
with coordinate systems. Meridian’s median closest node dis-
covery error is an order of magnitude lower than schemes based
on embeddings.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25 30 35 40

C
um

ul
at

iv
e

fra
ct

io
n

of
 p

ai
rs

Relative error of closest node selection

Meridian
GNP(15L,8D)+CAN

Vivaldi(6D)+CAN
Vivaldi(2D+Height)+CAN

Figure 6: Meridian’s relative error CDF for closest node discov-
ery is significantly better than performing perfect query routing
with an embedding scheme.

selection. Vivaldi is another absolute coordinate scheme
based on spring simulations and was configured to use 6
dimensions with 32 neighbors. Vivaldi with height is a
recent scheme that performs a non-Euclidian embedding
which assigns a 2 dimensional location plus a height value
to each node. We randomly select 500 targets from our
data set of 2500 nodes.

We first examine the inherent embedding error in abso-
lute coordinate systems and determine the error involved
in selecting the closest nodes. The darker bars in Figure 5
show the median embedding error of each of the coordi-
nate schemes, where the embedding error is the absolute
value of the difference between the measured distance and
predicted distance over all node pairs. However, even with
a large embedding error, it is possible for the coordinate
systems to pick the correct closest node. To evaluate this,
we assumed the presence of a perfect geographic query
routing layer, such as an actual CAN deployment with per-
fect information at each node. This assumption biases the
experiment towards virtual coordinate systems and iso-
lates the error inherent in network embeddings. The me-
dian closest node discovery error for all three embedding
schemes, as shown by the lighter bars in Figure 5, are an
order of magnitude higher than Meridian. Figure 6 com-
pares the relative error CDFs of different closest node dis-

9

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 4 6 8 10 12 14 16
 200

 250

 300

 350

 400

M
ed

ia
n

er
ro

r (
m

s)

A
ve

ra
ge

 q
ue

ry
 la

te
nc

y
(m

s)

Nodes/Ring

2000 nodes: Median error (ms)
1000 nodes: Median error (ms)

2000 nodes: Average query latency (ms)
1000 nodes: Average query latency (ms)

Figure 7: A modest number of nodes per ring achieves low error.
Average latency is determined by the slowest node in each ring
and the hop count, and remains constant within measurement
error bounds.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 200

 250

 300

 350

 400

M
ed

ia
n

er
ro

r (
m

s)

A
ve

ra
ge

 q
ue

ry
 la

te
nc

y
(m

s)

Beta value

Median error (ms)
Average query latency (ms)

Figure 8: An increase in ñ significantly improves accuracy forñAòÍó)ô õ . The average query latency increases with increasingñ , as a bigger ñ increases the average number of hops taken in a
query.

covery schemes. Meridian has a lower relative error than
the embedding schemes by a large margin over the entire
distribution.

The accuracy of our closest node discovery protocol de-
pends on several parameters of our system, such as the
number of nodes per ring 7 , acceptance interval f , the
constant � , and the gossip rate. The most critical param-
eter is the number of nodes per ring 7 , as this determines
the granularity of the search where a higher number of
nodes per ring will comb through the search space at a
finer grain. Figure 7 shows the median error drops sharply
as 7 increases. This is significant as a node only needs
to keep track of a small number of other nodes to achieve
high accuracy. The results indicate that as few as eight
nodes per ring can return very accurate results with a sys-
tem size of 2000 nodes. As each node only has nine total
rings, a node must only be aware of at most seventy-two
other nodes in the system.

High accuracy must also be coupled with low query la-
tency for interactive applications that have a short lifetime
per query and cannot tolerate a long initial setup time. The
closest node discovery latency is dominated by the sum
of the maximum latency probe at each hop plus the node
to node forwarding latency; we ignore processing over-
heads because they are negligible in comparison. Merid-
ian bounds the maximum latency probe by two times the

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 200 400 600 800 1000 1200 1400 1600 1800 2000
 200

 240

 280

 320

 360

 400

M
ed

ia
n

er
ro

r (
m

s)

A
ve

ra
ge

 q
ue

ry
 la

te
nc

y
(m

s)

System size

Median error (ms)
Average query latency (ms)

Figure 9: Error and query latency as a function of system size,
for öÏ÷ÎøúùHû�ü . Both median error and average query latency
remain constant as the network grows, as predicted by the ana-
lytical results.

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 2.8

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 q
ue

ry
 lo

ad
 (K

B
)

System size

Figure 10: The average load of a closest node discovery query
for ö_÷�øýùzû�ü . The load increases sub-linearly with system size.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.5 1 1.5 2 2.5 3

C
um

ul
at

iv
e

fra
ct

io
n

of
 n

od
es

In-degree ratio

20ms ball
50ms ball

Figure 11: Load-balance in Meridian. The in-degree ratio shows
the average imbalance in incoming links within spherical re-
gions. More than 90% of regions have a ratio less than 2.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 1.5

C
um

ul
at

iv
e

fra
ct

io
n

of
 n

od
es

Latency ratio

Figure 12: The efficacy of the ring member selection algorithm
can be measured through the expected improvement ratio at each
hop. For ñ	þ±ó3ô õ , Meridian’s ring member selection algorithm
can make progress via an extra hop to a closer node more than
80% of the time. For ñ�þÍó)ô ÿ , an extra hop can be taken over
97% of the time.

10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15

C
um

ul
at

iv
e

fra
ct

io
n

of
 n

od
es

Relative error of central leader election

2 targets
4 targets
8 targets

Figure 13: The accuracy of the central leader election applica-
tion. With larger group sizes, the central leader election algo-
rithm is able to find a centrally situated node more frequently.

 30

 40

 50

 60

 70

 80

 90

 100

 0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5

P
er

ce
nt

ag
e

su
cc

es
s

(%
)

Percentage of nodes that can satisfy constraints (%)

Figure 14: The percentage of successful multi-constraint queries
is above 90% when the number of nodes that can satisfy the con-
straints is 0.5% or more.

 6

 8

 10

 12

 14

 16

 18

 20

 22

 24

 4 6 8 10 12 14 16
 260

 280

 300

 320

 340

 360

 380

Fa
ilu

re
 p

er
ce

nt
ag

e
(%

)

A
ve

ra
ge

 q
ue

ry
 la

te
nc

y
(m

s)

Nodes/Ring

Failure percentage (%)
Averagey query latency (ms)

Figure 15: An increase in the number of nodes per ring ö signif-
icantly reduces the failure percentage of multi-constraint queries
for öÔò�� .

 0

 2

 4

 6

 8

 10

 12

 14

 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
 200

 250

 300

 350

 400

Fa
ilu

re
 p

er
ce

nt
ag

e
(%

)

A
ve

ra
ge

 q
ue

ry
 la

te
nc

y
(m

s)

Beta value

Failure percentage (%)
Average query latency (ms)

Figure 16: Increasing ñ decreases the failure percentage and in-
creases the average latency of a multi-constraint query. Overall,
the effect of ñ on application performance is small for multi-
constraint node selection.

 0

 2

 4

 6

 8

 10

 12

 14

 16

 18

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

 160

 180

 200

 220

 240

 260

 280

 300

Fa
ilu

re
 p

er
ce

nt
ag

e
(%

)

A
ve

ra
ge

 q
ue

ry
 la

te
nc

y
(m

s)

System size

Failure percentage (%)
Average query latency (ms)

Figure 17: The percentage of multi-constraint queries that can-
not be resolved with Meridian and average query latency. Both
are independent of system size.

 8

 10

 12

 14

 16

 18

 20

 22

 24

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

A
ve

ra
ge

 q
ue

ry
 lo

ad
 (K

B
)

System size

Figure 18: The average load of a multi-constraint query grows
sub-linearly with the system size.

latency from the current intermediate node to the desti-
nation, as any probe that requires more time cannot be
a closer node and its result is discarded. The average
query latency curve in Figure 7 shows that queries are re-
solved quickly regardless of 7 . Average query latency is
determined by the slowest node in each ring (subject to
the maximum latency bound) and the hop count, both of
which increases only marginally as 7 increases from four
to sixteen.

The f parameter captures the tradeoff between query
latency and accuracy as shown in Figure 8. Increasingf increases the query latency, as it reduces the improve-
ments necessary before taking a hop, and therefore in-
creases the number hops taken in a query. However, in-
creasing f also provides a significant increase in accuracy
for f54A� G î ; this matches our analysis (see Thm. 4.2, and
also Thm. 4.3 and Thm. 4.4a). Accuracy is not sensitive
to f for f-�h� G�î .

We examine the scalability of the closest node discov-
ery application by evaluating the error, latency and aggre-
gate load at different system sizes. Figure 9 plots the me-
dian error and average query latency for 7��Ð:<;/= � . As
predicted by the theoretical analysis in Section 4, the me-
dian error remains constant as the network grows, varying
only within the error margin. The error improves for re-
ally small networks where it is feasible to test all possible
nodes for proximity. Similarly, the query latency remains

11

constant for all tested system sizes.
Scalability also depends on the aggregate load the sys-

tem places on the network, as this can limit the number of
concurrent closest node discoveries that can be performed
at a particular system size. Figure 10 plots the total band-
width required throughout the entire network to resolve
a query, and shows that it grows sub-linearly with sys-
tem size, with 2000 nodes requiring a total of 2.6 KB per
query.

A desirable property for load-balancing, and one of the
assumptions in our theoretical analysis (see Thm. 4.4b
on load-balancing) is stochastic independence of the ring
sets. We verify this property indirectly by measuring the
in-degree ratio of the nodes in the system. The in-degree
ratio is defined as the number of incoming links to a nodeR over the average number of incoming links to nodes
within a ball of radius � around R . If the ring sets are in-
dependent then the in-degree ratio should be close to 1;
in other words, it would indicate that the nodes within the
radius � around R are selected evenly as neighbors. Fig-
ure 11 shows that Meridian is very evenly load-balanced,
as more than 90% of the balls have an in-degree ratio less
than two for balls of radius 20ms and 50ms.

A desirable property, and one of the assumptions in our
theoretical analysis (see Thm. 4.2) is that our ring mem-
bers are well distributed due to our multi-resolution ring
structure and our hypervolume ring membership replace-
ment scheme. To determine their actual effectiveness, we
evaluate the latency ratio of the nodes. The latency ratio
for a node R and a target node S is defined as the la-
tency of node � to S over the latency of R to S , where� is the neighbor of R that is closest to S . The CDF
in Figure 12 indicates that for fÍ�¶� G î , further progress
can be made via an extra hop to a closer node more than
80% of the time. For f5�Ö� G � , an extra hop can be taken
over 97% of the time. This gives a good indication that
multi-resolution rings and hypervolume ring membership
replacement protocol are doing a good job in distribut-
ing the ring nodes in the latency space. The hypervolume
ring membership protocol also provides significantly more
consistent results than a random replacement protocol, as
the standard deviation of relative error is 38ms using hy-
pervolume replacement, but is 151ms when using random
replacement.

We evaluate how Meridian performs in central leader
election by measuring its relative error as a function of
group size. Figure 13 shows that, as group size gets larger,
the relative error of the central leader election application
drops. Intuitively, this is because the larger group sizes
increase the number of nodes eligible to serve as a well-
situated leader, and simplify Meridian’s task of routing the
query to a suitable node.

We evaluate our multi-constraint protocol by the per-
centage of queries that it can satisfy, parameterized by

the difficulty of the set of constraints. For each multi-
constraint query we select four random target nodes, and
the constraint to each target node is drawn from a uniform
distribution between 40 and 80 ms. The difficulty of a set
of constraints is determined by the number of nodes in the
system that can satisfy them. The fewer the nodes that
can satisfy the set of constraints, the more difficult is the
query.

Figure 14 shows a histogram of the success rate bro-
ken down by the percentage of nodes in the system that
can satisfy the set of constraints. For queries that can be
satisfied by 0.5% of the nodes in the system or more, the
success rate is over 90%.

As in closest node discovery, the number of nodes per
ring 7 has the largest influence on the performance of the
multi-constraint protocol. Figure 15 shows the failure rate
decreases as the number of nodes per ring increases. Sur-
prisingly, it also shows a decrease in average query latency
as the number of nodes per ring increases. This is due to
the reduction in the number of hops needed before a con-
straint satisfying node is found, as a search can end early
by finding a satisfactory node. Figure 16 shows that vary-
ing f in the multi-constraint protocol has similar but less
pronounced effects as in the closest node discovery proto-
col. An increase in f decreases the failure percentage and
increases the average latency of a multi-constraint query.

The scalability properties of the multi-constraint system
are very similar to the scalability of closest node discov-
ery. Figure 17 shows that the failure rate and the aver-
age query latency are independent of system size, even
when the number of nodes per ring 7��Ö:I;)= � (note that
setting 7 to a constant would favor the runs with small�). Figure 18 shows that the average load per multi-
constraint query grows sub-linearly. The non-increasing
failure rate and the sub-linear growth of the query load
make the multi-constraint protocol highly scalable.

Physical Deployment. We have implemented and de-
ployed the Meridian framework and the closest node dis-
covery protocol on PlanetLab. The implementation is
small, compact and straightforward; it consists of approx-
imately 2500 lines of C++ code. Most of the complexity
stems from support for firewalled hosts.

Hosts behind firewalls and NATs are very common on
the Internet, and a system must support them if it expects
large-scale deployment over uncontrolled, heterogeneous
hosts. Meridian supports such hosts by pairing each fire-
walled host with a fully accessible peer, and connecting
the pair via a persistent TCP connection. Messages bound
for the firewalled host are routed through its fully accessi-
ble peer - a ping, which would ordinarily be sent as a direct
UDP packet or a TCP connect request, is sent to the proxy
node instead, which forwards it to the destination, which
then performs the ping to the originating node and reports

12

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20

C
um

ul
at

iv
e

fra
ct

io
n

of
 p

ai
rs

Relative error of closest node selection

Meridian (PlanetLab)
Meridian (Simulation)

Figure 19: The Meridian (PlanetLab) curve shows the relative
error of a deployment of Meridian over 166 PlanetLab nodes. We
compared it against a similarly configured simulation to ensure
the validity of our simulation results.

the result. A node whose proxy fails is considered to have
failed, and must join the network from scratch to acquire
a new proxy. Since a firewalled host cannot directly or in-
directly ping another firewalled host, firewalled hosts are
excluded from ring membership on other firewalled hosts,
but included on fully-accessible nodes.

We deployed the Meridian implementation over 166
PlanetLab nodes. We benchmark the system with 1600
target web servers drawn randomly from the Yahoo web
directory, and examine the latency to the target from the
node selected by Meridian versus the optimal obtained
by querying every node. Meridian was configured with7��çÃ , � �Ðe ms, f±��� G�î , and � �µ^ . Overall, median
error in Meridian is 1.844ms, and the relative error CDF
in Figure 19 shows that it performs better than simulation
results from a similarly configured system.

6 RELATED WORK
Meridian is a general node proximity framework that we
have applied to the server selection. We separate the server
selection techniques into those that require network em-
bedding and those that do not, and survey both in turn.

Network Embedding: Recent work on network coordi-
nates can be categorized roughly into landmark based sys-
tems, and the simulation based systems. Both types can
embed nodes into a Euclidean coordinate space. Such an
embedding allows the distance between any two nodes to
be determined without direct measurement.

GNP [40] is the pioneer in network embedding systems.
It uses a fixed set of landmarks that determines the coordi-
nates of a node by its distance to the landmarks. ICS [36]
and Virtual Landmarks [52] both aim to reduce the com-
putational cost of GNP by replacing the embedding with
ones that are computationally cheaper, at the cost of losing
accuracy. Meridian uses the same low-cost embedding as
Virtual Landmarks, but employs the resulting coordinates
only for selecting diverse ring members, not for resolving
queries. To address the issue of single point of failure due

to fixed landmarks, Lighthouse [41] uses multiple local
coordinate system that are joined together through a tran-
sition matrix to form a global coordinate system. PIC [9]
and PCoord [35] only require fixed landmarks for boot-
strapping and calculate their coordinates based on the co-
ordinates of peers. This can lead to compounding of em-
bedding errors over time in a system with churn. NPS [39]
is similar to PIC and PCoord but further imposes a hier-
archy of servers to ensure consistency of the coordinates
across all the nodes. Vivaldi [12] is based on a simulation
of springs, where the position of the nodes that minimizes
the potential energy of the spring also minimizes the em-
bedding error. BBS [48] performs a similar simulation to
calculate coordinates, simulating an explosion of particles
under a force field.

IDMaps [16], like network embedding systems, can
compute the approximate distance between two IP ad-
dresses without direct measurement based on strategically
placed tracer nodes. IDMaps incurs inherent errors based
on the client’s distance to its closest tracer server and re-
quires deploying system wide infrastructure. Other work
[15] has also examined how to delegate probing to spe-
cialized nodes in the network.

There has also been theoretical work [28, 49] on ex-
plaining the empirical success of network embeddings and
IDMaps-style approaches.

Server Selection: Our closest node discovery protocol
draws its inspiration from DHTs such as Chord [50], Pas-
try [45] and Tapestry [54], but these DHTs solve a differ-
ent problem, namely routing. Proximity based neighbor
selection [6, 5] performs a similar search using the node
entries in the route table of a structured P2P system. This
technique relies on the routing table levels to loosely char-
acterize peer nodes by latency, but does not directly orga-
nize nodes based on their latency and incurs the overhead
associated with structured P2P systems. The time and
space complexity of two similar techniques are discussed
in [24] and [26], but these techniques do not provide a
general framework, and instead focus exclusively on find-
ing the nearest neighbor. Moreover, their results appear
to apply only to Internet latencies modeled by growth-
constrained metrics, whereas our framework extends to
a more general model (see Section 4). Also, without an
evaluation on a large scale data set collected from live In-
ternet nodes, their practicality can not be confirmed.

A closest node discovery technique described as� �Ì���	�Ì��
��o� is introduced in [29], where 7 landmarks are
placed, each keeping track of its latency to the nodes in
the system. A node finds the closest node by querying all7 landmarks for nodes that are the same distance
 ³ away
from the landmarks, and choosing the closest node from
that set. The accuracy of the system depends heavily on
the assumption that triangle inequality holds on the ma-

13

jority of routes, and the choice of an appropriate
³

is not
obvious without prior knowledge of the node distribution.

Another landmark based technique for closest node dis-
covery is described in [44], where each node determines
its bin number via measurements to well known land-
marks. A node wishing to find its closest node determines
its own bin number, queries a modified DNS server for
other nodes in the same bin, or the nearest bin if no other
nodes belong in the same bin, and chooses a random node
from the retrieved set of servers.

Several different proactive techniques to locate the clos-
est replica to the client are evaluated in [19]. These tech-
niques offer different methods to construct a connectivity
graph by means of polling the routing table of connecting
hops, explicitly sending routing probes, or limited probing
with triangulation. The study assumes the network condi-
tions and topology remain relatively static, and does not
directly address scalability.

Dynamic server selection was found in [3] to be more
effective than static server selection due to the variabil-
ity of route latency over time and the large divergence
between hop count and latency. Simulations [4] using a
simple dynamic server selection policy, where all replica
servers are probed and the server with the lowest average
latency is selected, show the positive system wide effects
of latency-based server selection. Our closest node dis-
covery application can be used to perform such a selection
in large-scale networks.

7 CONCLUSIONS
Network positioning based node selection is a critical
building block for many large scale distributed applica-
tions. Network coordinate systems, coupled with a scal-
able node selection substrate, may provide one possible
approach to solving such problems. However, the gener-
ality of absolute coordinate systems comes at the expense
of accuracy and complexity.

In this paper, we outlined a lightweight, accurate
and scalable framework for solving positioning problems
without the use of explicit network coordinates. Our ap-
proach is based on a loosely structured overlay network
and uses direct measurements instead of virtual coordi-
nates to perform location-aware query routing without in-
curring either the complexity, overhead or inaccuracy of
an embedding into an absolute coordinate system or the
complexity of a geographic peer-to-peer routing substrate
such as CAN [43] and P-Trees [10].

We have argued analytically that Meridian provides ro-
bust performance, delivers high scalability, and balances
load evenly across nodes. We have evaluated our sys-
tem through a PlanetLab deployment as well as extensive
simulations, parameterized by data from measurements of
2500 nodes and ì G e î million node pairs. The evaluation
indicates that Meridian is effective; it incurs less error than

systems based on an absolute embedding, is decentralized,
requires relatively modest state and processing, and lo-
cates nodes quickly. We have shown how the framework
can be used to solve three network positioning problems
frequently-encountered in distributed systems; it remains
to be seen whether the lightweight approach advocated in
this paper can be applied to other significant problems.

Acknowledgments
The authors are grateful to Frank Dabek, Russ Cox, Frans
Kaashoek, Robert Morris, Eugene Ng and Hui Zhang for
sharing the Vivaldi and GNP software and data.

References
[1] D. Andersen, H. Balakrishnan, M. Kaashoek, and R. Mor-

ris. Resilient Overlay Networks. In SOSP 2001.

[2] A. Bavier, M. Bowman, B. Chun, D. Culler, S. Karlin,
S. Muir, L. Peterson, T. Roscoe, T. Spalink, and M. Wawr-
zoniak. Operating System Support for Planetary-Scale Net-
work Services. In NSDI 2004.

[3] R. Carter and M. Crovella. Server Selection Using Dy-
namic Path Characterization in Wide-Area Networks. In
INFOCOM 1997.

[4] R. Carter and M. Crovella. On the Network Impact of Dy-
namic Server Selection. Computer Networks, 31, 1999.

[5] M. Castro, P. Druschel, Y. Hu, and A. Rowstron. Exploit-
ing network proximity in peer-to-peer overlay networks. In
Tech Report MSR-TR-2003-82, Microsoft Research, 2002.

[6] M. Castro, P. Druschel, Y. Hu, and A. Rowstron. Proxim-
ity neighbor selection in tree-based structured peer-to-peer
overlays. In Tech Report MSR-TR-2003-52, MSR, 2003.

[7] U. G. Center. QHull. UIUC Geometry Center, QHull Com-
put. Geometry Package, http://www.qhull.org, 2004.

[8] Y. Chu, S. Rao, and H. Zhang. A Case for End System
Multicast. In SIGMETRICS 2000.

[9] M. Costa, M. Castro, A. Rowstron, and P. Key. PIC:
Practical Internet Coordinates for Distance Estimation. In
ICDCS 2004.

[10] A. Crainiceanu, P. Linga, J. Gehrke, and J. Shanmugasun-
daram. Querying Peer-to-Peer Networks Using P-Trees. In
WebDB 2004.

[11] W. Cui, I. Stoica, and R. Katz. Backup Path Allocation
Based On A Correlated Link Failure Probability Model In
Overlay Networks. In ICNP 2002.

[12] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A
Decentralized Network Coordinate System. In SIGCOMM
2004.

[13] F. Dabek, M. Kaashoek, D. Karger, R. Morris, and I. Sto-
ica. Wide-area cooperative storage with CFS. In SOSP
2001.

[14] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson,
S. Shenker, H. Sturgis, D. Swinehart, and D. Terry. Epi-
demic algorithms for replicated database maintenance. In
PODC 1987.

14

[15] Z. Fei, S. Bhattacharjee, E. Zegura, and M. Ammar. A
Novel Server Selection Technique for Improving the Re-
sponse Time of a Replicated Service. In INFOCOM 1998.

[16] P. Francis, S. Jamin, C. Jin, Y. Jin, D. Raz, Y. Shavitt, and
L. Zhang. IDMaps: A global Internet host distance esti-
mation service. IEEE/ACM Transactions on Networking,
9:525–540, October 2001.

[17] K. Gummadi, S. Saroiu, and S. Gribble. King: Estimating
Latency between Arbitrary Internet End Hosts. In IMW
2002.

[18] A. Gupta, R. Krauthgamer, and J. Lee. Bounded geome-
tries, fractals, and low-distortion embeddings. In FOCS
2003.

[19] J. Guyton and M. Schwartz. Locating Nearby Copies of
Replicated Internet Servers. In SIGCOMM 1995.

[20] J. Heinonen. Lectures on analysis on metric spaces.
Springer Verlag, Universitext 2001.

[21] K. Hildrum, R. Krauthgamer, and J. Kubiatowicz. Object
location in realistic network. In SPAA 2004.

[22] K. Hildrum, J. Kubiatowicz, S. Ma, and S. Rao. A note on
finding the nearest neighbor in growth-restricted metrics.
In SODA 2004.

[23] K. Hildrum, J. Kubiatowicz, and S. Rao. Another way to
find the nearest neighbor in growth-restricted Metrics. In
UC Berkeley CSD ETR, UCB/CSD-03-1267, UC Berkeley,
August 2003.

[24] K. Hildrum, J. Kubiatowicz, S. Rao, and B. Zhao. Dis-
tributed Object Location in a Dynamic Network. In SPAA
2002.

[25] K. Johnson, J. Carr, M. Day, and M. Kaashoek. The mea-
sured performance of content distribution networks. In
WCW 2000.

[26] D. Karger and M. Ruhl. Finding Nearest Neighbors in
Growth-restricted Metrics. In STOC 2002.

[27] D. Kempe, J. Kleinberg, and A. Demers. Spatial Gossip
and Resource Location Protocols. In STOC 2001.

[28] J. Kleinberg, A. Slivkins, and T. Wexler. Triangulation and
embedding using small sets of beacons. In FOCS 2004.

[29] C. Kommareddy, N. Shankar, and B. Bhattacharjee. Find-
ing Close Friends on the Internet. In ICNP 2001.

[30] R. Krauthgamer and J. Lee. Navigating nets: simple algo-
rithms for proximity search. In SODA 2004.

[31] R. Krauthgamer and J. Lee. The black-box complexity of
nearest neighbor search. In ICALP 2004.

[32] R. Krauthgamer and J. Lee. The intrinsic dimensionality of
graphs. In STOC 2003.

[33] R. Krauthgamer, J. Lee, M. Mendel, and A. Naor. Mea-
sured descent: a new embedding method for finite metrics.
In FOCS 2004.

[34] R. Lawrence. Running Massively Multiplayer Games as a
Business. In Keynote: NSDI 2004.

[35] L. Lehman and S. Lerman. PCoord: Network Position Es-
timation Using Peer-to-Peer Measurements. In NCA 2004.

[36] H. Lim, J. Hou, and C. Choi. Constructing Internet Coordi-
nate System Based on Delay Measurement. In IMC 2003.

[37] P. Maniatis, M. Roussopoulos, T. Giuli, D. Rosenthal,
M. Baker, and Y. Muliadi. Preserving peer replicas by rate-
limited sampled voting. In SOSP 2003.

[38] R. Motwani and P. Raghavan. Randomized algorithms.
Cambridge University Press, 1995.

[39] T. Ng and H. Zhang. A Network Positioning System for
the Internet. In USENIX 2004.

[40] T. Ng and H. Zhang. Predicting Internet Network Distance
with Coordinates-Based Approaches. In INFOCOM 2002.

[41] M. Pias, J. Crowcroft, S. Wilbur, T. Harris, and S. Bhatti.
Lighthouses for Scalable Distributed Location. In IPTPS
2003.

[42] C. Plaxton, R. Rajaraman, and A. Richa. Accessing nearby
copies of replicated objects in a distributed environment.
In SPAA 1997.

[43] S. Ratnasamy, P. Francis, M. Hadley, R. Karp, and
S. Shenker. A Scalable Content-Addressable Network. In
SIGCOMM 2001.

[44] S. Ratnasamy, M. Handley, R. Karp, and S. Shenker.
Topologically-Aware Overlay Construction and Server Se-
lection. In INFOCOM 2002.

[45] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer sys-
tems. In Middleware 2001.

[46] A. Rowstron and P. Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer stor-
age utility. In SOSP 2001.

[47] S. Savage, A. Collins, and E. Hoffman. The End-to-End
Effects of Internet Path Selection. In SIGCOMM 1999.

[48] Y. Shavitt and T. Tankel. Big-Bang Simulation for Embed-
ding Network Distances in Euclidean Space. In INFOCOM
2003.

[49] A. Slivkins. Distributed approaches to triangulation and
embedding. In SODA 2005.

[50] I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Bal-
akrishnan. Chord: A Scalable Peer-to-peer Lookup Service
for Internet Applications. In ACM SIGCOMM 2001.

[51] K. Talwar. Bypassing the embedding: approximation
schemes and compact representations for growth restricted
metrics. In STOC 2004.

[52] L. Tang and M. Crovella. Virtual Landmarks for the Inter-
net. In IMC 2003.

[53] H. Weatherspoon, T. Moscovitz, and J. Kubiatowicz. Intro-
spective Failure Analysis: Avoiding Correlated Failures in
Peer-to-Peer Systems. In RPPDS 2002.

[54] B. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An in-
frastructure for fault-tolerant wide-area location and rout-
ing. In Technical Report UCB/CSD-01-1141, UC Berkeley,
April 2001.

15

A Proofs
Here we provide proofs for the results in Section 4. First
we address the quality of the rings, then approximate near-
est neighbors, then exact nearest neighbors, and conclude
with load-balancing; the proof on load-balancing is signif-
icantly more complicated than the other proofs. To make
this write-up self-contained, we include a subsection on
Chernoff Bounds that are used throughout the proofs.

For simplicity we redefine the KR-dimension as the
smallest � such that for any fB�Î^ the cardinality of any
ball S � ���3� is at most f�¸ times larger that of S � ���)�
f~� . It
is easy to check that this definition coincides with the old
one for any fí� e � ,
Qè ^ . We redefine the doubling
dimension similarly.

If ® is a neighbor of the current node � , and � is the
target, then call ® a progress- f neighbor if � � Àz�
� » À è5f .

A.1 Quality of the rings
We start with two proofs which show that even with small7 it is possible to make the rings ­ -nice.

Proof of Thm. 4.1: Fix two Meridian nodes �Â« and let�D�±­+� � v . Pick the smallest
 such that � � v|Cg�a4Ae � . Then

S � �å©AS v ��e � CE� � v �°©AS v ��e � K � \ �
�°�±S v �Õ¿o�3� (
where ¿	�!ïãC����
­ , so � S � �+�Â4±¿ ¸ � S v ���3�H� . Therefore by
Chernoff Bounds (Claim A.10) some node from § � � lands
in S v ���3� with failure probability at most

³ �L� F .

Proof of Thm. 4.5: Fix two Meridian nodes �Â« and let�¯�6­+� � v . Pick the smallest
 such that � � vDC��A4Çe � .
Then �B��e � ¿ , where ¿Å� eê�k^�C � · � . So applying the
definition of a doubling measure :<;/=å¿ times we see thatë¤% S � � , �
ë¤% S v ���3� , 4Ae)Ñ � ¸�� ����� � �A¿�Ñ � ¸ � .

The ring § � � is distributed as in the following pro-
cess: pick nodes from S � � independently with probabil-
ity ë¤�k¥��#�Ìë¤�²S � �Z� , until we gather 7 distinct nodes. At each
draw the probability of choosing a node from S v ���3� is
at least ¿ � Ñ � ¸ � . The claim follows from the Chernoff
Bounds (Lemma A.9), exactly as in Claim A.10.

A.2 Approximate nearest neighbor
In this subsection we prove Thm. 4.2.

The search algorithm used by Meridian (denoted by¾´��f~� in Section 4) looks only at three rings at a given
node. For Thm. 4.2 we’ll need a generalization ¾´��f (?²� ,
which looks at ?�è�� rings. Specifically, if node � receives
a query for target � , it chooses
Æ� eaC���:<;/= � � À�� , and
finds a neighbor ® in the ? rings § � . ,
�\�?�4�0 1
 that is
closest to � . If ® is a progress- f neighbor then the query
is forwarded to ® ; else the search stops.

The following claim essentially shows that if we look
at the ring of radius that is too small then we cannot make
much progress towards the target node.

Claim A.1 For any nodes ��� (® (�3� , suppose � � » 4he ��� . ,
����Õ:I;)=¤� � À � . Then � � Àz�
� » À 1 ^>C5e F � . .
Proof: Let ¿ç� e �L� . . Then � � »64¼¿ãe ����� 1 ¿Ä� � À ,
so �/» À èÐ� � À \A� � »Î�É�k^_\5¿��$� � À , and it follows that� � À �3�/» À 1 ^Ì�ê�k^P\	¿s�°4Í^>CEe
¿ .

By Claim A.1 in a given step we might not need to look
at all ? rings: we look at the rings § � . in the order of de-
creasing 0 , and without loss of generality we consider the
ring § � . , 0@4h
|\	ï only if in the larger rings there was no
node « such that � � À �
� vÁÀ èO^ÙCAe . �o� K�� . In particular, if
for some ? algorithm ¾´��f (?²� finds a progress-2 node then
so does ¾´��f (�/� .

The following claim shows how our algorithm ¾ zooms
in on the target node. We’ll use the function� ��f~�¤�Bf �$^>C¯­L�#�ê�k^¹\ f�­L� G
Note that for f � �k^ (� · � the function

� ��f~� is continuously
increasing to infinity. Define ?#��f~�¤��� if f è±e and ?#��f~�¤�� C���:<;/=Ù^Ì�ê�²eÄ\Ïf�� � otherwise.

Claim A.2 Assume the rings are ­ -nice. Let � be the tar-
get node, let « � §s¨ be its nearest neighbor. Let � be
any Meridian node, suppose � � Àz�
��vÁÀÏ� � ��f~� for somef � �$^ (� · � , and fix ?åèB?$��f~� . Then at � algorithm ¾8��f (?²�
finds a progress- f neighbor of � .
Proof: First we claim that such neighbor exists. Indeed,
pick the smallest
 such that � � v �$^ÙC±­+�a4çe � . Since the
rings are ­ -nice, node � has a neighbor ® � § � � within
distance ­+� � v from node « . Then, letting �g�B� vÁÀ ,

� » À 4 �ãCE�/v » 4h�ãC¯­+� � va4A�ÄC¯­Ì�²�ãCE� � À��
� ­+� � À¤C��k^°CE­L�k� � Àz� � ��f~�¤�±� � ÀH�Ìf (

claim proved. It remains to show that ® lies in one of
the rings considered by the algorithm ¾´�²?²� , i.e. that if� � À±4 e . 1 e)� � À then 0N\�?�4�
 4É0ÆCç^ . Indeed,
 4-0ÄCB^ follows since

� � v 4 � � À C¯�´4h� � À �k^PC � ��f~� �s� �
4 � � À �$^>C � �$^z� �s� �°4±e3� � À �u�$^>C¯­L� (

e � 1 e)� � v �k^>CE­L�°45ï�� � À 4Ae . K F (
and 0_\�?�4E
 follows by Claim A.1.

The next claim allows us to use Claim A.2 for small f ;
the proof is straightforward.

Claim A.3 For any ¿ � �²� (^z� we have� �k^>C-¿s�#�u�$^>C�¿s�°4 � �$^>C�¿��3e/� G
Moreover,

� �$^>C¯­ F �3e/�>4½^>C��)­ .
16

Now we are ready to prove Thm. 4.2.

Proof of Thm. 4.2: Let � be the target of the nearest-
neighbor query, and let � be the distance from � to its
closest Meridian neighbor.

(a) We need to prove that algorithm ¾´�²e (��� finds a 3-
approximate neighbor of � . By Claim A.2 while the query
visits nodes � such that � � Àz�
�@è � �²e/� , the algorithm finds
a progress-2 neighbor of � and forwards the query to it.
The distance to � goes down by a factor of at least 2 at
each step, so after at most :I;)=Â��¬�� steps the query should
arrive at some node « such that � vÁÀ �
� 1 � �²e/�ã4 � . This
proves part (a).

(b) We’ll show that ¾8��f (?²� finds a �k^/C!�)­L� -approximate
neighbor of � , where ?¹�"�_C#�Õ:I;)=°e/�
­ F � . By Claim A.2
while the query visits nodes � such that � � ÀH�3�Aè � �²e/� ,
the distance to � goes down by a factor of at least 2 at
each step. So after at most :<;/=Â�²¬�� steps the query should
arrive at some node « such that �`vÁÀz�
� 1 � �²e/� . Then by
Claims A.2 and A.3, using induction on
 we show that
after
 1 ? more steps the query will arrive at node ® such
that � » À��
� 1 � �k^>Che �o� � . In particular, by Claim A.3 we
are done when
å�A:I;)=Â�²­ F �3e/� . This proves part (b).

(c) Note that if any neighbor of the current node �
achieves progress less than ^DC9¿ , ¿ � �²� (�F � then by
Claim A.2 we have � � À �3�@4 � �$^åCÏ¿s�°4�^¤C$�/­�C-eÌ¿ .

A.3 Exact nearest neighbor
Here we prove Thms. 4.3 and 4.4a on finding exact near-
est neighbors. In both theorems the progress is at least 2 at
every step except maybe the last one; we have to be care-
ful about this last step, since in general the target is not a
Meridian node and therefore not a member of any ring.

Proof of Thm. 4.3: Let 7Q�Îe G eD¥�^z��¸°:Iæ~�²�E� Ê8� � ³ � . Let� � Ê be the target, and let « � §�¨ be its exact nearest
neighbor. Fix some Meridian node � , let ����� � À and
choose
 such that e3�´4he � 1 ï/� .

We claim that either « � § � � , or with failure probability
at most

³ �L�5� Ê´�k:<;/=Â��¬g� the ring § � � contains some ® �
S v �²�`�)e)� . Indeed, S � �å©AS À � î �`� , so

� S � �+� 1 � S À � î �`���`4Í^H� ¸ � S À ���u�3e)�H� (
so if � S � � ��èÅ7 then the claim follows from Claim A.10;
the constant e G e in front of 7 works numerically as long as
e.g. � � Ê´�Â� î)î F and

³ 1 � � F , which is quite reasonable.
Finally, if � S � �+�`4A7 then every node in S � � is in ring § � � ,
including « , claim proved.

So the progress is at least e at every step except maybe
the last one, with failure probability at most

³ �Á�E� Ê8� . The
Union Bound over all �E� ¦8� possible �|� pairs gives the
total failure probability

³
.

Thm. 4.4a is proved using the same idea, except we
need to address the fact that Meridian nodes themselves

are chosen at random from Ê . Let Ê � ���3� denote the
closed ball in Ê of radius � around node � , i.e. the set
of all nodes in Ê within distance � from � .

Proof of Thm. 4.4a: Denote Ê � � �9Ê � �²e � � and let 72�ÃD¥`^H��¸°:<æ���e3�E� Ê´� � ³ � . Let � be the target and let « � §�¨
be its exact nearest neighbor. Fix some Meridian node � ,
let �h��� � À and S ��S�À
���u�3e/� , and choose
 such thate3�@4±e � 1 ï/� .

Note that we can view the process of selecting § ¨ fromÊ as follows: choose the cardinality � for S � � from the
appropriate distribution, then choose, independently and
uniformly at random, � nodes from Ê � � , and �Æ\�� nodes
from Ê&%PÊ � � .

We claim that with failure probability at most
³ ËQ�³ �L�E� Ê´� either « � § � � , or the ring § � � contains some® � S . Indeed, if the cardinality of S � � is at most 7 , then

all of S � � lies in the ring § � � , including « . Now assume
the cardinality of S � � is some fixed number �	�B7 . SinceÊ � � ©hÊDÀ)� î ��� , it follows that

�' �d� S2� � � � Ê � �+�
� Ê � ���u�3e)�H� 4

� Ê � � î ���H�
� Ê � ���u�3e/��� 4Í^H� ¸ (

so by Claim A.11a with failure probability at most
³ Ë'�)e

the cardinality of S is at least half the expectation, so that
by Claim A.10 with failure probability at most

³ ËÕ�3e some
node in ring § � � lands in S . Claim proved.

Therefore the progress is at least e at every step except
maybe the last one, with failure probability at most

³ Ë . The
Union Bound over all �E� ¦Æ� possible �o� pairs gives the
total failure probability

³
.

A.4 Load-balancing: Thm. 4.4b
In this subsection we’ll prove Thm. 4.4b, which is about
load-balancing. A large part of the proof is the setup: it is
non-trivial to restate the algorithm and define the random
variables so that the forth-coming Chernoff Bounds-based
argument works through. For convenience, for any �	�±�
denote % � , �9yz� (^ G�GHG)(��*)� .

For technical reason we’ll need a slightly modified
search algorithm. On every step in algorithms ¾´�$¥ � and¾DËZ�k¥�� we look at a subset § of neighbors, and either the
search stops, or the query is forwarded the node ® � §
that is closest to the target. Here is the modification: if ®
is a progress-2 node, then instead of forwarding to ® the
algorithm can forward the query to an arbitrary progress-2
node in § . It is easy to check that all our results for ¾´�$¥ �
and ¾ÔËZ�k¥�� carry over to this modification. For Thm. 4.4b
we’ll need a specific version of ¾ÔËZ��e)� which can be seen
as a rule to select between different progress-2 nodes.

As compared to (the proof of) part (a), we increase the
ring cardinalities by a factor of ����:I;)=>�Ï�Á��:I;)=P¬�� . This is
essentially because we need more randomness, so that in
the proof we could use Chernoff Bounds more efficiently.

17

While it might be possible to prove the theorem without
this blow-up, it seems to lead to mathematical difficulties
that are way beyond the scope of this paper.

Recall that the § � � is well-formed if it is distributed as
a random 7 -node subset of S � � . Here for technical conve-
nience we’ll use a slightly different definition: say § � � is
well-formed if it is distributed as a set of 7 nodes drawn
independently uniformly at random from S � � . The differ-
ence is that the new definition allows repetitions; note that
all previous results work under either definition.

Let’s define our version of ¾ÔËZ�²e/� , which we denote ¾ .
Say each ring § � � consists of 7 slots + � � �<0`� which can
be seen as independent random variables distributed uni-
formly at random in S � � . Since the rings are independent,

y,+ � �d�<0`� é � � § ¨ (
 � % :<;/=>¬ ,�(0 � % 7 , �
is a family of independent random variables.

Let -¶�6ìå:Iæ��²�!:<;/=Â�²¬��d� ³ � . For every pair �|
 , parti-
tion the slots + � � �k¥�� into -@:I;)=Â��¬�� equal-size collections. � � �I0 (?²� , where 0 � % :I;)=P¬ , and ? � % - , ; formally, each
such collection is a set of indices 0uË into + � � �<0�Ë'� . Let

§ � � �<0 (?�� �Íy/+ � � �I0 Ë � é 0 Ë � . � � �I0 (?²�L�D©5S � �
be the set of values of slots in

. � �d�<0 (?�� . Obviously, the
union of all sets § � �#�$¥ (¥ � is § � � .

Say a 0 -step query is a query on the 0 -th step of the algo-
rithm. When node � receives a 0 -step query to target � , it
chooses ? � % - , in a round-robin fashion (the round-robin
is separate for each �`0 pair) and lets algorithm ¾´�$^z� han-
dle this query using only the neighbors in § � � �<0 (?�� , for the
corresponding
 . Specifically, ¾´�k^Ì� sets
å�!^êC��Õ:I;)= � � À � ,
asks every node in § � � �I0 (?²� to measure the distance to � ,
and forwards the query to the closest one.

We make each collection
. � �d�<0 (?²� have size 7êË_��Ã8¥^H��¸°:<æ~�²e10N� ³ � , where 0 �6�E� Ê8� -@:I;)=Â�²¬�� . Then using

the argument from part (a) we can show that for given��� (� (0 (?²� either the corresponding § � �d�<0 (?�� contains a
progress-2 node or it contains a nearest neighbor of � , with
failure probability at most

³ �/0 . The Union Bound over
all 0 possible ��� (� (0 (?²� tuples shows that our algorithm
is Ê -exact with failure probability

³
.

Note that algorithm ¾ can be seen as ¾aË���?�� with a rule to
select between different progress-2 nodes: namely, choose
a progress-2 node from the corresponding § � � �<0 (?²� if such
node exists, else proceed with ¾aË���?²� . Obviously, in under
assumptions of Thm. 4.4a with failure probability

³
this

scheme will behave exactly as ¾ .
We consider a scenario where many independent ran-

dom choices are made. Specifically we choose2 � -node subset § ¨ of Ê ,2 subsets § � �#�I0 (?²�°©AS � � for each tuple ��� (
 (0 (?�� ,2 target � � for each node � .
For a collection of independent random choices, with-

out loss of generality we can assume that a given choice

happens any time before its result is actually used. In par-
ticular, we will assume that at first, §~¨ and � � ’s are cho-
sen. Then the time proceeds in :I;)=|�²¬�� epochs; in a given
epoch 0 , all subsets § � �d�<0 (¥�� are chosen, then all queries
are advanced for one step.

Let’s analyze the choice of § ¨ and the queries. Letx be the set of all � queries. For � � x , let �Á���3� be
the corresponding target. Let xsv`���3� be the set of queries� � x such that �Á�²�3� is within distance � from « . Let�Á�²§¤� be the set of all targets in the set § of queries. Let¿N�±�´�ê� Ê´� . By Claim A.11 � S � ���
�H� and � x � ���3��� are close
to its expectation:

Claim A.4 With failure probability at most
³
, for any � �§ ¨ÖÈ �Á��xã� and radius � the following holds:

(*) if 3N�Ö¿¤� Ê � ���3����èÖ7)� then � S � ���3��� and � x � ���3�H� are
within a factor of 2 from 3 , else they are at most e/7/� ,
where 7 � ������:<;/=|���~� ³ �$� .

This completes the setup; now, finally, we can argue
about load-balancing. We need some more preliminaries.
Recall that all queries are handled separately, even if a
given node simultaneously receives multiple queries for
the same target. When node � handles a 0 -step query and
in the process measures distance to its neighbor « , we say
that « receives a 0 -step request from � . Let’s define several
families of random variables:254 � v �I0 (?²� is the number of 0 -step queries forwarded

from � to « , and handled at � using a set § � �#�I0 (?²� , for
some
 .254 .� is the number of all 0 -step queries forwarded to
node � ; set 4 �� �Å^ . Then 4 � v �I0 (?²�°4 4 .� �1- .2�6 � v �I0 (?²� is the number of 0 -step requests received by« from � , and handled at � using a set § � �d�<0 (?�� , for
some
 .2�6 .� is the number of all 0 -step requests received by
node � . Clearly, 6 � v �<0 (?��°4 4 . �s�� �1- .

For every 0 -step query received, a given node sends
some constant number � of packets to each of the 7]Ë
neighbors in the corresponding set § � �#�I0 (?²� . Therefore
a given node � sends ��7êË � . 4 .� packets total, and re-
ceives ��� . 6 .� packets total. Since a single query in-
volves exchanging at most ��7]ËÁ:I;)=|�²¬�� packets, algorithm¾ is ��f (ÊÔ� -balanced if and only if � . ��7uË 4 .� C 6 .� �Æ4e
f~7uË�:<;/=Â��¬g� for every node � .

Say property � �I0`� holds if for each node « it is the case
that 4 .v 4±f and 6 .v �37uË~4±f . We need to prove that with
high probability � �I0�� holds for all 0 . It suffices to prove
the following claim:

Claim A.5 If � �I0>\�^z� then � �<0`� , with failure probability
at most

³ ��:I;)=|�²¬�� .
18

Then we can take the Union Bound over all :I;)=>¬ steps
to achieve the desired failure probability

³
.

Let’s prove Claim A.5. Suppose all queries have com-
pleted 0�\�^ steps and are assigned to the respective sets§ � �d�<0 (?�� . Now the only remaining source of randomness
before the 0 -th step is the choice of these sets. In partic-
ular, each random variable 4 � v �<0 (?�� depends only on one
set § � � �<0 (?�� , and so does 6 � vu�<0 (?�� . Since these sets are
chosen independently, for any fixed « variables

y 4 � v �<0 (?�� é � � § ¨ (? � % - , �
are independent, and so are

y 6 � v��I0 (?²� é � � §s¨ (? � % - , � G
First we claim that � �I0�� holds in expectation:

Claim A.6 For every Meridian node « and every step 0
(a)
' � 4 .v �P45f��3e and (b)

' � 6 .v �)7uË'�°45f��)e .
Suppose property � �I0ã\-^z� holds. Let’s bound the load

on some fixed node « . Note that

4 .v � �
all pairs � �87 M �

4 � v`�I0D\h^ (?²�
is a sum of independent random variables, each in % � (� ,
for �-�íf��1- . Applying Claim A.9b with ë½�íf��3e , we
see that 9;: % 4 .v �Ef , 4½�²�3�Ìï��=<�> F 4 ³ �)e3�Í:<;/=Â��¬g� G
Similarly, 6 .v �O� � �)7 M � 6 � vu�<0 (?�� is a sum of independent
random variables, each in % � (� , , so by Claim A.9b we can
upper-bound

9?: % 6 .v �37uË��½f , . By the Union Bound prop-
erty � �<0`� holds with the total failure probability at most³
. This completes the proof of Claim A.5.

It remains to prove Claim A.6. Let § � be the set of
queries � � x such that « is a nearest neighbor of the
target �Á�²�3� .
Claim A.7 � §����ê4h����e)¸|�`:<;/=Â�²�@� ³ � .
Proof: Choose target � � �Á�²§��
� such that ��v º is maximal.
Let �±�¼��v º . Then S º �²�`�/@]� � yÌ��� for any @9� ^ , so
by Claim A.4 � Ê º �²�`�/@]���Â4�����:I;)=o���~� ³ �$� . Note that §��Ô©S º ��e3�`�P©hÊ º ��e3�`� and

� Ê º �²e)���H�u4Í�²e/@]� ¸ � Ê º ���u�,@]�H�u4!�²e1@]� ¸ ����:I;)=o���~� ³ �#� G
Claim follows if we take small enough @2�Í^ .

Let � � be the smallest � such that S v ���3� has cardinality
at least twice the 7 � from Claim A.4. Let �ã���±x v ��� � e � � .
Let §5©Ex be the set of queries that get forwarded to « on
step 0 ; recall that 4 .v �O� § � .

Claim A.8 For any query � � xA%¤��§�� È � �
� and �å�±�Á���3�
we have

9?: % � � § , 4±���²e/¸Â�#�ê� Sãvu����v º ��� .
Proof: Let � �¶� v º and suppose query � is currently at
node � . Since �$B� § � this query gets forwarded to some
node ® � S À ��� �zº �3e/� , so if �8�±� �zº �3e then clearly �CB� § .
Assume �@4h� �Hº �)e . Since S v ���`�P©5S º �²e3�`� , by Claim A.4
we have

� Sãv��²���H� 4 � S º �²e)���H�`4Ae
¿å� Ê º �²e)���H�`4Ae
¿ãe ¸ � Ê º �²���H�
4 ï>e ¸ � S º ���`��� (9?: % � � § , � ^Ì�]� S º �²� �zº �)e)����4Í^Ì�]� S º ���`��� (

which is at most ï>e/¸]�ê� Sãv��²���H� , as required.

Now for �!�±� � K � %ã�²� � È §��z� and �D�B���~e �

¿`� é � ' � §ED2�@�`4Í� �ã� K �/� 9?: % � � § é � � � ,
4 ���²e � ��� �ã� K �/� �ê� �Ä�d�`4A����ï ¸ � (' � 4 .v � � ' � § �`4Í� §o�u��C�� �Ä�`��C � ¿ �
4 ���²e ¸ �`:I;)=|���~� ³ �sC5����ï ¸ �u:<;/=|��¬g�
4 ����ï ¸ �`:I;)=|����¬@� ³ �°4hf��3e G

This completes the proof of Claim A.6a. For
Claim A.6b, let § be the set of queries that cause a 0 -step
request to « . Suppose a 0 -step query � is at node � ; let�_�Ð�Á���3� and � �Ð� �Hº . Node « receives a 0 -step request
due to � only if � � v 4�e3� , so let’s assume it is the case.
Then ��v º 4A�ãCE� � va4��)� , so

S � ��� v º � © S � �²� � v CE� v º �°©AS � � î ���
� S � ��� v º ��� 4 � S � � î ���H�u45ï �²e G î � ¸ � S � �²e)���H�9;: % « � § , 4 ^
�ê� S � �²e3�`���ê4Eï ��e G�î � ¸ � S � ��� v º ���

as long as � S � �²�/v º �H� is at least twice as large as the 7/�
from Claim A.4. The rest of the proof of Claim A.6b is
similar to that of Claim A.6a. This completes the proof of
Claim A.6 and Thm. 4.4b.

A.5 Chernoff Bounds
Essentially, Chernoff Bounds say that with high probabil-
ity the sum of many bounded independent random vari-
ables is close to its expectation. Here for the sake of com-
pleteness we write out the standard Chernoff Bounds and
some easy applications thereof that we use in the above
proofs.

Lemma A.9 (Chernoff Bounds [38]) Let 4 be the sum
of independent random variables 4 � � % � (� , , for some�8�A� . Let ­ � �²� (^z� and f-è½^ . Then:

(a)
9;: % 4 1 �$^Ù\ ­L�kë , 45� � ·GF�H > FJI , for any ëÏ4 ' � 4 � .

(b)
9;: % 4 �Efsë , 4�K � L � LM � MON

H > I , for any ë è ' � 4 � .
19

Claim A.10 Suppose ring § � � is well-formed and has
cardinality 7 . Fix a subset § © S � � and let ë �7s� §Ù� �ê� S � �#� . Then with failure probability at most� � � �L��� > H � F=H > F some node from § � � lands in § .
Proof: Denote the desired event by R . The distribution
of § � � is that of the following process � : pick nodes
from S � � independently and uniformly at random, until
we gather 7 � � distinct nodes. For simplicity consider a
slightly modified process � Ë : pick 7 � � nodes from S � � in-
dependently and uniformly at random, possibly with rep-
etitions. Obviously, � Ë is doing exactly the same as � ,
except � might stop later and, accordingly, choose some
more nodes. Therefore

9;:�P % R , è 9;:�PRQ % R , .
Let’s analyze process � Ë . Let 4 . be a 0-1 random

variable that is equal to 1 if and only if the 0 -th chosen
node lands in Sãvu���3� . Then

9;: % 4 .8�µ^ , �É� §Ù� �ê� S � � � , soëí� ' ��� 4 .z� . The claim follows from Lemma A.9a
with �@�9^ and ^¹\ ­°�9^
�Ìë .

Claim A.11 Consider two sets §¤ËÆ© § and suppose �
nodes are chosen independently and uniformly at ran-
dom from § ; say 4 of these � nodes land in § Ë . LetS �B� � §¤Ë�� �ê� §Ù� . Then

(a)
9;: % 4 1 S �)e , 4h� �UT >JV ,

(b)
9;: % 4 �±7 , 4A� � J > �=W for any 7Æè±e S ,

(c)
9;: % 4 �±e S , 4Í�²�3�Ìï�� T .

Proof: Let 4 . be a 0-1 random variable that is equal to
1 if and only if the 0 -th chosen node lands in § Ë . Then9;: % 4 .A� ^ , � � § Ë � �ê� §Ù� , so 4 � � Ó. �~� 4 . and ë¶�' � 4 � .

For part (a), use Lemma A.9a with �@�Ö^ and ­¹�O^Ì�3e .
Parts (bc) follow from Lemma A.9b with �2�ç^ and f¯�e ; let ë��½7]�)e in part (b), and let ëQ� S in part (c).

20

